Search in sources :

Example 21 with Rotation

use of com.almasb.fxgl.physics.box2d.common.Rotation in project FXGL by AlmasB.

the class WheelJoint method initVelocityConstraints.

@Override
public void initVelocityConstraints(SolverData data) {
    m_indexA = m_bodyA.m_islandIndex;
    m_indexB = m_bodyB.m_islandIndex;
    m_localCenterA.set(m_bodyA.m_sweep.localCenter);
    m_localCenterB.set(m_bodyB.m_sweep.localCenter);
    m_invMassA = m_bodyA.m_invMass;
    m_invMassB = m_bodyB.m_invMass;
    m_invIA = m_bodyA.m_invI;
    m_invIB = m_bodyB.m_invI;
    float mA = m_invMassA, mB = m_invMassB;
    float iA = m_invIA, iB = m_invIB;
    Vec2 cA = data.positions[m_indexA].c;
    float aA = data.positions[m_indexA].a;
    Vec2 vA = data.velocities[m_indexA].v;
    float wA = data.velocities[m_indexA].w;
    Vec2 cB = data.positions[m_indexB].c;
    float aB = data.positions[m_indexB].a;
    Vec2 vB = data.velocities[m_indexB].v;
    float wB = data.velocities[m_indexB].w;
    final Rotation qA = pool.popRot();
    final Rotation qB = pool.popRot();
    final Vec2 temp = pool.popVec2();
    qA.set(aA);
    qB.set(aB);
    // Compute the effective masses.
    Rotation.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), rA);
    Rotation.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), rB);
    d.set(cB).addLocal(rB).subLocal(cA).subLocal(rA);
    // Point to line constraint
    {
        Rotation.mulToOut(qA, m_localYAxisA, m_ay);
        m_sAy = Vec2.cross(temp.set(d).addLocal(rA), m_ay);
        m_sBy = Vec2.cross(rB, m_ay);
        m_mass = mA + mB + iA * m_sAy * m_sAy + iB * m_sBy * m_sBy;
        if (m_mass > 0.0f) {
            m_mass = 1.0f / m_mass;
        }
    }
    // Spring constraint
    m_springMass = 0.0f;
    m_bias = 0.0f;
    m_gamma = 0.0f;
    if (m_frequencyHz > 0.0f) {
        Rotation.mulToOut(qA, m_localXAxisA, m_ax);
        m_sAx = Vec2.cross(temp.set(d).addLocal(rA), m_ax);
        m_sBx = Vec2.cross(rB, m_ax);
        float invMass = mA + mB + iA * m_sAx * m_sAx + iB * m_sBx * m_sBx;
        if (invMass > 0.0f) {
            m_springMass = 1.0f / invMass;
            float C = Vec2.dot(d, m_ax);
            // Frequency
            float omega = 2.0f * (float) FXGLMath.PI * m_frequencyHz;
            // Damping coefficient
            float d = 2.0f * m_springMass * m_dampingRatio * omega;
            // Spring stiffness
            float k = m_springMass * omega * omega;
            // magic formulas
            float h = data.step.dt;
            m_gamma = h * (d + h * k);
            if (m_gamma > 0.0f) {
                m_gamma = 1.0f / m_gamma;
            }
            m_bias = C * h * k * m_gamma;
            m_springMass = invMass + m_gamma;
            if (m_springMass > 0.0f) {
                m_springMass = 1.0f / m_springMass;
            }
        }
    } else {
        m_springImpulse = 0.0f;
    }
    // Rotational motor
    if (m_enableMotor) {
        m_motorMass = iA + iB;
        if (m_motorMass > 0.0f) {
            m_motorMass = 1.0f / m_motorMass;
        }
    } else {
        m_motorMass = 0.0f;
        m_motorImpulse = 0.0f;
    }
    if (data.step.warmStarting) {
        final Vec2 P = pool.popVec2();
        // Account for variable time step.
        m_impulse *= data.step.dtRatio;
        m_springImpulse *= data.step.dtRatio;
        m_motorImpulse *= data.step.dtRatio;
        P.x = m_impulse * m_ay.x + m_springImpulse * m_ax.x;
        P.y = m_impulse * m_ay.y + m_springImpulse * m_ax.y;
        float LA = m_impulse * m_sAy + m_springImpulse * m_sAx + m_motorImpulse;
        float LB = m_impulse * m_sBy + m_springImpulse * m_sBx + m_motorImpulse;
        vA.x -= m_invMassA * P.x;
        vA.y -= m_invMassA * P.y;
        wA -= m_invIA * LA;
        vB.x += m_invMassB * P.x;
        vB.y += m_invMassB * P.y;
        wB += m_invIB * LB;
        pool.pushVec2(1);
    } else {
        m_impulse = 0.0f;
        m_springImpulse = 0.0f;
        m_motorImpulse = 0.0f;
    }
    pool.pushRot(2);
    pool.pushVec2(1);
    // data.velocities[m_indexA].v = vA;
    data.velocities[m_indexA].w = wA;
    // data.velocities[m_indexB].v = vB;
    data.velocities[m_indexB].w = wB;
}
Also used : Vec2(com.almasb.fxgl.core.math.Vec2) Rotation(com.almasb.fxgl.physics.box2d.common.Rotation)

