use of com.almasb.fxgl.core.math.Vec2 in project FXGL by AlmasB.
the class WheelJoint method getJointTranslation.
public float getJointTranslation() {
Body b1 = m_bodyA;
Body b2 = m_bodyB;
Vec2 p1 = pool.popVec2();
Vec2 p2 = pool.popVec2();
Vec2 axis = pool.popVec2();
b1.getWorldPointToOut(m_localAnchorA, p1);
b2.getWorldPointToOut(m_localAnchorA, p2);
p2.subLocal(p1);
b1.getWorldVectorToOut(m_localXAxisA, axis);
float translation = Vec2.dot(p2, axis);
pool.pushVec2(3);
return translation;
}
use of com.almasb.fxgl.core.math.Vec2 in project FXGL by AlmasB.
the class WheelJoint method getReactionForce.
@Override
public void getReactionForce(float inv_dt, Vec2 argOut) {
final Vec2 temp = pool.popVec2();
temp.set(m_ay).mulLocal(m_impulse);
argOut.set(m_ax).mulLocal(m_springImpulse).addLocal(temp).mulLocal(inv_dt);
pool.pushVec2(1);
}
use of com.almasb.fxgl.core.math.Vec2 in project FXGL by AlmasB.
the class WheelJoint method solveVelocityConstraints.
@Override
public void solveVelocityConstraints(SolverData data) {
float mA = m_invMassA, mB = m_invMassB;
float iA = m_invIA, iB = m_invIB;
Vec2 vA = data.velocities[m_indexA].v;
float wA = data.velocities[m_indexA].w;
Vec2 vB = data.velocities[m_indexB].v;
float wB = data.velocities[m_indexB].w;
final Vec2 temp = pool.popVec2();
final Vec2 P = pool.popVec2();
// Solve spring constraint
{
float Cdot = Vec2.dot(m_ax, temp.set(vB).subLocal(vA)) + m_sBx * wB - m_sAx * wA;
float impulse = -m_springMass * (Cdot + m_bias + m_gamma * m_springImpulse);
m_springImpulse += impulse;
P.x = impulse * m_ax.x;
P.y = impulse * m_ax.y;
float LA = impulse * m_sAx;
float LB = impulse * m_sBx;
vA.x -= mA * P.x;
vA.y -= mA * P.y;
wA -= iA * LA;
vB.x += mB * P.x;
vB.y += mB * P.y;
wB += iB * LB;
}
// Solve rotational motor constraint
{
float Cdot = wB - wA - m_motorSpeed;
float impulse = -m_motorMass * Cdot;
float oldImpulse = m_motorImpulse;
float maxImpulse = data.step.dt * m_maxMotorTorque;
m_motorImpulse = FXGLMath.clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse);
impulse = m_motorImpulse - oldImpulse;
wA -= iA * impulse;
wB += iB * impulse;
}
// Solve point to line constraint
{
float Cdot = Vec2.dot(m_ay, temp.set(vB).subLocal(vA)) + m_sBy * wB - m_sAy * wA;
float impulse = -m_mass * Cdot;
m_impulse += impulse;
P.x = impulse * m_ay.x;
P.y = impulse * m_ay.y;
float LA = impulse * m_sAy;
float LB = impulse * m_sBy;
vA.x -= mA * P.x;
vA.y -= mA * P.y;
wA -= iA * LA;
vB.x += mB * P.x;
vB.y += mB * P.y;
wB += iB * LB;
}
pool.pushVec2(2);
// data.velocities[m_indexA].v = vA;
data.velocities[m_indexA].w = wA;
// data.velocities[m_indexB].v = vB;
data.velocities[m_indexB].w = wB;
}
use of com.almasb.fxgl.core.math.Vec2 in project FXGL by AlmasB.
the class FrictionJoint method initVelocityConstraints.
