Search in sources :

Example 11 with Rotation

use of com.almasb.fxgl.physics.box2d.common.Rotation in project FXGL by AlmasB.

the class RevoluteJoint method initVelocityConstraints.

@Override
public void initVelocityConstraints(final SolverData data) {
    m_indexA = m_bodyA.m_islandIndex;
    m_indexB = m_bodyB.m_islandIndex;
    m_localCenterA.set(m_bodyA.m_sweep.localCenter);
    m_localCenterB.set(m_bodyB.m_sweep.localCenter);
    m_invMassA = m_bodyA.m_invMass;
    m_invMassB = m_bodyB.m_invMass;
    m_invIA = m_bodyA.m_invI;
    m_invIB = m_bodyB.m_invI;
    // Vec2 cA = data.positions[m_indexA].c;
    float aA = data.positions[m_indexA].a;
    Vec2 vA = data.velocities[m_indexA].v;
    float wA = data.velocities[m_indexA].w;
    // Vec2 cB = data.positions[m_indexB].c;
    float aB = data.positions[m_indexB].a;
    Vec2 vB = data.velocities[m_indexB].v;
    float wB = data.velocities[m_indexB].w;
    final Rotation qA = pool.popRot();
    final Rotation qB = pool.popRot();
    final Vec2 temp = pool.popVec2();
    qA.set(aA);
    qB.set(aB);
    // Compute the effective masses.
    Rotation.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), m_rA);
    Rotation.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), m_rB);
    // J = [-I -r1_skew I r2_skew]
    // [ 0 -1 0 1]
    // r_skew = [-ry; rx]
    // Matlab
    // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
    // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
    // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
    float mA = m_invMassA, mB = m_invMassB;
    float iA = m_invIA, iB = m_invIB;
    boolean fixedRotation = iA + iB == 0.0f;
    m_mass.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB;
    m_mass.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB;
    m_mass.ez.x = -m_rA.y * iA - m_rB.y * iB;
    m_mass.ex.y = m_mass.ey.x;
    m_mass.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB;
    m_mass.ez.y = m_rA.x * iA + m_rB.x * iB;
    m_mass.ex.z = m_mass.ez.x;
    m_mass.ey.z = m_mass.ez.y;
    m_mass.ez.z = iA + iB;
    m_motorMass = iA + iB;
    if (m_motorMass > 0.0f) {
        m_motorMass = 1.0f / m_motorMass;
    }
    if (!m_enableMotor || fixedRotation) {
        m_motorImpulse = 0.0f;
    }
    if (m_enableLimit && !fixedRotation) {
        float jointAngle = aB - aA - m_referenceAngle;
        if (FXGLMath.abs(m_upperAngle - m_lowerAngle) < 2.0f * JBoxSettings.angularSlop) {
            m_limitState = LimitState.EQUAL;
        } else if (jointAngle <= m_lowerAngle) {
            if (m_limitState != LimitState.AT_LOWER) {
                m_impulse.z = 0.0f;
            }
            m_limitState = LimitState.AT_LOWER;
        } else if (jointAngle >= m_upperAngle) {
            if (m_limitState != LimitState.AT_UPPER) {
                m_impulse.z = 0.0f;
            }
            m_limitState = LimitState.AT_UPPER;
        } else {
            m_limitState = LimitState.INACTIVE;
            m_impulse.z = 0.0f;
        }
    } else {
        m_limitState = LimitState.INACTIVE;
    }
    if (data.step.warmStarting) {
        final Vec2 P = pool.popVec2();
        // Scale impulses to support a variable time step.
        m_impulse.x *= data.step.dtRatio;
        m_impulse.y *= data.step.dtRatio;
        m_motorImpulse *= data.step.dtRatio;
        P.x = m_impulse.x;
        P.y = m_impulse.y;
        vA.x -= mA * P.x;
        vA.y -= mA * P.y;
        wA -= iA * (Vec2.cross(m_rA, P) + m_motorImpulse + m_impulse.z);
        vB.x += mB * P.x;
        vB.y += mB * P.y;
        wB += iB * (Vec2.cross(m_rB, P) + m_motorImpulse + m_impulse.z);
        pool.pushVec2(1);
    } else {
        m_impulse.setZero();
        m_motorImpulse = 0.0f;
    }
    // data.velocities[m_indexA].v.set(vA);
    data.velocities[m_indexA].w = wA;
    // data.velocities[m_indexB].v.set(vB);
    data.velocities[m_indexB].w = wB;
    pool.pushVec2(1);
    pool.pushRot(2);
}
Also used : Vec2(com.almasb.fxgl.core.math.Vec2) Rotation(com.almasb.fxgl.physics.box2d.common.Rotation)

