Search in sources :

Example 26 with Transform

use of com.bulletphysics.linearmath.Transform in project bdx by GoranM.

the class Point2PointConstraint method solveConstraint.

@Override
public void solveConstraint(float timeStep) {
    Stack stack = Stack.enter();
    Vector3f tmp = stack.allocVector3f();
    Vector3f tmp2 = stack.allocVector3f();
    Vector3f tmpVec = stack.allocVector3f();
    Transform centerOfMassA = rbA.getCenterOfMassTransform(stack.allocTransform());
    Transform centerOfMassB = rbB.getCenterOfMassTransform(stack.allocTransform());
    Vector3f pivotAInW = stack.alloc(pivotInA);
    centerOfMassA.transform(pivotAInW);
    Vector3f pivotBInW = stack.alloc(pivotInB);
    centerOfMassB.transform(pivotBInW);
    Vector3f normal = stack.allocVector3f();
    normal.set(0f, 0f, 0f);
    for (int i = 0; i < 3; i++) {
        VectorUtil.setCoord(normal, i, 1f);
        float jacDiagABInv = 1f / jac[i].getDiagonal();
        Vector3f rel_pos1 = stack.allocVector3f();
        rel_pos1.sub(pivotAInW, rbA.getCenterOfMassPosition(tmpVec));
        Vector3f rel_pos2 = stack.allocVector3f();
        rel_pos2.sub(pivotBInW, rbB.getCenterOfMassPosition(tmpVec));
        // this jacobian entry could be re-used for all iterations
        Vector3f vel1 = rbA.getVelocityInLocalPoint(rel_pos1, stack.allocVector3f());
        Vector3f vel2 = rbB.getVelocityInLocalPoint(rel_pos2, stack.allocVector3f());
        Vector3f vel = stack.allocVector3f();
        vel.sub(vel1, vel2);
        float rel_vel;
        rel_vel = normal.dot(vel);
        /*
			//velocity error (first order error)
			btScalar rel_vel = m_jac[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA,
			m_rbB.getLinearVelocity(),angvelB);
			 */
        // positional error (zeroth order error)
        tmp.sub(pivotAInW, pivotBInW);
        //this is the error projected on the normal
        float depth = -tmp.dot(normal);
        float impulse = depth * setting.tau / timeStep * jacDiagABInv - setting.damping * rel_vel * jacDiagABInv;
        float impulseClamp = setting.impulseClamp;
        if (impulseClamp > 0f) {
            if (impulse < -impulseClamp) {
                impulse = -impulseClamp;
            }
            if (impulse > impulseClamp) {
                impulse = impulseClamp;
            }
        }
        appliedImpulse += impulse;
        Vector3f impulse_vector = stack.allocVector3f();
        impulse_vector.scale(impulse, normal);
        tmp.sub(pivotAInW, rbA.getCenterOfMassPosition(tmpVec));
        rbA.applyImpulse(impulse_vector, tmp);
        tmp.negate(impulse_vector);
        tmp2.sub(pivotBInW, rbB.getCenterOfMassPosition(tmpVec));
        rbB.applyImpulse(tmp, tmp2);
        VectorUtil.setCoord(normal, i, 0f);
    }
    stack.leave();
}
Also used : Vector3f(javax.vecmath.Vector3f) Transform(com.bulletphysics.linearmath.Transform) Stack(com.bulletphysics.util.Stack)

Example 27 with Transform

use of com.bulletphysics.linearmath.Transform in project bdx by GoranM.

the class Point2PointConstraint method buildJacobian.

