use of com.ardor3d.intersection.PrimitivePickResults in project energy3d by concord-consortium.
the class SolarRadiation method computeOnRack.
// TODO: we probably should handle the radiation heat map visualization on the rack using a coarse grid and the energy calculation using a fine grid
private void computeOnRack(final int minute, final ReadOnlyVector3 directionTowardSun, final Rack rack) {
if (rack.getTracker() != SolarPanel.NO_TRACKER) {
final Calendar calendar = Heliodon.getInstance().getCalendar();
calendar.set(Calendar.HOUR_OF_DAY, (int) ((double) minute / (double) SolarRadiation.MINUTES_OF_DAY * 24.0));
calendar.set(Calendar.MINUTE, minute % 60);
rack.draw();
}
if (!rack.isMonolithic()) {
return;
}
final ReadOnlyVector3 normal = rack.getNormal();
if (normal == null) {
throw new RuntimeException("Normal is null");
}
int nx = Scene.getInstance().getRackNx();
int ny = Scene.getInstance().getRackNy();
final Mesh drawMesh = rack.getRadiationMesh();
final Mesh collisionMesh = (Mesh) rack.getRadiationCollisionSpatial();
MeshDataStore data = onMesh.get(drawMesh);
if (data == null) {
data = initMeshTextureDataOnRectangle(drawMesh, nx, ny);
}
final ReadOnlyVector3 offset = directionTowardSun.multiply(1, null);
final double dot = normal.dot(directionTowardSun);
double directRadiation = 0;
if (dot > 0) {
directRadiation += calculateDirectRadiation(directionTowardSun, normal);
}
final double indirectRadiation = calculateDiffuseAndReflectedRadiation(directionTowardSun, normal);
final FloatBuffer vertexBuffer = drawMesh.getMeshData().getVertexBuffer();
// (0, 0)
final Vector3 p0 = new Vector3(vertexBuffer.get(3), vertexBuffer.get(4), vertexBuffer.get(5));
// (1, 0)
final Vector3 p1 = new Vector3(vertexBuffer.get(6), vertexBuffer.get(7), vertexBuffer.get(8));
// (0, 1)
final Vector3 p2 = new Vector3(vertexBuffer.get(0), vertexBuffer.get(1), vertexBuffer.get(2));
// this is the longer side (supposed to be y)
final double d10 = p1.distance(p0);
// this is the shorter side (supposed to be x)
final double d20 = p2.distance(p0);
final Vector3 p10 = p1.subtract(p0, null).normalizeLocal();
final Vector3 p20 = p2.subtract(p0, null).normalizeLocal();
// generate the heat map first. this doesn't affect the energy calculation, it just shows the distribution of solar radiation on the rack.
// x and y must be swapped to have correct heat map texture, because nx represents rows and ny columns as we call initMeshTextureDataOnRectangle(mesh, nx, ny)
double xSpacing = d10 / nx;
double ySpacing = d20 / ny;
Vector3 u = p10;
Vector3 v = p20;
final int iMinute = minute / Scene.getInstance().getTimeStep();
for (int x = 0; x < nx; x++) {
for (int y = 0; y < ny; y++) {
if (EnergyPanel.getInstance().isCancelled()) {
throw new CancellationException();
}
final Vector3 u2 = u.multiply(xSpacing * (x + 0.5), null);
final Vector3 v2 = v.multiply(ySpacing * (y + 0.5), null);
final ReadOnlyVector3 p = drawMesh.getWorldTransform().applyForward(p0.add(v2, null).addLocal(u2)).addLocal(offset);
final Ray3 pickRay = new Ray3(p, directionTowardSun);
// assuming that indirect (ambient or diffuse) radiation can always reach a grid point
double radiation = indirectRadiation;