Example 12 with Rotation

use of com.almasb.fxgl.physics.box2d.common.Rotation in project FXGL by AlmasB.

the class CircleShape method computeDistanceToOut.

@Override
public float computeDistanceToOut(Transform xf, Vec2 p, int childIndex, Vec2 normalOut) {
    final Rotation xfq = xf.q;
    float centerx = xfq.c * center.x - xfq.s * center.y + xf.p.x;
    float centery = xfq.s * center.x + xfq.c * center.y + xf.p.y;
    float dx = p.x - centerx;
    float dy = p.y - centery;
    float d1 = FXGLMath.sqrtF(dx * dx + dy * dy);
    normalOut.x = dx * 1 / d1;
    normalOut.y = dy * 1 / d1;
    return d1 - getRadius();
}
Also used : Rotation(com.almasb.fxgl.physics.box2d.common.Rotation)

Example 13 with Rotation

use of com.almasb.fxgl.physics.box2d.common.Rotation in project FXGL by AlmasB.

the class RopeJoint method initVelocityConstraints.

@Override
public void initVelocityConstraints(final SolverData data) {
    m_indexA = m_bodyA.m_islandIndex;
    m_indexB = m_bodyB.m_islandIndex;
    m_localCenterA.set(m_bodyA.m_sweep.localCenter);
    m_localCenterB.set(m_bodyB.m_sweep.localCenter);
    m_invMassA = m_bodyA.m_invMass;
    m_invMassB = m_bodyB.m_invMass;
    m_invIA = m_bodyA.m_invI;
    m_invIB = m_bodyB.m_invI;
    Vec2 cA = data.positions[m_indexA].c;
    float aA = data.positions[m_indexA].a;
    Vec2 vA = data.velocities[m_indexA].v;
    float wA = data.velocities[m_indexA].w;
    Vec2 cB = data.positions[m_indexB].c;
    float aB = data.positions[m_indexB].a;
    Vec2 vB = data.velocities[m_indexB].v;
    float wB = data.velocities[m_indexB].w;
    final Rotation qA = pool.popRot();
    final Rotation qB = pool.popRot();
    final Vec2 temp = pool.popVec2();
    qA.set(aA);
    qB.set(aB);
    // Compute the effective masses.
    Rotation.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), m_rA);
    Rotation.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), m_rB);
    m_u.set(cB).addLocal(m_rB).subLocal(cA).subLocal(m_rA);
    m_length = m_u.length();
    float C = m_length - m_maxLength;
    if (C > 0.0f) {
        m_state = LimitState.AT_UPPER;
    } else {
        m_state = LimitState.INACTIVE;
    }
    if (m_length > JBoxSettings.linearSlop) {
        m_u.mulLocal(1.0f / m_length);
    } else {
        m_u.setZero();
        m_mass = 0.0f;
        m_impulse = 0.0f;
        return;
    }
    // Compute effective mass.
    float crA = Vec2.cross(m_rA, m_u);
    float crB = Vec2.cross(m_rB, m_u);
    float invMass = m_invMassA + m_invIA * crA * crA + m_invMassB + m_invIB * crB * crB;
    m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f;
    if (data.step.warmStarting) {
        // Scale the impulse to support a variable time step.
        m_impulse *= data.step.dtRatio;
        float Px = m_impulse * m_u.x;
        float Py = m_impulse * m_u.y;
        vA.x -= m_invMassA * Px;
        vA.y -= m_invMassA * Py;
        wA -= m_invIA * (m_rA.x * Py - m_rA.y * Px);
        vB.x += m_invMassB * Px;
        vB.y += m_invMassB * Py;
        wB += m_invIB * (m_rB.x * Py - m_rB.y * Px);
    } else {
        m_impulse = 0.0f;
    }
    pool.pushRot(2);
    pool.pushVec2(1);
    // data.velocities[m_indexA].v = vA;
    data.velocities[m_indexA].w = wA;
    // data.velocities[m_indexB].v = vB;
    data.velocities[m_indexB].w = wB;
}
Also used : Vec2(com.almasb.fxgl.core.math.Vec2) Rotation(com.almasb.fxgl.physics.box2d.common.Rotation)