@Override
public void buildJacobian() {
    appliedImpulse = 0f;
    Stack stack = Stack.enter();
    Vector3f normal = stack.allocVector3f();
    normal.set(0f, 0f, 0f);
    Matrix3f tmpMat1 = stack.allocMatrix3f();
    Matrix3f tmpMat2 = stack.allocMatrix3f();
    Vector3f tmp1 = stack.allocVector3f();
    Vector3f tmp2 = stack.allocVector3f();
    Vector3f tmpVec = stack.allocVector3f();
    Transform centerOfMassA = rbA.getCenterOfMassTransform(stack.allocTransform());
    Transform centerOfMassB = rbB.getCenterOfMassTransform(stack.allocTransform());
    for (int i = 0; i < 3; i++) {
        VectorUtil.setCoord(normal, i, 1f);
        tmpMat1.transpose(centerOfMassA.basis);
        tmpMat2.transpose(centerOfMassB.basis);
        tmp1.set(pivotInA);
        centerOfMassA.transform(tmp1);
        tmp1.sub(rbA.getCenterOfMassPosition(tmpVec));
        tmp2.set(pivotInB);
        centerOfMassB.transform(tmp2);
        tmp2.sub(rbB.getCenterOfMassPosition(tmpVec));
        jac[i].init(tmpMat1, tmpMat2, tmp1, tmp2, normal, rbA.getInvInertiaDiagLocal(stack.allocVector3f()), rbA.getInvMass(), rbB.getInvInertiaDiagLocal(stack.allocVector3f()), rbB.getInvMass());
        VectorUtil.setCoord(normal, i, 0f);
    }
    stack.leave();
}
Also used : Matrix3f(javax.vecmath.Matrix3f) Vector3f(javax.vecmath.Vector3f) Transform(com.bulletphysics.linearmath.Transform) Stack(com.bulletphysics.util.Stack)

Example 28 with Transform

use of com.bulletphysics.linearmath.Transform in project bdx by GoranM.

the class SequentialImpulseConstraintSolver method solveGroupCacheFriendlySetup.