if (dot > 0) {
final PickResults pickResults = new PrimitivePickResults();
for (final Spatial spatial : collidables) {
if (spatial != collisionMesh) {
PickingUtil.findPick(spatial, pickRay, pickResults, false);
if (pickResults.getNumber() != 0) {
break;
}
}
}
if (pickResults.getNumber() == 0) {
radiation += directRadiation;
}
}
data.dailySolarIntensity[x][y] += radiation;
}
}
// now do the calculation to get the total energy generated by the cells
final double airTemperature = Weather.getInstance().getOutsideTemperatureAtMinute(dailyAirTemperatures[1], dailyAirTemperatures[0], minute);
// system efficiency
double syseff;
// output at a cell center
double output;
// cell temperature
double tcell;
final SolarPanel panel = rack.getSolarPanel();
if (Scene.getInstance().isRackModelExact()) {
// exactly model each solar cell on each solar panel
final int[] rc = rack.getSolarPanelRowAndColumnNumbers();
// numbers of solar panels in x and y directions
final int nxPanels = rc[0];
final int nyPanels = rc[1];
// numbers of solar cells on each panel in x and y directions
int nxCells, nyCells;
if (panel.isRotated()) {
nxCells = panel.getNumberOfCellsInY();
nyCells = panel.getNumberOfCellsInX();
} else {
nxCells = panel.getNumberOfCellsInX();
nyCells = panel.getNumberOfCellsInY();
}
nx = nxCells * rc[0];
ny = nyCells * rc[1];
// get the area of a solar cell. 60 converts the unit of timeStep from minute to kWh
final double a = panel.getPanelWidth() * panel.getPanelHeight() * Scene.getInstance().getTimeStep() / (panel.getNumberOfCellsInX() * panel.getNumberOfCellsInY() * 60.0);
// swap the x and y back to correct order
xSpacing = d20 / nx;
ySpacing = d10 / ny;
u = p20;
v = p10;
if (cellOutputs == null || cellOutputs.length != nx || cellOutputs[0].length != ny) {
cellOutputs = new double[nx][ny];
}
// calculate the solar radiation first without worrying about the underlying cell wiring and distributed efficiency
for (int x = 0; x < nx; x++) {
for (int y = 0; y < ny; y++) {
if (EnergyPanel.getInstance().isCancelled()) {
throw new CancellationException();
}
final Vector3 u2 = u.multiply(xSpacing * (x + 0.5), null);
final Vector3 v2 = v.multiply(ySpacing * (y + 0.5), null);
final ReadOnlyVector3 p = drawMesh.getWorldTransform().applyForward(p0.add(v2, null).addLocal(u2)).addLocal(offset);
final Ray3 pickRay = new Ray3(p, directionTowardSun);
// assuming that indirect (ambient or diffuse) radiation can always reach a grid point
double radiation = indirectRadiation;
if (dot > 0) {
final PickResults pickResults = new PrimitivePickResults();
for (final Spatial spatial : collidables) {
if (spatial != collisionMesh) {
PickingUtil.findPick(spatial, pickRay, pickResults, false);
if (pickResults.getNumber() != 0) {
break;
}
}
}
if (pickResults.getNumber() == 0) {
radiation += directRadiation;
}
}
cellOutputs[x][y] = radiation * a;
}
}
// Tcell = Tair + (NOCT - 20) / 80 * R, where the unit of R is mW/cm^2
final double noctFactor = (panel.getNominalOperatingCellTemperature() - 20.0) * 100.0 / (a * 80.0);
// now consider cell wiring and distributed efficiency. TODO: This is very inaccurate. The output depends on both cell wiring and panel wiring.
