use of com.github.lindenb.jvarkit.util.bio.structure.Intron in project jvarkit by lindenb.
the class VcfGtfSplitter method testTranscript.
private boolean testTranscript(final Transcript transcript, final VariantContext ctx) {
if (!transcript.overlaps(ctx)) {
if (this.use_upstream) {
final SimplePosition pos = new SimplePosition(transcript.getContig(), transcript.isPositiveStrand() ? transcript.getStart() : transcript.getEnd());
if (ctx.withinDistanceOf(pos, this.xxxxstream_length))
return true;
}
if (this.use_downstream) {
final SimplePosition pos = new SimplePosition(transcript.getContig(), transcript.isPositiveStrand() ? transcript.getEnd() : transcript.getStart());
if (ctx.withinDistanceOf(pos, this.xxxxstream_length))
return true;
}
return false;
}
if (this.use_exon && transcript.hasExon() && transcript.getExons().stream().anyMatch(FEAT -> FEAT.overlaps(ctx)))
return true;
if (this.use_intron && transcript.hasIntron() && transcript.getIntrons().stream().anyMatch(FEAT -> FEAT.overlaps(ctx)))
return true;
if (this.use_cds && transcript.hasCDS() && transcript.getAllCds().stream().anyMatch(FEAT -> FEAT.overlaps(ctx)))
return true;
if (this.use_utr5) {
if (transcript.isPositiveStrand() && transcript.getUTR5().isPresent() && transcript.getUTR5().get().overlaps(ctx))
return true;
if (transcript.isNegativeStrand() && transcript.getUTR3().isPresent() && transcript.getUTR3().get().overlaps(ctx))
return true;
}
if (this.use_utr3) {
if (transcript.isPositiveStrand() && transcript.getUTR3().isPresent() && transcript.getUTR3().get().overlaps(ctx))
return true;
if (transcript.isNegativeStrand() && transcript.getUTR5().isPresent() && transcript.getUTR5().get().overlaps(ctx))
return true;
}
if (this.use_cds_utr5) {
if (transcript.isPositiveStrand() && transcript.getUTR5().isPresent() && transcript.getUTR5().get().getIntervals().stream().anyMatch(FEAT -> FEAT.overlaps(ctx)))
return true;
if (transcript.isNegativeStrand() && transcript.getUTR3().isPresent() && transcript.getUTR3().get().getIntervals().stream().anyMatch(FEAT -> FEAT.overlaps(ctx)))
return true;
}
if (this.use_cds_utr3) {
if (transcript.isPositiveStrand() && transcript.getUTR3().isPresent() && transcript.getUTR3().get().getIntervals().stream().anyMatch(FEAT -> FEAT.overlaps(ctx)))
return true;
if (transcript.isNegativeStrand() && transcript.getUTR5().isPresent() && transcript.getUTR5().get().getIntervals().stream().anyMatch(FEAT -> FEAT.overlaps(ctx)))
return true;
}
if (this.use_stop && transcript.hasCodonStopDefined() && transcript.getCodonStop().get().getBlocks().stream().anyMatch(FEAT -> FEAT.overlaps(ctx)))
return true;
if (this.use_start && transcript.hasCodonStartDefined() && transcript.getCodonStart().get().getBlocks().stream().anyMatch(FEAT -> FEAT.overlaps(ctx)))
return true;
if (this.use_splice && transcript.hasIntron()) {
for (final Intron intron : transcript.getIntrons()) {
final SimpleInterval splice1 = new SimpleInterval(intron.getContig(), intron.getStart() - 1, intron.getStart());
if (ctx.withinDistanceOf(splice1, this.split_length))
return true;
final SimpleInterval splice2 = new SimpleInterval(intron.getContig(), intron.getEnd(), intron.getEnd() + 1);
if (ctx.withinDistanceOf(splice2, this.split_length))
return true;
}
}
return false;
}
use of com.github.lindenb.jvarkit.util.bio.structure.Intron in project jvarkit by lindenb.
the class VcfBurdenGtf method runBurden.
