use of com.almasb.fxgl.physics.box2d.common.Rotation in project FXGL by AlmasB.
the class ContactSolver method solveTOIPositionConstraints.
// Sequential position solver for position constraints.
public boolean solveTOIPositionConstraints(int toiIndexA, int toiIndexB) {
float minSeparation = 0.0f;
for (int i = 0; i < m_count; ++i) {
ContactPositionConstraint pc = m_positionConstraints[i];
int indexA = pc.indexA;
int indexB = pc.indexB;
Vec2 localCenterA = pc.localCenterA;
Vec2 localCenterB = pc.localCenterB;
final float localCenterAx = localCenterA.x;
final float localCenterAy = localCenterA.y;
final float localCenterBx = localCenterB.x;
final float localCenterBy = localCenterB.y;
int pointCount = pc.pointCount;
float mA = 0.0f;
float iA = 0.0f;
if (indexA == toiIndexA || indexA == toiIndexB) {
mA = pc.invMassA;
iA = pc.invIA;
}
float mB = 0f;
float iB = 0f;
if (indexB == toiIndexA || indexB == toiIndexB) {
mB = pc.invMassB;
iB = pc.invIB;
}
Vec2 cA = m_positions[indexA].c;
float aA = m_positions[indexA].a;
Vec2 cB = m_positions[indexB].c;
float aB = m_positions[indexB].a;
// Solve normal constraints
for (int j = 0; j < pointCount; ++j) {
final Rotation xfAq = xfA.q;
final Rotation xfBq = xfB.q;
xfAq.set(aA);
xfBq.set(aB);
xfA.p.x = cA.x - xfAq.c * localCenterAx + xfAq.s * localCenterAy;
xfA.p.y = cA.y - xfAq.s * localCenterAx - xfAq.c * localCenterAy;
xfB.p.x = cB.x - xfBq.c * localCenterBx + xfBq.s * localCenterBy;
xfB.p.y = cB.y - xfBq.s * localCenterBx - xfBq.c * localCenterBy;
final PositionSolverManifold psm = psolver;
psm.initialize(pc, xfA, xfB, j);
Vec2 normal = psm.normal;
Vec2 point = psm.point;
float separation = psm.separation;
float rAx = point.x - cA.x;
float rAy = point.y - cA.y;
float rBx = point.x - cB.x;
float rBy = point.y - cB.y;
// Track max constraint error.
minSeparation = Math.min(minSeparation, separation);
// Prevent large corrections and allow slop.
float C = FXGLMath.clamp(JBoxSettings.toiBaugarte * (separation + JBoxSettings.linearSlop), -JBoxSettings.maxLinearCorrection, 0.0f);
// Compute the effective mass.
float rnA = rAx * normal.y - rAy * normal.x;
float rnB = rBx * normal.y - rBy * normal.x;
float K = mA + mB + iA * rnA * rnA + iB * rnB * rnB;
// Compute normal impulse
float impulse = K > 0.0f ? -C / K : 0.0f;
float Px = normal.x * impulse;
float Py = normal.y * impulse;
cA.x -= Px * mA;
cA.y -= Py * mA;
aA -= iA * (rAx * Py - rAy * Px);
cB.x += Px * mB;
cB.y += Py * mB;
aB += iB * (rBx * Py - rBy * Px);
}
m_positions[indexA].a = aA;
m_positions[indexB].a = aB;
}
// push the separation above -_linearSlop.
return minSeparation >= -1.5f * JBoxSettings.linearSlop;
}
use of com.almasb.fxgl.physics.box2d.common.Rotation in project FXGL by AlmasB.
the class MouseJoint method initVelocityConstraints.
@Override
public void initVelocityConstraints(final SolverData data) {
m_indexB = m_bodyB.m_islandIndex;
m_localCenterB.set(m_bodyB.m_sweep.localCenter);
m_invMassB = m_bodyB.m_invMass;
m_invIB = m_bodyB.m_invI;
Vec2 cB = data.positions[m_indexB].c;
float aB = data.positions[m_indexB].a;
Vec2 vB = data.velocities[m_indexB].v;
float wB = data.velocities[m_indexB].w;
final Rotation qB = pool.popRot();
qB.set(aB);
float mass = m_bodyB.getMass();
// Frequency
float omega = 2.0f * (float) FXGLMath.PI * m_frequencyHz;
// Damping coefficient
float d = 2.0f * mass * m_dampingRatio * omega;
// Spring stiffness
float k = mass * (omega * omega);
// magic formulas
// gamma has units of inverse mass.