switch(// the ideal case that probably doesn't exist in reality
panel.getShadeTolerance()) {
case SolarPanel.HIGH_SHADE_TOLERANCE:
for (int x = 0; x < nx; x++) {
for (int y = 0; y < ny; y++) {
output = cellOutputs[x][y];
tcell = airTemperature + output * noctFactor;
syseff = panel.getSystemEfficiency(tcell);
rack.getSolarPotential()[iMinute] += output * syseff;
}
}
break;
case // assuming that all the cells on a panel are connected in series and all panels are connected in parallel
SolarPanel.NO_SHADE_TOLERANCE:
double min = Double.MAX_VALUE;
for (int ix = 0; ix < nxPanels; ix++) {
// panel by panel
for (int iy = 0; iy < nyPanels; iy++) {
min = Double.MAX_VALUE;
for (int jx = 0; jx < nxCells; jx++) {
// cell by cell on each panel
for (int jy = 0; jy < nyCells; jy++) {
output = cellOutputs[ix * nxCells + jx][iy * nyCells + jy];
tcell = airTemperature + output * noctFactor;
syseff = panel.getSystemEfficiency(tcell);
output *= syseff;
if (output < min) {
min = output;
}
}
}
rack.getSolarPotential()[iMinute] += min * nxCells * nyCells;
}
}
break;
case // assuming each panel uses a diode bypass to connect two columns of cells
SolarPanel.PARTIAL_SHADE_TOLERANCE:
for (int ix = 0; ix < nxPanels; ix++) {
// panel by panel
for (int iy = 0; iy < nyPanels; iy++) {
min = Double.MAX_VALUE;
if (panel.isRotated()) {
// landscape: nxCells = 10, nyCells = 6
for (int jy = 0; jy < nyCells; jy++) {
// cell by cell on each panel
if (jy % 2 == 0) {
// reset min every two columns of cells
min = Double.MAX_VALUE;
}
for (int jx = 0; jx < nxCells; jx++) {
output = cellOutputs[ix * nxCells + jx][iy * nyCells + jy];
tcell = airTemperature + output * noctFactor;
syseff = panel.getSystemEfficiency(tcell);
output *= syseff;
if (output < min) {
min = output;
}
}
if (jy % 2 == 1) {
rack.getSolarPotential()[iMinute] += min * 2 * nxCells;
}
}
} else {
// portrait: nxCells = 6, nyCells = 10
for (int jx = 0; jx < nxCells; jx++) {
// cell by cell on each panel
if (jx % 2 == 0) {
// reset min every two columns of cells
min = Double.MAX_VALUE;
}
for (int jy = 0; jy < nyCells; jy++) {
output = cellOutputs[ix * nxCells + jx][iy * nyCells + jy];
tcell = airTemperature + output * noctFactor;
syseff = panel.getSystemEfficiency(tcell);
output *= syseff;
if (output < min) {
min = output;
}
}
if (jx % 2 == 1) {
rack.getSolarPotential()[iMinute] += min * 2 * nyCells;
}
}
}
}
}
break;
}
} else {
// for simulation speed, approximate rack model doesn't compute panel by panel and cell by cell
ySpacing = xSpacing = Scene.getInstance().getRackCellSize() / Scene.getInstance().getAnnotationScale();
// swap the x and y back to correct order
nx = Math.max(2, (int) (d20 / xSpacing));
ny = Math.max(2, (int) (d10 / ySpacing));
// nx*ny*60: dividing the total rack area by nx*ny gets the unit cell area of the nx*ny grid; 60 converts the unit of timeStep from minute to kWh
final double a = rack.getRackWidth() * rack.getRackHeight() * Scene.getInstance().getTimeStep() / (nx * ny * 60.0);
u = p20;
v = p10;
if (cellOutputs == null || cellOutputs.length != nx || cellOutputs[0].length != ny) {
cellOutputs = new double[nx][ny];
}
// calculate the solar radiation first without worrying about the underlying cell wiring and distributed efficiency
for (int x = 0; x < nx; x++) {
for (int y = 0; y < ny; y++) {
if (EnergyPanel.getInstance().isCancelled()) {
throw new CancellationException();
}
final Vector3 u2 = u.multiply(xSpacing * (x + 0.5), null);
final Vector3 v2 = v.multiply(ySpacing * (y + 0.5), null);
final ReadOnlyVector3 p = drawMesh.getWorldTransform().applyForward(p0.add(v2, null).addLocal(u2)).addLocal(offset);
final Ray3 pickRay = new Ray3(p, directionTowardSun);
// assuming that indirect (ambient or diffuse) radiation can always reach a grid point
double radiation = indirectRadiation;
if (dot > 0) {
final PickResults pickResults = new PrimitivePickResults();
for (final Spatial spatial : collidables) {
if (spatial != collisionMesh) {
PickingUtil.findPick(spatial, pickRay, pickResults, false);
if (pickResults.getNumber() != 0) {
break;
}
}
}
if (pickResults.getNumber() == 0) {
radiation += directRadiation;
}
}
cellOutputs[x][y] = radiation * a;
}
}
// Tcell = Tair + (NOCT - 20) / 80 * R, where the unit of R is mW/cm^2
final double noctFactor = (panel.getNominalOperatingCellTemperature() - 20.0) * 100.0 / (a * 80.0);
// now consider cell wiring and distributed efficiency. TODO: This is very inaccurate. The output depends on both cell wiring and panel wiring.