public float solveGroupCacheFriendlySetup(ObjectArrayList<CollisionObject> bodies, int numBodies, ObjectArrayList<PersistentManifold> manifoldPtr, int manifold_offset, int numManifolds, ObjectArrayList<TypedConstraint> constraints, int constraints_offset, int numConstraints, ContactSolverInfo infoGlobal, IDebugDraw debugDrawer) /*,btStackAlloc* stackAlloc*/
{
    BulletStats.pushProfile("solveGroupCacheFriendlySetup");
    Stack stack = Stack.enter();
    int sp = stack.getSp();
    try {
        if ((numConstraints + numManifolds) == 0) {
            // printf("empty\n");
            return 0f;
        }
        PersistentManifold manifold = null;
        CollisionObject colObj0 = null, colObj1 = null;
        //btRigidBody* rb0=0,*rb1=0;
        //	//#ifdef FORCE_REFESH_CONTACT_MANIFOLDS
        //
        //		BEGIN_PROFILE("refreshManifolds");
        //
        //		int i;
        //
        //
        //
        //		for (i=0;i<numManifolds;i++)
        //		{
        //			manifold = manifoldPtr[i];
        //			rb1 = (btRigidBody*)manifold->getBody1();
        //			rb0 = (btRigidBody*)manifold->getBody0();
        //
        //			manifold->refreshContactPoints(rb0->getCenterOfMassTransform(),rb1->getCenterOfMassTransform());
        //
        //		}
        //
        //		END_PROFILE("refreshManifolds");
        //	//#endif //FORCE_REFESH_CONTACT_MANIFOLDS
        Transform tmpTrans = stack.allocTransform();
        //int sizeofSB = sizeof(btSolverBody);
        //int sizeofSC = sizeof(btSolverConstraint);
        //if (1)
        {
            //if m_stackAlloc, try to pack bodies/constraints to speed up solving
            //		btBlock*					sablock;
            //		sablock = stackAlloc->beginBlock();
            //	int memsize = 16;
            //		unsigned char* stackMemory = stackAlloc->allocate(memsize);
            // todo: use stack allocator for this temp memory
            //int minReservation = numManifolds * 2;
            //m_tmpSolverBodyPool.reserve(minReservation);
            //don't convert all bodies, only the one we need so solver the constraints
            /*
				{
				for (int i=0;i<numBodies;i++)
				{
				btRigidBody* rb = btRigidBody::upcast(bodies[i]);
				if (rb && 	(rb->getIslandTag() >= 0))
				{
				btAssert(rb->getCompanionId() < 0);
				int solverBodyId = m_tmpSolverBodyPool.size();
				btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
				initSolverBody(&solverBody,rb);
				rb->setCompanionId(solverBodyId);
				} 
				}
				}
				*/
            //m_tmpSolverConstraintPool.reserve(minReservation);
            //m_tmpSolverFrictionConstraintPool.reserve(minReservation);
            {
                int i;
                Vector3f rel_pos1 = stack.allocVector3f();
                Vector3f rel_pos2 = stack.allocVector3f();
                Vector3f pos1 = stack.allocVector3f();
                Vector3f pos2 = stack.allocVector3f();
                Vector3f vel = stack.allocVector3f();
                Vector3f torqueAxis0 = stack.allocVector3f();
                Vector3f torqueAxis1 = stack.allocVector3f();
                Vector3f vel1 = stack.allocVector3f();
                Vector3f vel2 = stack.allocVector3f();
                Vector3f frictionDir1 = stack.allocVector3f();
                Vector3f frictionDir2 = stack.allocVector3f();
                Vector3f vec = stack.allocVector3f();
                Matrix3f tmpMat = stack.allocMatrix3f();
                for (i = 0; i < numManifolds; i++) {
                    manifold = manifoldPtr.getQuick(manifold_offset + i);
                    colObj0 = (CollisionObject) manifold.getBody0();
                    colObj1 = (CollisionObject) manifold.getBody1();
                    int solverBodyIdA = -1;
                    int solverBodyIdB = -1;
                    if (manifold.getNumContacts() != 0) {
                        if (colObj0.getIslandTag() >= 0) {
                            if (colObj0.getCompanionId() >= 0) {
                                // body has already been converted
                                solverBodyIdA = colObj0.getCompanionId();
                            } else {
                                solverBodyIdA = tmpSolverBodyPool.size();
                                SolverBody solverBody = bodiesPool.get();
                                tmpSolverBodyPool.add(solverBody);
                                initSolverBody(solverBody, colObj0);
                                colObj0.setCompanionId(solverBodyIdA);
                            }
                        } else {
                            // create a static body
                            solverBodyIdA = tmpSolverBodyPool.size();
                            SolverBody solverBody = bodiesPool.get();
                            tmpSolverBodyPool.add(solverBody);
                            initSolverBody(solverBody, colObj0);
                        }
                        if (colObj1.getIslandTag() >= 0) {
                            if (colObj1.getCompanionId() >= 0) {
                                solverBodyIdB = colObj1.getCompanionId();
                            } else {
                                solverBodyIdB = tmpSolverBodyPool.size();
                                SolverBody solverBody = bodiesPool.get();
                                tmpSolverBodyPool.add(solverBody);
                                initSolverBody(solverBody, colObj1);
                                colObj1.setCompanionId(solverBodyIdB);
                            }
                        } else {
                            // create a static body
                            solverBodyIdB = tmpSolverBodyPool.size();
                            SolverBody solverBody = bodiesPool.get();
                            tmpSolverBodyPool.add(solverBody);
                            initSolverBody(solverBody, colObj1);
                        }
                    }
                    float relaxation;
                    for (int j = 0; j < manifold.getNumContacts(); j++) {
                        ManifoldPoint cp = manifold.getContactPoint(j);
                        if (cp.getDistance() <= 0f) {
                            cp.getPositionWorldOnA(pos1);
                            cp.getPositionWorldOnB(pos2);
                            rel_pos1.sub(pos1, colObj0.getWorldTransform(tmpTrans).origin);
                            rel_pos2.sub(pos2, colObj1.getWorldTransform(tmpTrans).origin);