Example 22 with Rotation

use of com.almasb.fxgl.physics.box2d.common.Rotation in project FXGL by AlmasB.

the class WheelJoint method solvePositionConstraints.

@Override
public boolean solvePositionConstraints(SolverData data) {
    Vec2 cA = data.positions[m_indexA].c;
    float aA = data.positions[m_indexA].a;
    Vec2 cB = data.positions[m_indexB].c;
    float aB = data.positions[m_indexB].a;
    final Rotation qA = pool.popRot();
    final Rotation qB = pool.popRot();
    final Vec2 temp = pool.popVec2();
    qA.set(aA);
    qB.set(aB);
    Rotation.mulToOut(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), rA);
    Rotation.mulToOut(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), rB);
    d.set(cB).subLocal(cA).addLocal(rB).subLocal(rA);
    Vec2 ay = pool.popVec2();
    Rotation.mulToOut(qA, m_localYAxisA, ay);
    float sAy = Vec2.cross(temp.set(d).addLocal(rA), ay);
    float sBy = Vec2.cross(rB, ay);
    float C = Vec2.dot(d, ay);
    float k = m_invMassA + m_invMassB + m_invIA * m_sAy * m_sAy + m_invIB * m_sBy * m_sBy;
    float impulse;
    if (k != 0.0f) {
        impulse = -C / k;
    } else {
        impulse = 0.0f;
    }
    final Vec2 P = pool.popVec2();
    P.x = impulse * ay.x;
    P.y = impulse * ay.y;
    float LA = impulse * sAy;
    float LB = impulse * sBy;
    cA.x -= m_invMassA * P.x;
    cA.y -= m_invMassA * P.y;
    aA -= m_invIA * LA;
    cB.x += m_invMassB * P.x;
    cB.y += m_invMassB * P.y;
    aB += m_invIB * LB;
    pool.pushVec2(3);
    pool.pushRot(2);
    // data.positions[m_indexA].c = cA;
    data.positions[m_indexA].a = aA;
    // data.positions[m_indexB].c = cB;
    data.positions[m_indexB].a = aB;
    return FXGLMath.abs(C) <= JBoxSettings.linearSlop;
}
Also used : Vec2(com.almasb.fxgl.core.math.Vec2) Rotation(com.almasb.fxgl.physics.box2d.common.Rotation)

Example 23 with Rotation

use of com.almasb.fxgl.physics.box2d.common.Rotation in project FXGL by AlmasB.

the class FrictionJoint method initVelocityConstraints.