Example 14 with Rotation

use of com.almasb.fxgl.physics.box2d.common.Rotation in project FXGL by AlmasB.

the class RopeJoint method solvePositionConstraints.

@Override
public boolean solvePositionConstraints(final SolverData data) {
    Vec2 cA = data.positions[m_indexA].c;
    float aA = data.positions[m_indexA].a;
    Vec2 cB = data.positions[m_indexB].c;
    float aB = data.positions[m_indexB].a;
    final Rotation qA = pool.popRot();
    final Rotation qB = pool.popRot();
    final Vec2 u = pool.popVec2();
    final Vec2 rA = pool.popVec2();
    final Vec2 rB = pool.popVec2();
    final Vec2 temp = pool.popVec2();
    qA.set(aA);
    qB.set(aB);
    // Compute the effective masses.
    Rotation.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), rA);
    Rotation.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), rB);
    u.set(cB).addLocal(rB).subLocal(cA).subLocal(rA);
    float length = u.getLengthAndNormalize();
    float C = length - m_maxLength;
    C = FXGLMath.clamp(C, 0.0f, JBoxSettings.maxLinearCorrection);
    float impulse = -m_mass * C;
    float Px = impulse * u.x;
    float Py = impulse * u.y;
    cA.x -= m_invMassA * Px;
    cA.y -= m_invMassA * Py;
    aA -= m_invIA * (rA.x * Py - rA.y * Px);
    cB.x += m_invMassB * Px;
    cB.y += m_invMassB * Py;
    aB += m_invIB * (rB.x * Py - rB.y * Px);
    pool.pushRot(2);
    pool.pushVec2(4);
    // data.positions[m_indexA].c = cA;
    data.positions[m_indexA].a = aA;
    // data.positions[m_indexB].c = cB;
    data.positions[m_indexB].a = aB;
    return length - m_maxLength < JBoxSettings.linearSlop;
}
Also used : Vec2(com.almasb.fxgl.core.math.Vec2) Rotation(com.almasb.fxgl.physics.box2d.common.Rotation)

Example 15 with Rotation

use of com.almasb.fxgl.physics.box2d.common.Rotation in project FXGL by AlmasB.

the class DistanceJoint method initVelocityConstraints.