                            relaxation = 1f;
                            float rel_vel;
                            int frictionIndex = tmpSolverConstraintPool.size();
                            {
                                SolverConstraint solverConstraint = constraintsPool.get();
                                tmpSolverConstraintPool.add(solverConstraint);
                                RigidBody rb0 = RigidBody.upcast(colObj0);
                                RigidBody rb1 = RigidBody.upcast(colObj1);
                                solverConstraint.solverBodyIdA = solverBodyIdA;
                                solverConstraint.solverBodyIdB = solverBodyIdB;
                                solverConstraint.constraintType = SolverConstraintType.SOLVER_CONTACT_1D;
                                solverConstraint.originalContactPoint = cp;
                                torqueAxis0.cross(rel_pos1, cp.normalWorldOnB);
                                if (rb0 != null) {
                                    solverConstraint.angularComponentA.set(torqueAxis0);
                                    rb0.getInvInertiaTensorWorld(tmpMat).transform(solverConstraint.angularComponentA);
                                } else {
                                    solverConstraint.angularComponentA.set(0f, 0f, 0f);
                                }
                                torqueAxis1.cross(rel_pos2, cp.normalWorldOnB);
                                if (rb1 != null) {
                                    solverConstraint.angularComponentB.set(torqueAxis1);
                                    rb1.getInvInertiaTensorWorld(tmpMat).transform(solverConstraint.angularComponentB);
                                } else {
                                    solverConstraint.angularComponentB.set(0f, 0f, 0f);
                                }
                                {
                                    //#ifdef COMPUTE_IMPULSE_DENOM
                                    //btScalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB);
                                    //btScalar denom1 = rb1->computeImpulseDenominator(pos2,cp.m_normalWorldOnB);
                                    //#else							
                                    float denom0 = 0f;
                                    float denom1 = 0f;
                                    if (rb0 != null) {
                                        vec.cross(solverConstraint.angularComponentA, rel_pos1);
                                        denom0 = rb0.getInvMass() + cp.normalWorldOnB.dot(vec);
                                    }
                                    if (rb1 != null) {
                                        vec.cross(solverConstraint.angularComponentB, rel_pos2);
                                        denom1 = rb1.getInvMass() + cp.normalWorldOnB.dot(vec);
                                    }
                                    //#endif //COMPUTE_IMPULSE_DENOM		
                                    float denom = relaxation / (denom0 + denom1);
                                    solverConstraint.jacDiagABInv = denom;
                                }
                                solverConstraint.contactNormal.set(cp.normalWorldOnB);
                                solverConstraint.relpos1CrossNormal.cross(rel_pos1, cp.normalWorldOnB);
                                solverConstraint.relpos2CrossNormal.cross(rel_pos2, cp.normalWorldOnB);
                                if (rb0 != null) {
                                    rb0.getVelocityInLocalPoint(rel_pos1, vel1);
                                } else {
                                    vel1.set(0f, 0f, 0f);
                                }
                                if (rb1 != null) {
                                    rb1.getVelocityInLocalPoint(rel_pos2, vel2);
                                } else {
                                    vel2.set(0f, 0f, 0f);
                                }
                                vel.sub(vel1, vel2);
                                rel_vel = cp.normalWorldOnB.dot(vel);
                                solverConstraint.penetration = Math.min(cp.getDistance() + infoGlobal.linearSlop, 0f);
                                //solverConstraint.m_penetration = cp.getDistance();
                                solverConstraint.friction = cp.combinedFriction;
                                solverConstraint.restitution = restitutionCurve(rel_vel, cp.combinedRestitution);
                                if (solverConstraint.restitution <= 0f) {
                                    solverConstraint.restitution = 0f;
                                }
                                float penVel = -solverConstraint.penetration / infoGlobal.timeStep;
                                if (solverConstraint.restitution > penVel) {
                                    solverConstraint.penetration = 0f;
                                }
                                Vector3f tmp = stack.allocVector3f();
                                // warm starting (or zero if disabled)
                                if ((infoGlobal.solverMode & SolverMode.SOLVER_USE_WARMSTARTING) != 0) {
                                    solverConstraint.appliedImpulse = cp.appliedImpulse * infoGlobal.warmstartingFactor;
                                    if (rb0 != null) {
                                        tmp.scale(rb0.getInvMass(), solverConstraint.contactNormal);
                                        tmpSolverBodyPool.getQuick(solverConstraint.solverBodyIdA).internalApplyImpulse(tmp, solverConstraint.angularComponentA, solverConstraint.appliedImpulse);
                                    }
                                    if (rb1 != null) {
                                        tmp.scale(rb1.getInvMass(), solverConstraint.contactNormal);
                                        tmpSolverBodyPool.getQuick(solverConstraint.solverBodyIdB).internalApplyImpulse(tmp, solverConstraint.angularComponentB, -solverConstraint.appliedImpulse);
                                    }
                                } else {
                                    solverConstraint.appliedImpulse = 0f;
                                }
                                solverConstraint.appliedPushImpulse = 0f;
                                solverConstraint.frictionIndex = tmpSolverFrictionConstraintPool.size();