// beta has units of inverse time.
float h = data.step.dt;
assert d + h * k > JBoxSettings.EPSILON;
m_gamma = h * (d + h * k);
if (m_gamma != 0.0f) {
m_gamma = 1.0f / m_gamma;
}
m_beta = h * k * m_gamma;
Vec2 temp = pool.popVec2();
// Compute the effective mass matrix.
Rotation.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), m_rB);
// K = [(1/m1 + 1/m2) * eye(2) - skew(r1) * invI1 * skew(r1) - skew(r2) * invI2 * skew(r2)]
// = [1/m1+1/m2 0 ] + invI1 * [r1.y*r1.y -r1.x*r1.y] + invI2 * [r1.y*r1.y -r1.x*r1.y]
// [ 0 1/m1+1/m2] [-r1.x*r1.y r1.x*r1.x] [-r1.x*r1.y r1.x*r1.x]
final Mat22 K = pool.popMat22();
K.ex.x = m_invMassB + m_invIB * m_rB.y * m_rB.y + m_gamma;
K.ex.y = -m_invIB * m_rB.x * m_rB.y;
K.ey.x = K.ex.y;
K.ey.y = m_invMassB + m_invIB * m_rB.x * m_rB.x + m_gamma;
K.invertToOut(m_mass);
m_C.set(cB).addLocal(m_rB).subLocal(m_targetA);
m_C.mulLocal(m_beta);
// Cheat with some damping
wB *= 0.98f;
if (data.step.warmStarting) {
m_impulse.mulLocal(data.step.dtRatio);
vB.x += m_invMassB * m_impulse.x;
vB.y += m_invMassB * m_impulse.y;
wB += m_invIB * Vec2.cross(m_rB, m_impulse);
} else {
m_impulse.setZero();
}
// data.velocities[m_indexB].v.set(vB);
data.velocities[m_indexB].w = wB;
pool.pushVec2(1);
pool.pushMat22(1);
pool.pushRot(1);
}
use of com.almasb.fxgl.physics.box2d.common.Rotation in project FXGL by AlmasB.
the class PrismaticJoint method initVelocityConstraints.
@Override
public void initVelocityConstraints(final SolverData data) {
m_indexA = m_bodyA.m_islandIndex;
m_indexB = m_bodyB.m_islandIndex;
m_localCenterA.set(m_bodyA.m_sweep.localCenter);
m_localCenterB.set(m_bodyB.m_sweep.localCenter);
m_invMassA = m_bodyA.m_invMass;
m_invMassB = m_bodyB.m_invMass;
m_invIA = m_bodyA.m_invI;
m_invIB = m_bodyB.m_invI;
Vec2 cA = data.positions[m_indexA].c;
float aA = data.positions[m_indexA].a;
Vec2 vA = data.velocities[m_indexA].v;
float wA = data.velocities[m_indexA].w;
Vec2 cB = data.positions[m_indexB].c;
float aB = data.positions[m_indexB].a;
Vec2 vB = data.velocities[m_indexB].v;
float wB = data.velocities[m_indexB].w;
final Rotation qA = pool.popRot();
final Rotation qB = pool.popRot();
final Vec2 d = pool.popVec2();
final Vec2 temp = pool.popVec2();
final Vec2 rA = pool.popVec2();
final Vec2 rB = pool.popVec2();
qA.set(aA);
qB.set(aB);
// Compute the effective masses.
Rotation.mulToOutUnsafe(qA, d.set(m_localAnchorA).subLocal(m_localCenterA), rA);
Rotation.mulToOutUnsafe(qB, d.set(m_localAnchorB).subLocal(m_localCenterB), rB);
d.set(cB).subLocal(cA).addLocal(rB).subLocal(rA);
float mA = m_invMassA, mB = m_invMassB;
float iA = m_invIA, iB = m_invIB;
// Compute motor Jacobian and effective mass.
{
Rotation.mulToOutUnsafe(qA, m_localXAxisA, m_axis);
temp.set(d).addLocal(rA);
m_a1 = Vec2.cross(temp, m_axis);
m_a2 = Vec2.cross(rB, m_axis);
m_motorMass = mA + mB + iA * m_a1 * m_a1 + iB * m_a2 * m_a2;
if (m_motorMass > 0.0f) {
m_motorMass = 1.0f / m_motorMass;
}
}
// Prismatic constraint.