@Override
public void initVelocityConstraints(final SolverData data) {
    m_indexA = m_bodyA.m_islandIndex;
    m_indexB = m_bodyB.m_islandIndex;
    m_localCenterA.set(m_bodyA.m_sweep.localCenter);
    m_localCenterB.set(m_bodyB.m_sweep.localCenter);
    m_invMassA = m_bodyA.m_invMass;
    m_invMassB = m_bodyB.m_invMass;
    m_invIA = m_bodyA.m_invI;
    m_invIB = m_bodyB.m_invI;
    float aA = data.positions[m_indexA].a;
    Vec2 vA = data.velocities[m_indexA].v;
    float wA = data.velocities[m_indexA].w;
    float aB = data.positions[m_indexB].a;
    Vec2 vB = data.velocities[m_indexB].v;
    float wB = data.velocities[m_indexB].w;
    final Vec2 temp = pool.popVec2();
    final Rotation qA = pool.popRot();
    final Rotation qB = pool.popRot();
    qA.set(aA);
    qB.set(aB);
    // Compute the effective mass matrix.
    Rotation.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), m_rA);
    Rotation.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), m_rB);
    // J = [-I -r1_skew I r2_skew]
    // [ 0 -1 0 1]
    // r_skew = [-ry; rx]
    // Matlab
    // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
    // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
    // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
    float mA = m_invMassA, mB = m_invMassB;
    float iA = m_invIA, iB = m_invIB;
    final Mat22 K = pool.popMat22();
    K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y;
    K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y;
    K.ey.x = K.ex.y;
    K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x;
    K.invertToOut(m_linearMass);
    m_angularMass = iA + iB;
    if (m_angularMass > 0.0f) {
        m_angularMass = 1.0f / m_angularMass;
    }
    if (data.step.warmStarting) {
        // Scale impulses to support a variable time step.
        m_linearImpulse.mulLocal(data.step.dtRatio);
        m_angularImpulse *= data.step.dtRatio;
        final Vec2 P = pool.popVec2();
        P.set(m_linearImpulse);
        temp.set(P).mulLocal(mA);
        vA.subLocal(temp);
        wA -= iA * (Vec2.cross(m_rA, P) + m_angularImpulse);
        temp.set(P).mulLocal(mB);
        vB.addLocal(temp);
        wB += iB * (Vec2.cross(m_rB, P) + m_angularImpulse);
        pool.pushVec2(1);
    } else {
        m_linearImpulse.setZero();
        m_angularImpulse = 0.0f;
    }
    // data.velocities[m_indexA].v.set(vA);
    if (data.velocities[m_indexA].w != wA) {
        assert data.velocities[m_indexA].w != wA;
    }
    data.velocities[m_indexA].w = wA;
    // data.velocities[m_indexB].v.set(vB);
    data.velocities[m_indexB].w = wB;
    pool.pushRot(2);
    pool.pushVec2(1);
    pool.pushMat22(1);
}
Also used : Vec2(com.almasb.fxgl.core.math.Vec2) Mat22(com.almasb.fxgl.physics.box2d.common.Mat22) Rotation(com.almasb.fxgl.physics.box2d.common.Rotation)

Example 24 with Rotation

use of com.almasb.fxgl.physics.box2d.common.Rotation in project FXGL by AlmasB.

the class GearJoint method initVelocityConstraints.