@Override
protected void runBurden(PrintWriter pw, VCFReader vcfReader, VariantContextWriter vcw) throws IOException {
final SAMSequenceDictionary vcfDict = SequenceDictionaryUtils.extractRequired(vcfReader.getHeader());
final List<Gene> all_genes;
try (GtfReader gtfReader = new GtfReader(this.gtfFile)) {
gtfReader.setContigNameConverter(ContigNameConverter.fromOneDictionary(vcfDict));
all_genes = gtfReader.getAllGenes().stream().filter(G -> StringUtil.isBlank(this.intergenic_contig) || this.intergenic_contig.equals("*") || this.intergenic_contig.equals(G.getContig())).sorted(new ContigDictComparator(vcfDict).createLocatableComparator()).collect(Collectors.toCollection(ArrayList::new));
}
pw.print("#chrom");
pw.print("\t");
pw.print("start0");
pw.print("\t");
pw.print("end");
pw.print("\t");
pw.print("name");
pw.print("\t");
pw.print("length");
pw.print("\t");
pw.print("gene");
pw.print("\t");
pw.print("type");
pw.print("\t");
pw.print("strand");
pw.print("\t");
pw.print("transcript");
pw.print("\t");
pw.print("gene-id");
pw.print("\t");
pw.print("intervals");
pw.print("\t");
pw.print("p-value");
pw.print("\t");
pw.print("affected_alt");
pw.print("\t");
pw.print("affected_hom");
pw.print("\t");
pw.print("unaffected_alt");
pw.print("\t");
pw.print("unaffected_hom");
pw.print("\t");
pw.print("variants.count");
pw.println();
final List<SimpleInterval> all_intergenic = new ArrayList<>();
if (!StringUtil.isBlank(this.intergenic_contig)) {
for (final SAMSequenceRecord ssr : vcfDict.getSequences()) {
if (!(this.intergenic_contig.equals("*") || this.intergenic_contig.equals(ssr.getSequenceName())))
continue;
final BitSet filled = new BitSet(ssr.getSequenceLength() + 2);
all_genes.stream().filter(G -> G.getContig().equals(ssr.getSequenceName())).forEach(G -> filled.set(G.getStart(), 1 + /* bit set is 0 based */
Math.min(G.getEnd(), ssr.getSequenceLength())));
int i = 1;
while (i < ssr.getSequenceLength()) {
if (filled.get(i)) {
i++;
continue;
}
int j = i;
while (j < ssr.getSequenceLength() && !filled.get(j)) {
j++;
}
all_intergenic.add(new SimpleInterval(ssr.getSequenceName(), i, j));
i = j + 1;
}
all_genes.removeIf(G -> G.getContig().equals(ssr.getSequenceName()));
}
all_genes.clear();
}
final ProgressFactory.Watcher<Gene> progress = ProgressFactory.newInstance().logger(LOG).dictionary(vcfDict).build();
/* run genes */
for (final Gene gene : all_genes) {
progress.apply(gene);
final IntervalTree<VariantContext> intervalTree = new IntervalTree<>();
vcfReader.query(gene).stream().filter(V -> accept(V)).forEach(V -> intervalTree.put(V.getStart(), V.getEnd(), V));
if (intervalTree.size() == 0)
continue;
for (final Transcript transcript : gene.getTranscripts()) {
final List<SubPartOfTranscript> parts = new ArrayList<>();
parts.addAll(transcript.getExons().stream().map(R -> new SubPartOfTranscript(R)).collect(Collectors.toList()));
parts.addAll(transcript.getIntrons().stream().map(R -> new SubPartOfTranscript(R)).collect(Collectors.toList()));
final int intron_window_size = 1000;
final int intron_window_shift = 500;
for (final Intron intron : transcript.getIntrons()) {
if (intron.getLengthOnReference() <= intron_window_size)
continue;
int start_pos = intron.getStart();
while (start_pos + intron_window_size <= intron.getEnd()) {
int xend = Math.min(intron.getEnd(), start_pos + intron_window_size - 1);