@Override
public void initVelocityConstraints(final SolverData data) {
m_indexA = m_bodyA.m_islandIndex;
m_indexB = m_bodyB.m_islandIndex;
m_localCenterA.set(m_bodyA.m_sweep.localCenter);
m_localCenterB.set(m_bodyB.m_sweep.localCenter);
m_invMassA = m_bodyA.m_invMass;
m_invMassB = m_bodyB.m_invMass;
m_invIA = m_bodyA.m_invI;
m_invIB = m_bodyB.m_invI;
float aA = data.positions[m_indexA].a;
Vec2 vA = data.velocities[m_indexA].v;
float wA = data.velocities[m_indexA].w;
float aB = data.positions[m_indexB].a;
Vec2 vB = data.velocities[m_indexB].v;
float wB = data.velocities[m_indexB].w;
final Vec2 temp = pool.popVec2();
final Rotation qA = pool.popRot();
final Rotation qB = pool.popRot();
qA.set(aA);
qB.set(aB);
// Compute the effective mass matrix.
Rotation.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), m_rA);
Rotation.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), m_rB);
// J = [-I -r1_skew I r2_skew]
// [ 0 -1 0 1]
// r_skew = [-ry; rx]
// Matlab
// K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
// [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
// [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
float mA = m_invMassA, mB = m_invMassB;
float iA = m_invIA, iB = m_invIB;
final Mat22 K = pool.popMat22();
K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y;
K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y;
K.ey.x = K.ex.y;
K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x;
K.invertToOut(m_linearMass);
m_angularMass = iA + iB;
if (m_angularMass > 0.0f) {
m_angularMass = 1.0f / m_angularMass;
}
if (data.step.warmStarting) {
// Scale impulses to support a variable time step.
m_linearImpulse.mulLocal(data.step.dtRatio);
m_angularImpulse *= data.step.dtRatio;
final Vec2 P = pool.popVec2();
P.set(m_linearImpulse);
temp.set(P).mulLocal(mA);
vA.subLocal(temp);
wA -= iA * (Vec2.cross(m_rA, P) + m_angularImpulse);
temp.set(P).mulLocal(mB);
vB.addLocal(temp);
wB += iB * (Vec2.cross(m_rB, P) + m_angularImpulse);
pool.pushVec2(1);
} else {
m_linearImpulse.setZero();
m_angularImpulse = 0.0f;
}
// data.velocities[m_indexA].v.set(vA);
if (data.velocities[m_indexA].w != wA) {
assert data.velocities[m_indexA].w != wA;
}
data.velocities[m_indexA].w = wA;
// data.velocities[m_indexB].v.set(vB);
data.velocities[m_indexB].w = wB;
pool.pushRot(2);
pool.pushVec2(1);
pool.pushMat22(1);
}
use of com.almasb.fxgl.core.math.Vec2 in project FXGL by AlmasB.
the class GearJoint method initVelocityConstraints.
@Override
public void initVelocityConstraints(SolverData data) {
m_indexA = m_bodyA.m_islandIndex;
m_indexB = m_bodyB.m_islandIndex;
m_indexC = m_bodyC.m_islandIndex;
m_indexD = m_bodyD.m_islandIndex;
m_lcA.set(m_bodyA.m_sweep.localCenter);
m_lcB.set(m_bodyB.m_sweep.localCenter);
m_lcC.set(m_bodyC.m_sweep.localCenter);
m_lcD.set(m_bodyD.m_sweep.localCenter);
m_mA = m_bodyA.m_invMass;
m_mB = m_bodyB.m_invMass;
m_mC = m_bodyC.m_invMass;
m_mD = m_bodyD.m_invMass;
m_iA = m_bodyA.m_invI;