                                if (!cp.lateralFrictionInitialized) {
                                    cp.lateralFrictionDir1.scale(rel_vel, cp.normalWorldOnB);
                                    cp.lateralFrictionDir1.sub(vel, cp.lateralFrictionDir1);
                                    float lat_rel_vel = cp.lateralFrictionDir1.lengthSquared();
                                    if (//0.0f)
                                    lat_rel_vel > BulletGlobals.FLT_EPSILON) {
                                        cp.lateralFrictionDir1.scale(1f / (float) Math.sqrt(lat_rel_vel));
                                        addFrictionConstraint(cp.lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
                                        cp.lateralFrictionDir2.cross(cp.lateralFrictionDir1, cp.normalWorldOnB);
                                        //??
                                        cp.lateralFrictionDir2.normalize();
                                        addFrictionConstraint(cp.lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
                                    } else {
                                        // re-calculate friction direction every frame, todo: check if this is really needed
                                        TransformUtil.planeSpace1(cp.normalWorldOnB, cp.lateralFrictionDir1, cp.lateralFrictionDir2);
                                        addFrictionConstraint(cp.lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
                                        addFrictionConstraint(cp.lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
                                    }
                                    cp.lateralFrictionInitialized = true;
                                } else {
                                    addFrictionConstraint(cp.lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
                                    addFrictionConstraint(cp.lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
                                }
                                {
                                    SolverConstraint frictionConstraint1 = tmpSolverFrictionConstraintPool.getQuick(solverConstraint.frictionIndex);
                                    if ((infoGlobal.solverMode & SolverMode.SOLVER_USE_WARMSTARTING) != 0) {
                                        frictionConstraint1.appliedImpulse = cp.appliedImpulseLateral1 * infoGlobal.warmstartingFactor;
                                        if (rb0 != null) {
                                            tmp.scale(rb0.getInvMass(), frictionConstraint1.contactNormal);
                                            tmpSolverBodyPool.getQuick(solverConstraint.solverBodyIdA).internalApplyImpulse(tmp, frictionConstraint1.angularComponentA, frictionConstraint1.appliedImpulse);
                                        }
                                        if (rb1 != null) {
                                            tmp.scale(rb1.getInvMass(), frictionConstraint1.contactNormal);
                                            tmpSolverBodyPool.getQuick(solverConstraint.solverBodyIdB).internalApplyImpulse(tmp, frictionConstraint1.angularComponentB, -frictionConstraint1.appliedImpulse);
                                        }
                                    } else {
                                        frictionConstraint1.appliedImpulse = 0f;
                                    }
                                }
                                {
                                    SolverConstraint frictionConstraint2 = tmpSolverFrictionConstraintPool.getQuick(solverConstraint.frictionIndex + 1);
                                    if ((infoGlobal.solverMode & SolverMode.SOLVER_USE_WARMSTARTING) != 0) {
                                        frictionConstraint2.appliedImpulse = cp.appliedImpulseLateral2 * infoGlobal.warmstartingFactor;
                                        if (rb0 != null) {
                                            tmp.scale(rb0.getInvMass(), frictionConstraint2.contactNormal);
                                            tmpSolverBodyPool.getQuick(solverConstraint.solverBodyIdA).internalApplyImpulse(tmp, frictionConstraint2.angularComponentA, frictionConstraint2.appliedImpulse);
                                        }
                                        if (rb1 != null) {
                                            tmp.scale(rb1.getInvMass(), frictionConstraint2.contactNormal);
                                            tmpSolverBodyPool.getQuick(solverConstraint.solverBodyIdB).internalApplyImpulse(tmp, frictionConstraint2.angularComponentB, -frictionConstraint2.appliedImpulse);
                                        }
                                    } else {
                                        frictionConstraint2.appliedImpulse = 0f;
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }
        // TODO: btContactSolverInfo info = infoGlobal;
        {
            int j;
            for (j = 0; j < numConstraints; j++) {
                TypedConstraint constraint = constraints.getQuick(constraints_offset + j);
                constraint.buildJacobian();
            }
        }
        int numConstraintPool = tmpSolverConstraintPool.size();
        int numFrictionPool = tmpSolverFrictionConstraintPool.size();
        // todo: use stack allocator for such temporarily memory, same for solver bodies/constraints
        MiscUtil.resize(orderTmpConstraintPool, numConstraintPool, 0);
        MiscUtil.resize(orderFrictionConstraintPool, numFrictionPool, 0);
        {
            int i;
            for (i = 0; i < numConstraintPool; i++) {
                orderTmpConstraintPool.set(i, i);
            }
            for (i = 0; i < numFrictionPool; i++) {
                orderFrictionConstraintPool.set(i, i);
            }
        }
        return 0f;
    } finally {
        stack.leave(sp);
        BulletStats.popProfile();
    }
}
Also used : ManifoldPoint(com.bulletphysics.collision.narrowphase.ManifoldPoint) PersistentManifold(com.bulletphysics.collision.narrowphase.PersistentManifold) ManifoldPoint(com.bulletphysics.collision.narrowphase.ManifoldPoint) Stack(com.bulletphysics.util.Stack) CollisionObject(com.bulletphysics.collision.dispatch.CollisionObject) Matrix3f(javax.vecmath.Matrix3f) Vector3f(javax.vecmath.Vector3f) RigidBody(com.bulletphysics.dynamics.RigidBody) Transform(com.bulletphysics.linearmath.Transform)

