use of com.bulletphysics.collision.shapes.SphereShape in project jmonkeyengine by jMonkeyEngine.
the class SphereCollisionShape method createShape.
protected void createShape() {
cShape = new SphereShape(radius);
cShape.setLocalScaling(Converter.convert(getScale()));
cShape.setMargin(margin);
}
use of com.bulletphysics.collision.shapes.SphereShape in project bdx by GoranM.
the class CollisionWorld method rayTestSingle.
// TODO
public static void rayTestSingle(Transform rayFromTrans, Transform rayToTrans, CollisionObject collisionObject, CollisionShape collisionShape, Transform colObjWorldTransform, RayResultCallback resultCallback) {
Stack stack = Stack.enter();
SphereShape pointShape = new SphereShape(0f);
pointShape.setMargin(0f);
ConvexShape castShape = pointShape;
if (collisionShape.isConvex()) {
CastResult castResult = new CastResult();
castResult.fraction = resultCallback.closestHitFraction;
ConvexShape convexShape = (ConvexShape) collisionShape;
VoronoiSimplexSolver simplexSolver = new VoronoiSimplexSolver();
//#define USE_SUBSIMPLEX_CONVEX_CAST 1
//#ifdef USE_SUBSIMPLEX_CONVEX_CAST
SubsimplexConvexCast convexCaster = new SubsimplexConvexCast(castShape, convexShape, simplexSolver);
if (convexCaster.calcTimeOfImpact(rayFromTrans, rayToTrans, colObjWorldTransform, colObjWorldTransform, castResult)) {
//add hit
if (castResult.normal.lengthSquared() > 0.0001f) {
if (castResult.fraction < resultCallback.closestHitFraction) {
//#ifdef USE_SUBSIMPLEX_CONVEX_CAST
//rotate normal into worldspace
rayFromTrans.basis.transform(castResult.normal);
//#endif //USE_SUBSIMPLEX_CONVEX_CAST
castResult.normal.normalize();
LocalRayResult localRayResult = new LocalRayResult(collisionObject, null, castResult.normal, castResult.fraction);
boolean normalInWorldSpace = true;
resultCallback.addSingleResult(localRayResult, normalInWorldSpace);
}
}
}
} else {
if (collisionShape.isConcave()) {
if (collisionShape.getShapeType() == BroadphaseNativeType.TRIANGLE_MESH_SHAPE_PROXYTYPE) {
// optimized version for BvhTriangleMeshShape
BvhTriangleMeshShape triangleMesh = (BvhTriangleMeshShape) collisionShape;
Transform worldTocollisionObject = stack.allocTransform();
worldTocollisionObject.inverse(colObjWorldTransform);
Vector3f rayFromLocal = stack.alloc(rayFromTrans.origin);
worldTocollisionObject.transform(rayFromLocal);
Vector3f rayToLocal = stack.alloc(rayToTrans.origin);
worldTocollisionObject.transform(rayToLocal);
BridgeTriangleRaycastCallback rcb = new BridgeTriangleRaycastCallback(rayFromLocal, rayToLocal, resultCallback, collisionObject, triangleMesh);
rcb.hitFraction = resultCallback.closestHitFraction;
triangleMesh.performRaycast(rcb, rayFromLocal, rayToLocal);
} else {
ConcaveShape triangleMesh = (ConcaveShape) collisionShape;
Transform worldTocollisionObject = stack.allocTransform();
worldTocollisionObject.inverse(colObjWorldTransform);
Vector3f rayFromLocal = stack.alloc(rayFromTrans.origin);
worldTocollisionObject.transform(rayFromLocal);
Vector3f rayToLocal = stack.alloc(rayToTrans.origin);
worldTocollisionObject.transform(rayToLocal);
BridgeTriangleRaycastCallback rcb = new BridgeTriangleRaycastCallback(rayFromLocal, rayToLocal, resultCallback, collisionObject, triangleMesh);
rcb.hitFraction = resultCallback.closestHitFraction;
Vector3f rayAabbMinLocal = stack.alloc(rayFromLocal);
VectorUtil.setMin(rayAabbMinLocal, rayToLocal);
Vector3f rayAabbMaxLocal = stack.alloc(rayFromLocal);
VectorUtil.setMax(rayAabbMaxLocal, rayToLocal);
triangleMesh.processAllTriangles(rcb, rayAabbMinLocal, rayAabbMaxLocal);
}
} else {
// todo: use AABB tree or other BVH acceleration structure!