@Override
public void initVelocityConstraints(SolverData data) {
    m_indexA = m_bodyA.m_islandIndex;
    m_indexB = m_bodyB.m_islandIndex;
    m_indexC = m_bodyC.m_islandIndex;
    m_indexD = m_bodyD.m_islandIndex;
    m_lcA.set(m_bodyA.m_sweep.localCenter);
    m_lcB.set(m_bodyB.m_sweep.localCenter);
    m_lcC.set(m_bodyC.m_sweep.localCenter);
    m_lcD.set(m_bodyD.m_sweep.localCenter);
    m_mA = m_bodyA.m_invMass;
    m_mB = m_bodyB.m_invMass;
    m_mC = m_bodyC.m_invMass;
    m_mD = m_bodyD.m_invMass;
    m_iA = m_bodyA.m_invI;
    m_iB = m_bodyB.m_invI;
    m_iC = m_bodyC.m_invI;
    m_iD = m_bodyD.m_invI;
    // Vec2 cA = data.positions[m_indexA].c;
    float aA = data.positions[m_indexA].a;
    Vec2 vA = data.velocities[m_indexA].v;
    float wA = data.velocities[m_indexA].w;
    // Vec2 cB = data.positions[m_indexB].c;
    float aB = data.positions[m_indexB].a;
    Vec2 vB = data.velocities[m_indexB].v;
    float wB = data.velocities[m_indexB].w;
    // Vec2 cC = data.positions[m_indexC].c;
    float aC = data.positions[m_indexC].a;
    Vec2 vC = data.velocities[m_indexC].v;
    float wC = data.velocities[m_indexC].w;
    // Vec2 cD = data.positions[m_indexD].c;
    float aD = data.positions[m_indexD].a;
    Vec2 vD = data.velocities[m_indexD].v;
    float wD = data.velocities[m_indexD].w;
    Rotation qA = pool.popRot(), qB = pool.popRot(), qC = pool.popRot(), qD = pool.popRot();
    qA.set(aA);
    qB.set(aB);
    qC.set(aC);
    qD.set(aD);
    m_mass = 0.0f;
    Vec2 temp = pool.popVec2();
    if (m_typeA.equals(RevoluteJoint.class)) {
        m_JvAC.setZero();
        m_JwA = 1.0f;
        m_JwC = 1.0f;
        m_mass += m_iA + m_iC;
    } else {
        Vec2 rC = pool.popVec2();
        Vec2 rA = pool.popVec2();
        Rotation.mulToOutUnsafe(qC, m_localAxisC, m_JvAC);
        Rotation.mulToOutUnsafe(qC, temp.set(m_localAnchorC).subLocal(m_lcC), rC);
        Rotation.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_lcA), rA);
        m_JwC = Vec2.cross(rC, m_JvAC);
        m_JwA = Vec2.cross(rA, m_JvAC);
        m_mass += m_mC + m_mA + m_iC * m_JwC * m_JwC + m_iA * m_JwA * m_JwA;
        pool.pushVec2(2);
    }
    if (m_typeB.equals(RevoluteJoint.class)) {
        m_JvBD.setZero();
        m_JwB = m_ratio;
        m_JwD = m_ratio;
        m_mass += m_ratio * m_ratio * (m_iB + m_iD);
    } else {
        Vec2 u = pool.popVec2();
        Vec2 rD = pool.popVec2();
        Vec2 rB = pool.popVec2();
        Rotation.mulToOutUnsafe(qD, m_localAxisD, u);
        Rotation.mulToOutUnsafe(qD, temp.set(m_localAnchorD).subLocal(m_lcD), rD);
        Rotation.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_lcB), rB);
        m_JvBD.set(u).mulLocal(m_ratio);
        m_JwD = m_ratio * Vec2.cross(rD, u);
        m_JwB = m_ratio * Vec2.cross(rB, u);
        m_mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * m_JwD * m_JwD + m_iB * m_JwB * m_JwB;
        pool.pushVec2(3);
    }
    // Compute effective mass.
    m_mass = m_mass > 0.0f ? 1.0f / m_mass : 0.0f;
    if (data.step.warmStarting) {
        vA.x += (m_mA * m_impulse) * m_JvAC.x;
        vA.y += (m_mA * m_impulse) * m_JvAC.y;
        wA += m_iA * m_impulse * m_JwA;
        vB.x += (m_mB * m_impulse) * m_JvBD.x;
        vB.y += (m_mB * m_impulse) * m_JvBD.y;
        wB += m_iB * m_impulse * m_JwB;
        vC.x -= (m_mC * m_impulse) * m_JvAC.x;
        vC.y -= (m_mC * m_impulse) * m_JvAC.y;
        wC -= m_iC * m_impulse * m_JwC;
        vD.x -= (m_mD * m_impulse) * m_JvBD.x;
        vD.y -= (m_mD * m_impulse) * m_JvBD.y;
        wD -= m_iD * m_impulse * m_JwD;
    } else {
        m_impulse = 0.0f;
    }
    pool.pushVec2(1);
    pool.pushRot(4);
    // data.velocities[m_indexA].v = vA;
    data.velocities[m_indexA].w = wA;
    // data.velocities[m_indexB].v = vB;
    data.velocities[m_indexB].w = wB;
    // data.velocities[m_indexC].v = vC;
    data.velocities[m_indexC].w = wC;
    // data.velocities[m_indexD].v = vD;
    data.velocities[m_indexD].w = wD;
}
Also used : Vec2(com.almasb.fxgl.core.math.Vec2) Rotation(com.almasb.fxgl.physics.box2d.common.Rotation)

Example 25 with Rotation

use of com.almasb.fxgl.physics.box2d.common.Rotation in project FXGL by AlmasB.

the class GearJoint method solvePositionConstraints.