{
Rotation.mulToOutUnsafe(qA, m_localYAxisA, m_perp);
temp.set(d).addLocal(rA);
m_s1 = Vec2.cross(temp, m_perp);
m_s2 = Vec2.cross(rB, m_perp);
float k11 = mA + mB + iA * m_s1 * m_s1 + iB * m_s2 * m_s2;
float k12 = iA * m_s1 + iB * m_s2;
float k13 = iA * m_s1 * m_a1 + iB * m_s2 * m_a2;
float k22 = iA + iB;
if (k22 == 0.0f) {
// For bodies with fixed rotation.
k22 = 1.0f;
}
float k23 = iA * m_a1 + iB * m_a2;
float k33 = mA + mB + iA * m_a1 * m_a1 + iB * m_a2 * m_a2;
m_K.ex.set(k11, k12, k13);
m_K.ey.set(k12, k22, k23);
m_K.ez.set(k13, k23, k33);
}
// Compute motor and limit terms.
if (m_enableLimit) {
float jointTranslation = Vec2.dot(m_axis, d);
if (FXGLMath.abs(m_upperTranslation - m_lowerTranslation) < 2.0f * JBoxSettings.linearSlop) {
m_limitState = LimitState.EQUAL;
} else if (jointTranslation <= m_lowerTranslation) {
if (m_limitState != LimitState.AT_LOWER) {
m_limitState = LimitState.AT_LOWER;
m_impulse.z = 0.0f;
}
} else if (jointTranslation >= m_upperTranslation) {
if (m_limitState != LimitState.AT_UPPER) {
m_limitState = LimitState.AT_UPPER;
m_impulse.z = 0.0f;
}
} else {
m_limitState = LimitState.INACTIVE;
m_impulse.z = 0.0f;
}
} else {
m_limitState = LimitState.INACTIVE;
m_impulse.z = 0.0f;
}
if (!m_enableMotor) {
m_motorImpulse = 0.0f;
}
if (data.step.warmStarting) {
// Account for variable time step.
m_impulse.mulLocal(data.step.dtRatio);
m_motorImpulse *= data.step.dtRatio;
final Vec2 P = pool.popVec2();
temp.set(m_axis).mulLocal(m_motorImpulse + m_impulse.z);
P.set(m_perp).mulLocal(m_impulse.x).addLocal(temp);
float LA = m_impulse.x * m_s1 + m_impulse.y + (m_motorImpulse + m_impulse.z) * m_a1;
float LB = m_impulse.x * m_s2 + m_impulse.y + (m_motorImpulse + m_impulse.z) * m_a2;
vA.x -= mA * P.x;
vA.y -= mA * P.y;
wA -= iA * LA;
vB.x += mB * P.x;
vB.y += mB * P.y;
wB += iB * LB;
pool.pushVec2(1);
} else {
m_impulse.setZero();
m_motorImpulse = 0.0f;
}
// data.velocities[m_indexA].v.set(vA);
data.velocities[m_indexA].w = wA;
// data.velocities[m_indexB].v.set(vB);
data.velocities[m_indexB].w = wB;
pool.pushRot(2);
pool.pushVec2(4);
}
use of com.almasb.fxgl.physics.box2d.common.Rotation in project FXGL by AlmasB.
the class PulleyJoint method solvePositionConstraints.
@Override
public boolean solvePositionConstraints(final SolverData data) {
final Rotation qA = pool.popRot();
final Rotation qB = pool.popRot();
final Vec2 rA = pool.popVec2();
final Vec2 rB = pool.popVec2();
final Vec2 uA = pool.popVec2();
final Vec2 uB = pool.popVec2();
final Vec2 temp = pool.popVec2();
final Vec2 PA = pool.popVec2();
final Vec2 PB = pool.popVec2();
Vec2 cA = data.positions[m_indexA].c;
float aA = data.positions[m_indexA].a;
Vec2 cB = data.positions[m_indexB].c;
float aB = data.positions[m_indexB].a;
qA.set(aA);
qB.set(aB);
Rotation.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), rA);
Rotation.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), rB);
uA.set(cA).addLocal(rA).subLocal(m_groundAnchorA);
uB.set(cB).addLocal(rB).subLocal(m_groundAnchorB);
float lengthA = uA.length();
float lengthB = uB.length();
if (lengthA > 10.0f * JBoxSettings.linearSlop) {
uA.mulLocal(1.0f / lengthA);
} else {
uA.setZero();
}
if (lengthB > 10.0f * JBoxSettings.linearSlop) {
uB.mulLocal(1.0f / lengthB);
} else {
uB.setZero();
}
// Compute effective mass.