if (collisionShape.isCompound()) {
CompoundShape compoundShape = (CompoundShape) collisionShape;
int i = 0;
Transform childTrans = stack.allocTransform();
for (i = 0; i < compoundShape.getNumChildShapes(); i++) {
compoundShape.getChildTransform(i, childTrans);
CollisionShape childCollisionShape = compoundShape.getChildShape(i);
Transform childWorldTrans = stack.alloc(colObjWorldTransform);
childWorldTrans.mul(childTrans);
// replace collision shape so that callback can determine the triangle
CollisionShape saveCollisionShape = collisionObject.getCollisionShape();
collisionObject.internalSetTemporaryCollisionShape(childCollisionShape);
rayTestSingle(rayFromTrans, rayToTrans, collisionObject, childCollisionShape, childWorldTrans, resultCallback);
// restore
collisionObject.internalSetTemporaryCollisionShape(saveCollisionShape);
}
}
}
}
stack.leave();
}
use of com.bulletphysics.collision.shapes.SphereShape in project bdx by GoranM.
the class ConvexConvexAlgorithm method calculateTimeOfImpact.
@Override
public float calculateTimeOfImpact(CollisionObject col0, CollisionObject col1, DispatcherInfo dispatchInfo, ManifoldResult resultOut) {
Stack stack = Stack.enter();
Vector3f tmp = stack.allocVector3f();
Transform tmpTrans1 = stack.allocTransform();
Transform tmpTrans2 = stack.allocTransform();
// Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold
// Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
// col0->m_worldTransform,
float resultFraction = 1f;
tmp.sub(col0.getInterpolationWorldTransform(tmpTrans1).origin, col0.getWorldTransform(tmpTrans2).origin);
float squareMot0 = tmp.lengthSquared();
tmp.sub(col1.getInterpolationWorldTransform(tmpTrans1).origin, col1.getWorldTransform(tmpTrans2).origin);
float squareMot1 = tmp.lengthSquared();
if (squareMot0 < col0.getCcdSquareMotionThreshold() && squareMot1 < col1.getCcdSquareMotionThreshold()) {
return resultFraction;
}
if (disableCcd) {
stack.leave();
return 1f;
}
Transform tmpTrans3 = stack.allocTransform();
Transform tmpTrans4 = stack.allocTransform();
// An adhoc way of testing the Continuous Collision Detection algorithms
// One object is approximated as a sphere, to simplify things
// Starting in penetration should report no time of impact
// For proper CCD, better accuracy and handling of 'allowed' penetration should be added
// also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)
// Convex0 against sphere for Convex1
{
ConvexShape convex0 = (ConvexShape) col0.getCollisionShape();
// todo: allow non-zero sphere sizes, for better approximation
SphereShape sphere1 = new SphereShape(col1.getCcdSweptSphereRadius());
ConvexCast.CastResult result = new ConvexCast.CastResult();
VoronoiSimplexSolver voronoiSimplex = new VoronoiSimplexSolver();
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
///Simplification, one object is simplified as a sphere
GjkConvexCast ccd1 = new GjkConvexCast(convex0, sphere1, voronoiSimplex);
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
if (ccd1.calcTimeOfImpact(col0.getWorldTransform(tmpTrans1), col0.getInterpolationWorldTransform(tmpTrans2), col1.getWorldTransform(tmpTrans3), col1.getInterpolationWorldTransform(tmpTrans4), result)) {
if (col0.getHitFraction() > result.fraction) {
col0.setHitFraction(result.fraction);
}
if (col1.getHitFraction() > result.fraction) {
col1.setHitFraction(result.fraction);
}
if (resultFraction > result.fraction) {
resultFraction = result.fraction;
}
}
}
// Sphere (for convex0) against Convex1
{
ConvexShape convex1 = (ConvexShape) col1.getCollisionShape();
// todo: allow non-zero sphere sizes, for better approximation
SphereShape sphere0 = new SphereShape(col0.getCcdSweptSphereRadius());
ConvexCast.CastResult result = new ConvexCast.CastResult();
VoronoiSimplexSolver voronoiSimplex = new VoronoiSimplexSolver();
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
///Simplification, one object is simplified as a sphere
GjkConvexCast ccd1 = new GjkConvexCast(sphere0, convex1, voronoiSimplex);
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
if (ccd1.calcTimeOfImpact(col0.getWorldTransform(tmpTrans1), col0.getInterpolationWorldTransform(tmpTrans2), col1.getWorldTransform(tmpTrans3), col1.getInterpolationWorldTransform(tmpTrans4), result)) {
if (col0.getHitFraction() > result.fraction) {
col0.setHitFraction(result.fraction);
}
if (col1.getHitFraction() > result.fraction) {
col1.setHitFraction(result.fraction);
}
if (resultFraction > result.fraction) {
resultFraction = result.fraction;
}
}
}
stack.leave();
return resultFraction;
}
use of com.bulletphysics.collision.shapes.SphereShape in project bdx by GoranM.
the class SphereSphereCollisionAlgorithm method processCollision.