Example 29 with Transform

use of com.bulletphysics.linearmath.Transform in project bdx by GoranM.

the class SliderConstraint method getAncorInA.

// access for PE Solver
public Vector3f getAncorInA(Vector3f out) {
    Stack stack = Stack.enter();
    Transform tmpTrans = stack.allocTransform();
    Vector3f ancorInA = out;
    ancorInA.scaleAdd((lowerLinLimit + upperLinLimit) * 0.5f, sliderAxis, realPivotAInW);
    rbA.getCenterOfMassTransform(tmpTrans);
    tmpTrans.inverse();
    tmpTrans.transform(ancorInA);
    stack.leave();
    return ancorInA;
}
Also used : Vector3f(javax.vecmath.Vector3f) Transform(com.bulletphysics.linearmath.Transform) Stack(com.bulletphysics.util.Stack)

Example 30 with Transform

use of com.bulletphysics.linearmath.Transform in project bdx by GoranM.

the class SliderConstraint method calculateTransforms.

// shared code used by ODE solver
public void calculateTransforms() {
    Stack stack = Stack.enter();
    Transform tmpTrans = stack.allocTransform();
    if (useLinearReferenceFrameA) {
        calculatedTransformA.mul(rbA.getCenterOfMassTransform(tmpTrans), frameInA);
        calculatedTransformB.mul(rbB.getCenterOfMassTransform(tmpTrans), frameInB);
    } else {
        calculatedTransformA.mul(rbB.getCenterOfMassTransform(tmpTrans), frameInB);
        calculatedTransformB.mul(rbA.getCenterOfMassTransform(tmpTrans), frameInA);
    }
    realPivotAInW.set(calculatedTransformA.origin);
    realPivotBInW.set(calculatedTransformB.origin);
    // along X
    calculatedTransformA.basis.getColumn(0, sliderAxis);
    delta.sub(realPivotBInW, realPivotAInW);
    projPivotInW.scaleAdd(sliderAxis.dot(delta), sliderAxis, realPivotAInW);
    Vector3f normalWorld = stack.allocVector3f();
    // linear part
    for (int i = 0; i < 3; i++) {
        calculatedTransformA.basis.getColumn(i, normalWorld);
        VectorUtil.setCoord(depth, i, delta.dot(normalWorld));
    }
    stack.leave();
}
Also used : Vector3f(javax.vecmath.Vector3f) Transform(com.bulletphysics.linearmath.Transform) Stack(com.bulletphysics.util.Stack)

Aggregations

Transform (com.bulletphysics.linearmath.Transform)81 Stack (com.bulletphysics.util.Stack)65 Vector3f (javax.vecmath.Vector3f)53 CollisionShape (com.bulletphysics.collision.shapes.CollisionShape)11 ManifoldPoint (com.bulletphysics.collision.narrowphase.ManifoldPoint)10 CompoundShape (com.bulletphysics.collision.shapes.CompoundShape)10 CollisionObject (com.bulletphysics.collision.dispatch.CollisionObject)9 Matrix3f (javax.vecmath.Matrix3f)8 TypedConstraint (com.bulletphysics.dynamics.constraintsolver.TypedConstraint)7 SphereShape (com.bulletphysics.collision.shapes.SphereShape)5 ConcaveShape (com.bulletphysics.collision.shapes.ConcaveShape)4 ConvexShape (com.bulletphysics.collision.shapes.ConvexShape)4 PersistentManifold (com.bulletphysics.collision.narrowphase.PersistentManifold)3 VoronoiSimplexSolver (com.bulletphysics.collision.narrowphase.VoronoiSimplexSolver)3 StaticPlaneShape (com.bulletphysics.collision.shapes.StaticPlaneShape)3 BroadphaseInterface (com.bulletphysics.collision.broadphase.BroadphaseInterface)2 ConvexCast (com.bulletphysics.collision.narrowphase.ConvexCast)2 CastResult (com.bulletphysics.collision.narrowphase.ConvexCast.CastResult)2 GjkConvexCast (com.bulletphysics.collision.narrowphase.GjkConvexCast)2 SubsimplexConvexCast (com.bulletphysics.collision.narrowphase.SubsimplexConvexCast)2