m_iB = m_bodyB.m_invI;
m_iC = m_bodyC.m_invI;
m_iD = m_bodyD.m_invI;
// Vec2 cA = data.positions[m_indexA].c;
float aA = data.positions[m_indexA].a;
Vec2 vA = data.velocities[m_indexA].v;
float wA = data.velocities[m_indexA].w;
// Vec2 cB = data.positions[m_indexB].c;
float aB = data.positions[m_indexB].a;
Vec2 vB = data.velocities[m_indexB].v;
float wB = data.velocities[m_indexB].w;
// Vec2 cC = data.positions[m_indexC].c;
float aC = data.positions[m_indexC].a;
Vec2 vC = data.velocities[m_indexC].v;
float wC = data.velocities[m_indexC].w;
// Vec2 cD = data.positions[m_indexD].c;
float aD = data.positions[m_indexD].a;
Vec2 vD = data.velocities[m_indexD].v;
float wD = data.velocities[m_indexD].w;
Rotation qA = pool.popRot(), qB = pool.popRot(), qC = pool.popRot(), qD = pool.popRot();
qA.set(aA);
qB.set(aB);
qC.set(aC);
qD.set(aD);
m_mass = 0.0f;
Vec2 temp = pool.popVec2();
if (m_typeA.equals(RevoluteJoint.class)) {
m_JvAC.setZero();
m_JwA = 1.0f;
m_JwC = 1.0f;
m_mass += m_iA + m_iC;
} else {
Vec2 rC = pool.popVec2();
Vec2 rA = pool.popVec2();
Rotation.mulToOutUnsafe(qC, m_localAxisC, m_JvAC);
Rotation.mulToOutUnsafe(qC, temp.set(m_localAnchorC).subLocal(m_lcC), rC);
Rotation.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_lcA), rA);
m_JwC = Vec2.cross(rC, m_JvAC);
m_JwA = Vec2.cross(rA, m_JvAC);
m_mass += m_mC + m_mA + m_iC * m_JwC * m_JwC + m_iA * m_JwA * m_JwA;
pool.pushVec2(2);
}
if (m_typeB.equals(RevoluteJoint.class)) {
m_JvBD.setZero();
m_JwB = m_ratio;
m_JwD = m_ratio;
m_mass += m_ratio * m_ratio * (m_iB + m_iD);
} else {
Vec2 u = pool.popVec2();
Vec2 rD = pool.popVec2();
Vec2 rB = pool.popVec2();
Rotation.mulToOutUnsafe(qD, m_localAxisD, u);
Rotation.mulToOutUnsafe(qD, temp.set(m_localAnchorD).subLocal(m_lcD), rD);
Rotation.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_lcB), rB);
m_JvBD.set(u).mulLocal(m_ratio);
m_JwD = m_ratio * Vec2.cross(rD, u);
m_JwB = m_ratio * Vec2.cross(rB, u);
m_mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * m_JwD * m_JwD + m_iB * m_JwB * m_JwB;
pool.pushVec2(3);
}
// Compute effective mass.
m_mass = m_mass > 0.0f ? 1.0f / m_mass : 0.0f;
if (data.step.warmStarting) {
vA.x += (m_mA * m_impulse) * m_JvAC.x;
vA.y += (m_mA * m_impulse) * m_JvAC.y;
wA += m_iA * m_impulse * m_JwA;
vB.x += (m_mB * m_impulse) * m_JvBD.x;
vB.y += (m_mB * m_impulse) * m_JvBD.y;
wB += m_iB * m_impulse * m_JwB;
vC.x -= (m_mC * m_impulse) * m_JvAC.x;
vC.y -= (m_mC * m_impulse) * m_JvAC.y;
wC -= m_iC * m_impulse * m_JwC;
vD.x -= (m_mD * m_impulse) * m_JvBD.x;
vD.y -= (m_mD * m_impulse) * m_JvBD.y;
wD -= m_iD * m_impulse * m_JwD;
} else {
m_impulse = 0.0f;
}
pool.pushVec2(1);
pool.pushRot(4);
// data.velocities[m_indexA].v = vA;
data.velocities[m_indexA].w = wA;
// data.velocities[m_indexB].v = vB;
data.velocities[m_indexB].w = wB;
// data.velocities[m_indexC].v = vC;
data.velocities[m_indexC].w = wC;
// data.velocities[m_indexD].v = vD;
data.velocities[m_indexD].w = wD;
}
Aggregations