switch(panel.getShadeTolerance()) {
case // the ideal case that probably doesn't exist in reality
SolarPanel.HIGH_SHADE_TOLERANCE:
for (int x = 0; x < nx; x++) {
for (int y = 0; y < ny; y++) {
output = cellOutputs[x][y];
tcell = airTemperature + output * noctFactor;
syseff = panel.getSystemEfficiency(tcell);
rack.getSolarPotential()[iMinute] += output * syseff;
}
}
break;
case SolarPanel.NO_SHADE_TOLERANCE:
double min = Double.MAX_VALUE;
for (int x = 0; x < nx; x++) {
for (int y = 0; y < ny; y++) {
output = cellOutputs[x][y];
tcell = airTemperature + output * noctFactor;
syseff = panel.getSystemEfficiency(tcell);
output *= syseff;
if (output < min) {
min = output;
}
}
}
rack.getSolarPotential()[iMinute] += min * ny * nx;
break;
case SolarPanel.PARTIAL_SHADE_TOLERANCE:
for (int x = 0; x < nx; x++) {
min = Double.MAX_VALUE;
for (int y = 0; y < ny; y++) {
output = cellOutputs[x][y];
tcell = airTemperature + output * noctFactor;
syseff = panel.getSystemEfficiency(tcell);
output *= syseff;
if (output < min) {
min = output;
}
}
rack.getSolarPotential()[iMinute] += min * ny;
}
break;
}
}
}
use of com.ardor3d.intersection.PrimitivePickResults in project energy3d by concord-consortium.
the class Wall method findRoofIntersection.
public ReadOnlyVector3 findRoofIntersection(final ReadOnlyVector3 p, final ReadOnlyVector3 direction, final double offset) {
if (roof == null) {
return p;
}
final Vector3 origin = new Vector3(p.getX(), p.getY(), direction.equals(Vector3.UNIT_Z) ? 0 : p.getZ());
final PickResults pickResults = new PrimitivePickResults();
PickingUtil.findPick(roof.getRoofPartsRoot(), new Ray3(origin, direction), pickResults, false);
if (pickResults.getNumber() > 0) {
return pickResults.getPickData(0).getIntersectionRecord().getIntersectionPoint(0).add(direction.multiply(roof.getOverhangLength() > 0.05 ? offset : 0, null), null);
} else {
return p;
}
}
use of com.ardor3d.intersection.PrimitivePickResults in project energy3d by concord-consortium.
the class HousePart method computeNormalAndKeepOnSurface.