@Override
public void initVelocityConstraints(final SolverData data) {
    m_indexA = m_bodyA.m_islandIndex;
    m_indexB = m_bodyB.m_islandIndex;
    m_localCenterA.set(m_bodyA.m_sweep.localCenter);
    m_localCenterB.set(m_bodyB.m_sweep.localCenter);
    m_invMassA = m_bodyA.m_invMass;
    m_invMassB = m_bodyB.m_invMass;
    m_invIA = m_bodyA.m_invI;
    m_invIB = m_bodyB.m_invI;
    Vec2 cA = data.positions[m_indexA].c;
    float aA = data.positions[m_indexA].a;
    Vec2 vA = data.velocities[m_indexA].v;
    float wA = data.velocities[m_indexA].w;
    Vec2 cB = data.positions[m_indexB].c;
    float aB = data.positions[m_indexB].a;
    Vec2 vB = data.velocities[m_indexB].v;
    float wB = data.velocities[m_indexB].w;
    final Rotation qA = pool.popRot();
    final Rotation qB = pool.popRot();
    qA.set(aA);
    qB.set(aB);
    // use m_u as temporary variable
    Rotation.mulToOutUnsafe(qA, m_u.set(m_localAnchorA).subLocal(m_localCenterA), m_rA);
    Rotation.mulToOutUnsafe(qB, m_u.set(m_localAnchorB).subLocal(m_localCenterB), m_rB);
    m_u.set(cB).addLocal(m_rB).subLocal(cA).subLocal(m_rA);
    pool.pushRot(2);
    // Handle singularity.
    float length = m_u.length();
    if (length > JBoxSettings.linearSlop) {
        m_u.x *= 1.0f / length;
        m_u.y *= 1.0f / length;
    } else {
        m_u.set(0.0f, 0.0f);
    }
    float crAu = Vec2.cross(m_rA, m_u);
    float crBu = Vec2.cross(m_rB, m_u);
    float invMass = m_invMassA + m_invIA * crAu * crAu + m_invMassB + m_invIB * crBu * crBu;
    // Compute the effective mass matrix.
    m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f;
    if (m_frequencyHz > 0.0f) {
        float C = length - m_length;
        // Frequency
        float omega = 2.0f * (float) FXGLMath.PI * m_frequencyHz;
        // Damping coefficient
        float d = 2.0f * m_mass * m_dampingRatio * omega;
        // Spring stiffness
        float k = m_mass * omega * omega;
        // magic formulas
        float h = data.step.dt;
        m_gamma = h * (d + h * k);
        m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f;
        m_bias = C * h * k * m_gamma;
        invMass += m_gamma;
        m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f;
    } else {
        m_gamma = 0.0f;
        m_bias = 0.0f;
    }
    if (data.step.warmStarting) {
        // Scale the impulse to support a variable time step.
        m_impulse *= data.step.dtRatio;
        Vec2 P = pool.popVec2();
        P.set(m_u).mulLocal(m_impulse);
        vA.x -= m_invMassA * P.x;
        vA.y -= m_invMassA * P.y;
        wA -= m_invIA * Vec2.cross(m_rA, P);
        vB.x += m_invMassB * P.x;
        vB.y += m_invMassB * P.y;
        wB += m_invIB * Vec2.cross(m_rB, P);
        pool.pushVec2(1);
    } else {
        m_impulse = 0.0f;
    }
    // data.velocities[m_indexA].v.set(vA);
    data.velocities[m_indexA].w = wA;
    // data.velocities[m_indexB].v.set(vB);
    data.velocities[m_indexB].w = wB;
}
Also used : Vec2(com.almasb.fxgl.core.math.Vec2) Rotation(com.almasb.fxgl.physics.box2d.common.Rotation)

Aggregations

Rotation (com.almasb.fxgl.physics.box2d.common.Rotation)37 Vec2 (com.almasb.fxgl.core.math.Vec2)36 Mat22 (com.almasb.fxgl.physics.box2d.common.Mat22)5 ManifoldPoint (com.almasb.fxgl.physics.box2d.collision.ManifoldPoint)3 Mat33 (com.almasb.fxgl.physics.box2d.common.Mat33)3 VelocityConstraintPoint (com.almasb.fxgl.physics.box2d.dynamics.contacts.ContactVelocityConstraint.VelocityConstraintPoint)3 Vec3 (com.almasb.fxgl.core.math.Vec3)2 Transform (com.almasb.fxgl.physics.box2d.common.Transform)2 Manifold (com.almasb.fxgl.physics.box2d.collision.Manifold)1 WorldManifold (com.almasb.fxgl.physics.box2d.collision.WorldManifold)1 PolygonShape (com.almasb.fxgl.physics.box2d.collision.shapes.PolygonShape)1