@Override
public boolean solvePositionConstraints(SolverData data) {
    Vec2 cA = data.positions[m_indexA].c;
    float aA = data.positions[m_indexA].a;
    Vec2 cB = data.positions[m_indexB].c;
    float aB = data.positions[m_indexB].a;
    Vec2 cC = data.positions[m_indexC].c;
    float aC = data.positions[m_indexC].a;
    Vec2 cD = data.positions[m_indexD].c;
    float aD = data.positions[m_indexD].a;
    Rotation qA = pool.popRot();
    Rotation qB = pool.popRot();
    Rotation qC = pool.popRot();
    Rotation qD = pool.popRot();
    qA.set(aA);
    qB.set(aB);
    qC.set(aC);
    qD.set(aD);
    float linearError = 0.0f;
    float coordinateA, coordinateB;
    Vec2 temp = pool.popVec2();
    Vec2 JvAC = pool.popVec2();
    Vec2 JvBD = pool.popVec2();
    float JwA, JwB, JwC, JwD;
    float mass = 0.0f;
    if (m_typeA.equals(RevoluteJoint.class)) {
        JvAC.setZero();
        JwA = 1.0f;
        JwC = 1.0f;
        mass += m_iA + m_iC;
        coordinateA = aA - aC - m_referenceAngleA;
    } else {
        Vec2 rC = pool.popVec2();
        Vec2 rA = pool.popVec2();
        Vec2 pC = pool.popVec2();
        Vec2 pA = pool.popVec2();
        Rotation.mulToOutUnsafe(qC, m_localAxisC, JvAC);
        Rotation.mulToOutUnsafe(qC, temp.set(m_localAnchorC).subLocal(m_lcC), rC);
        Rotation.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_lcA), rA);
        JwC = Vec2.cross(rC, JvAC);
        JwA = Vec2.cross(rA, JvAC);
        mass += m_mC + m_mA + m_iC * JwC * JwC + m_iA * JwA * JwA;
        pC.set(m_localAnchorC).subLocal(m_lcC);
        Rotation.mulTransUnsafe(qC, temp.set(rA).addLocal(cA).subLocal(cC), pA);
        coordinateA = Vec2.dot(pA.subLocal(pC), m_localAxisC);
        pool.pushVec2(4);
    }
    if (m_typeB.equals(RevoluteJoint.class)) {
        JvBD.setZero();
        JwB = m_ratio;
        JwD = m_ratio;
        mass += m_ratio * m_ratio * (m_iB + m_iD);
        coordinateB = aB - aD - m_referenceAngleB;
    } else {
        Vec2 u = pool.popVec2();
        Vec2 rD = pool.popVec2();
        Vec2 rB = pool.popVec2();
        Vec2 pD = pool.popVec2();
        Vec2 pB = pool.popVec2();
        Rotation.mulToOutUnsafe(qD, m_localAxisD, u);
        Rotation.mulToOutUnsafe(qD, temp.set(m_localAnchorD).subLocal(m_lcD), rD);
        Rotation.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_lcB), rB);
        JvBD.set(u).mulLocal(m_ratio);
        JwD = Vec2.cross(rD, u);
        JwB = Vec2.cross(rB, u);
        mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * JwD * JwD + m_iB * JwB * JwB;
        pD.set(m_localAnchorD).subLocal(m_lcD);
        Rotation.mulTransUnsafe(qD, temp.set(rB).addLocal(cB).subLocal(cD), pB);
        coordinateB = Vec2.dot(pB.subLocal(pD), m_localAxisD);
        pool.pushVec2(5);
    }
    float C = coordinateA + m_ratio * coordinateB - m_constant;
    float impulse = 0.0f;
    if (mass > 0.0f) {
        impulse = -C / mass;
    }
    pool.pushVec2(3);
    pool.pushRot(4);
    cA.x += (m_mA * impulse) * JvAC.x;
    cA.y += (m_mA * impulse) * JvAC.y;
    aA += m_iA * impulse * JwA;
    cB.x += (m_mB * impulse) * JvBD.x;
    cB.y += (m_mB * impulse) * JvBD.y;
    aB += m_iB * impulse * JwB;
    cC.x -= (m_mC * impulse) * JvAC.x;
    cC.y -= (m_mC * impulse) * JvAC.y;
    aC -= m_iC * impulse * JwC;
    cD.x -= (m_mD * impulse) * JvBD.x;
    cD.y -= (m_mD * impulse) * JvBD.y;
    aD -= m_iD * impulse * JwD;
    // data.positions[m_indexA].c = cA;
    data.positions[m_indexA].a = aA;
    // data.positions[m_indexB].c = cB;
    data.positions[m_indexB].a = aB;
    // data.positions[m_indexC].c = cC;
    data.positions[m_indexC].a = aC;
    // data.positions[m_indexD].c = cD;
    data.positions[m_indexD].a = aD;
    // TODO_ERIN not implemented
    return linearError < JBoxSettings.linearSlop;
}
Also used : Vec2(com.almasb.fxgl.core.math.Vec2) Rotation(com.almasb.fxgl.physics.box2d.common.Rotation)

Aggregations

Rotation (com.almasb.fxgl.physics.box2d.common.Rotation)37 Vec2 (com.almasb.fxgl.core.math.Vec2)36 Mat22 (com.almasb.fxgl.physics.box2d.common.Mat22)5 ManifoldPoint (com.almasb.fxgl.physics.box2d.collision.ManifoldPoint)3 Mat33 (com.almasb.fxgl.physics.box2d.common.Mat33)3 VelocityConstraintPoint (com.almasb.fxgl.physics.box2d.dynamics.contacts.ContactVelocityConstraint.VelocityConstraintPoint)3 Vec3 (com.almasb.fxgl.core.math.Vec3)2 Transform (com.almasb.fxgl.physics.box2d.common.Transform)2 Manifold (com.almasb.fxgl.physics.box2d.collision.Manifold)1 WorldManifold (com.almasb.fxgl.physics.box2d.collision.WorldManifold)1 PolygonShape (com.almasb.fxgl.physics.box2d.collision.shapes.PolygonShape)1