protected ReadOnlyVector3 computeNormalAndKeepOnSurface() {
if (container == null) {
return null;
}
if (container instanceof Rack) {
final Rack rack = (Rack) container;
final PickResults pickResults = new PrimitivePickResults();
final Ray3 ray = new Ray3(getAbsPoint(0).multiplyLocal(1, 1, 0), Vector3.UNIT_Z);
PickingUtil.findPick(container.getCollisionSpatial(), ray, pickResults, false);
if (pickResults.getNumber() != 0) {
final PickData pickData = pickResults.getPickData(0);
final Vector3 p = pickData.getIntersectionRecord().getIntersectionPoint(0);
points.get(0).setZ(p.getZ());
} else {
if (rack.getBaseHeight() < Math.abs(0.5 * rack.getRackHeight() / Scene.getInstance().getAnnotationScale() * Math.sin(Math.toRadians(rack.getTiltAngle())))) {
final Ray3 ray2 = new Ray3(getAbsPoint(0).multiplyLocal(1, 1, 0), Vector3.NEG_UNIT_Z);
PickingUtil.findPick(container.getCollisionSpatial(), ray2, pickResults, false);
if (pickResults.getNumber() != 0) {
final PickData pickData = pickResults.getPickData(0);
final Vector3 p = pickData.getIntersectionRecord().getIntersectionPoint(0);
points.get(0).setZ(p.getZ());
}
}
}
return rack.getNormal();
} else if (container instanceof Roof) {
final Roof roof = (Roof) container;
final int[] editPointToRoofIndex = new int[points.size()];
final PickResults pickResults = new PrimitivePickResults();
for (int i = 0; i < points.size(); i++) {
pickResults.clear();
final Ray3 ray = new Ray3(getAbsPoint(i).multiplyLocal(1, 1, 0), Vector3.UNIT_Z);
for (final Spatial roofPart : roof.getRoofPartsRoot().getChildren()) {
if (roofPart.getSceneHints().getCullHint() != CullHint.Always) {
PickingUtil.findPick(((Node) roofPart).getChild(0), ray, pickResults, false);
if (pickResults.getNumber() != 0) {
break;
}
}
}
if (pickResults.getNumber() != 0) {
final PickData pickData = pickResults.getPickData(0);
final Vector3 p = pickData.getIntersectionRecord().getIntersectionPoint(0);
points.get(i).setZ(p.getZ());
final UserData userData = (UserData) ((Spatial) pickData.getTarget()).getUserData();
final int roofPartIndex = userData.getEditPointIndex();
editPointToRoofIndex[i] = roofPartIndex;
}
// find roofPart with most edit points on it
containerRoofIndex = editPointToRoofIndex[0];
if (points.size() > 1) {
containerRoofIndex = 0;
final Map<Integer, Integer> counts = new HashMap<Integer, Integer>(points.size());
for (final int roofIndex : editPointToRoofIndex) {
counts.put(roofIndex, counts.get(roofIndex) == null ? 1 : counts.get(roofIndex) + 1);
}
int highestCount = 0;
for (final int roofIndex : editPointToRoofIndex) {
if (counts.get(roofIndex) > highestCount) {
highestCount = counts.get(roofIndex);
containerRoofIndex = roofIndex;
}
}
}
}
return (ReadOnlyVector3) roof.getRoofPartsRoot().getChild(containerRoofIndex).getUserData();
} else if (container instanceof Foundation) {
final Foundation foundation = (Foundation) container;
final List<Node> nodes = foundation.getImportedNodes();
if (nodes != null) {
final Map<Vector3, ReadOnlyVector3> intersections = new HashMap<Vector3, ReadOnlyVector3>();
final PickResults pickResults = new PrimitivePickResults();
for (final Node n : nodes) {
for (final Spatial s : n.getChildren()) {
if (s instanceof Mesh) {
final Mesh m = (Mesh) s;
pickResults.clear();
PickingUtil.findPick(m, new Ray3(getAbsPoint(0).multiplyLocal(1, 1, 0), Vector3.UNIT_Z), pickResults, false);
if (pickResults.getNumber() > 0) {
intersections.put(pickResults.getPickData(0).getIntersectionRecord().getIntersectionPoint(0), ((UserData) m.getUserData()).getNormal());
}
}
}
}
if (!intersections.isEmpty()) {
double zmax = -Double.MAX_VALUE;
ReadOnlyVector3 normal = null;
for (final Vector3 v : intersections.keySet()) {
if (v.getZ() > zmax) {
zmax = v.getZ();
normal = intersections.get(v);
}
}
if (normal != null) {
pickedNormal = normal;
return normal;
}
}
}
}
return container.getNormal();
}
Aggregations