float ruA = Vec2.cross(rA, uA);
float ruB = Vec2.cross(rB, uB);
float mA = m_invMassA + m_invIA * ruA * ruA;
float mB = m_invMassB + m_invIB * ruB * ruB;
float mass = mA + m_ratio * m_ratio * mB;
if (mass > 0.0f) {
mass = 1.0f / mass;
}
float C = m_constant - lengthA - m_ratio * lengthB;
float linearError = FXGLMath.abs(C);
float impulse = -mass * C;
PA.set(uA).mulLocal(-impulse);
PB.set(uB).mulLocal(-m_ratio * impulse);
cA.x += m_invMassA * PA.x;
cA.y += m_invMassA * PA.y;
aA += m_invIA * Vec2.cross(rA, PA);
cB.x += m_invMassB * PB.x;
cB.y += m_invMassB * PB.y;
aB += m_invIB * Vec2.cross(rB, PB);
// data.positions[m_indexA].c.set(cA);
data.positions[m_indexA].a = aA;
// data.positions[m_indexB].c.set(cB);
data.positions[m_indexB].a = aB;
pool.pushRot(2);
pool.pushVec2(7);
return linearError < JBoxSettings.linearSlop;
}
use of com.almasb.fxgl.physics.box2d.common.Rotation in project FXGL by AlmasB.
the class PulleyJoint method initVelocityConstraints.
@Override
public void initVelocityConstraints(final SolverData data) {
m_indexA = m_bodyA.m_islandIndex;
m_indexB = m_bodyB.m_islandIndex;
m_localCenterA.set(m_bodyA.m_sweep.localCenter);
m_localCenterB.set(m_bodyB.m_sweep.localCenter);
m_invMassA = m_bodyA.m_invMass;
m_invMassB = m_bodyB.m_invMass;
m_invIA = m_bodyA.m_invI;
m_invIB = m_bodyB.m_invI;
Vec2 cA = data.positions[m_indexA].c;
float aA = data.positions[m_indexA].a;
Vec2 vA = data.velocities[m_indexA].v;
float wA = data.velocities[m_indexA].w;
Vec2 cB = data.positions[m_indexB].c;
float aB = data.positions[m_indexB].a;
Vec2 vB = data.velocities[m_indexB].v;
float wB = data.velocities[m_indexB].w;
final Rotation qA = pool.popRot();
final Rotation qB = pool.popRot();
final Vec2 temp = pool.popVec2();
qA.set(aA);
qB.set(aB);
// Compute the effective masses.
Rotation.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), m_rA);
Rotation.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), m_rB);
m_uA.set(cA).addLocal(m_rA).subLocal(m_groundAnchorA);
m_uB.set(cB).addLocal(m_rB).subLocal(m_groundAnchorB);
float lengthA = m_uA.length();
float lengthB = m_uB.length();
if (lengthA > 10f * JBoxSettings.linearSlop) {
m_uA.mulLocal(1.0f / lengthA);
} else {
m_uA.setZero();
}
if (lengthB > 10f * JBoxSettings.linearSlop) {
m_uB.mulLocal(1.0f / lengthB);
} else {
m_uB.setZero();
}
// Compute effective mass.
float ruA = Vec2.cross(m_rA, m_uA);
float ruB = Vec2.cross(m_rB, m_uB);
float mA = m_invMassA + m_invIA * ruA * ruA;
float mB = m_invMassB + m_invIB * ruB * ruB;
m_mass = mA + m_ratio * m_ratio * mB;
if (m_mass > 0.0f) {
m_mass = 1.0f / m_mass;
}
if (data.step.warmStarting) {
// Scale impulses to support variable time steps.
m_impulse *= data.step.dtRatio;
// Warm starting.
final Vec2 PA = pool.popVec2();
final Vec2 PB = pool.popVec2();
PA.set(m_uA).mulLocal(-m_impulse);
PB.set(m_uB).mulLocal(-m_ratio * m_impulse);
vA.x += m_invMassA * PA.x;
vA.y += m_invMassA * PA.y;
wA += m_invIA * Vec2.cross(m_rA, PA);
vB.x += m_invMassB * PB.x;
vB.y += m_invMassB * PB.y;
wB += m_invIB * Vec2.cross(m_rB, PB);
pool.pushVec2(2);
} else {
m_impulse = 0.0f;
}
// data.velocities[m_indexA].v.set(vA);
data.velocities[m_indexA].w = wA;
// data.velocities[m_indexB].v.set(vB);
data.velocities[m_indexB].w = wB;
pool.pushVec2(1);
pool.pushRot(2);
}
Aggregations