@Override
public void processCollision(CollisionObject col0, CollisionObject col1, DispatcherInfo dispatchInfo, ManifoldResult resultOut) {
if (manifoldPtr == null) {
return;
}
Stack stack = Stack.enter();
Transform tmpTrans1 = stack.allocTransform();
Transform tmpTrans2 = stack.allocTransform();
resultOut.setPersistentManifold(manifoldPtr);
SphereShape sphere0 = (SphereShape) col0.getCollisionShape();
SphereShape sphere1 = (SphereShape) col1.getCollisionShape();
Vector3f diff = stack.allocVector3f();
diff.sub(col0.getWorldTransform(tmpTrans1).origin, col1.getWorldTransform(tmpTrans2).origin);
float len = diff.length();
float radius0 = sphere0.getRadius();
float radius1 = sphere1.getRadius();
// if distance positive, don't generate a new contact
if (len > (radius0 + radius1)) {
//#ifndef CLEAR_MANIFOLD
resultOut.refreshContactPoints();
//#endif //CLEAR_MANIFOLD
return;
}
// distance (negative means penetration)
float dist = len - (radius0 + radius1);
Vector3f normalOnSurfaceB = stack.allocVector3f();
normalOnSurfaceB.set(1f, 0f, 0f);
if (len > BulletGlobals.FLT_EPSILON) {
normalOnSurfaceB.scale(1f / len, diff);
}
Vector3f tmp = stack.allocVector3f();
// point on A (worldspace)
Vector3f pos0 = stack.allocVector3f();
tmp.scale(radius0, normalOnSurfaceB);
pos0.sub(col0.getWorldTransform(tmpTrans1).origin, tmp);
// point on B (worldspace)
Vector3f pos1 = stack.allocVector3f();
tmp.scale(radius1, normalOnSurfaceB);
pos1.add(col1.getWorldTransform(tmpTrans2).origin, tmp);
// report a contact. internally this will be kept persistent, and contact reduction is done
resultOut.addContactPoint(normalOnSurfaceB, pos1, dist);
//#ifndef CLEAR_MANIFOLD
resultOut.refreshContactPoints();
//#endif //CLEAR_MANIFOLD
stack.leave();
}
use of com.bulletphysics.collision.shapes.SphereShape in project bdx by GoranM.
the class DiscreteDynamicsWorld method integrateTransforms.
protected void integrateTransforms(float timeStep) {
BulletStats.pushProfile("integrateTransforms");
Stack stack = Stack.enter();
int sp = stack.getSp();
try {
Vector3f tmp = stack.allocVector3f();
Transform tmpTrans = stack.allocTransform();
Transform predictedTrans = stack.allocTransform();
for (int i = 0; i < collisionObjects.size(); i++) {
CollisionObject colObj = collisionObjects.getQuick(i);
RigidBody body = RigidBody.upcast(colObj);
if (body != null) {
body.setHitFraction(1f);
if (body.isActive() && (!body.isStaticOrKinematicObject())) {
body.predictIntegratedTransform(timeStep, predictedTrans);
tmp.sub(predictedTrans.origin, body.getWorldTransform(tmpTrans).origin);
float squareMotion = tmp.lengthSquared();
if (body.getCcdSquareMotionThreshold() != 0f && body.getCcdSquareMotionThreshold() < squareMotion) {
BulletStats.pushProfile("CCD motion clamping");
try {
if (body.getCollisionShape().isConvex()) {
BulletStats.gNumClampedCcdMotions++;
ClosestNotMeConvexResultCallback sweepResults = new ClosestNotMeConvexResultCallback(body, body.getWorldTransform(tmpTrans).origin, predictedTrans.origin, getBroadphase().getOverlappingPairCache(), getDispatcher());
//ConvexShape convexShape = (ConvexShape)body.getCollisionShape();
//btConvexShape* convexShape = static_cast<btConvexShape*>(body->getCollisionShape());
SphereShape tmpSphere = new SphereShape(body.getCcdSweptSphereRadius());
sweepResults.collisionFilterGroup = body.getBroadphaseProxy().collisionFilterGroup;
sweepResults.collisionFilterMask = body.getBroadphaseProxy().collisionFilterMask;
convexSweepTest(tmpSphere, body.getWorldTransform(tmpTrans), predictedTrans, sweepResults);
// JAVA NOTE: added closestHitFraction test to prevent objects being stuck
if (sweepResults.hasHit() && (sweepResults.closestHitFraction > 0.0001f)) {
body.setHitFraction(sweepResults.closestHitFraction);
body.predictIntegratedTransform(timeStep * body.getHitFraction(), predictedTrans);
body.setHitFraction(0f);
//System.out.printf("clamped integration to hit fraction = %f\n", sweepResults.closestHitFraction);
}
}
} finally {
BulletStats.popProfile();
}
}
body.proceedToTransform(predictedTrans);
}
}
}
} finally {
stack.leave(sp);
BulletStats.popProfile();
}
}
Aggregations