int xstart = xend - intron_window_size - 1;
parts.add(new SubPartOfTranscript(transcript, intron.getName() + ".Sliding", Collections.singletonList(new SimpleInterval(intron.getContig(), xstart, xend))));
start_pos += intron_window_shift;
}
}
for (final UTR utr : transcript.getUTRs()) {
parts.add(new SubPartOfTranscript(transcript, utr.getName(), utr.getIntervals()));
}
if (transcript.getExonCount() > 1) {
parts.add(new SubPartOfTranscript(transcript, "AllExons", transcript.getExons().stream().map(E -> E.toInterval()).collect(Collectors.toList())));
}
if (transcript.hasCodonStartDefined() && transcript.hasCodonStopDefined() && transcript.getAllCds().size() > 1) {
parts.add(new SubPartOfTranscript(transcript, "AllCds", transcript.getAllCds().stream().map(E -> E.toInterval()).collect(Collectors.toList())));
}
final int L = transcript.getTranscriptLength();
final int[] index2genomic = new int[L];
int pos = 0;
for (final Exon exon : transcript.getExons()) {
for (int i = exon.getStart(); i <= exon.getEnd(); i++) {
index2genomic[pos] = i;
pos++;
}
}
final int window_size = 200;
final int window_shift = 100;
int array_index = 0;
while (array_index < index2genomic.length) {
final List<Locatable> intervals = new ArrayList<>();
int prev_pos = -1;
int start_pos = index2genomic[array_index];
int i = 0;
while (i < window_size && array_index + i < index2genomic.length) {
final int curr_pos = index2genomic[array_index + i];
if (i > 0 && prev_pos + 1 != curr_pos) {
intervals.add(new SimpleInterval(transcript.getContig(), start_pos, prev_pos));
start_pos = curr_pos;
}
prev_pos = curr_pos;
i++;
}
intervals.add(new SimpleInterval(transcript.getContig(), start_pos, prev_pos));
parts.add(new SubPartOfTranscript(transcript, "Sliding", intervals));
array_index += window_shift;
}
for (final SubPartOfTranscript part : parts) {
final List<VariantContext> variants = new ArrayList<>();
for (final Locatable loc : part.intervals) {
Iterator<IntervalTree.Node<VariantContext>> iter = intervalTree.overlappers(loc.getStart(), loc.getEnd());
while (iter.hasNext()) variants.add(iter.next().getValue());
}
if (variants.isEmpty())
continue;
final FisherResult fisher = runFisher(variants);
if (fisher.p_value > this.fisherTreshold)
continue;
if (vcw != null) {
for (final VariantContext ctx : variants) {
vcw.add(new VariantContextBuilder(ctx).attribute(BURDEN_KEY, VCFUtils.escapeInfoField(part.label)).make());
}
}
pw.print(part.getContig());
pw.print("\t");
pw.print(part.getStart() - 1);
pw.print("\t");
pw.print(part.getEnd());
pw.print("\t");
pw.print(part.label);
pw.print("\t");
pw.print(part.getLengthOnReference());
pw.print("\t");
pw.print(transcript.getProperties().getOrDefault("gene_name", "."));
pw.print("\t");
pw.print(transcript.getProperties().getOrDefault("transcript_type", "."));
pw.print("\t");
pw.print(gene.getStrand());
pw.print("\t");
pw.print(transcript.getId());
pw.print("\t");
pw.print(gene.getId());
pw.print("\t");
pw.print(part.intervals.stream().map(R -> String.valueOf(R.getStart()) + "-" + R.getEnd()).collect(Collectors.joining(";")));
pw.print("\t");
pw.print(fisher.p_value);
pw.print("\t");
pw.print(fisher.affected_alt);
pw.print("\t");
pw.print(fisher.affected_hom);
pw.print("\t");
pw.print(fisher.unaffected_alt);
pw.print("\t");
pw.print(fisher.unaffected_hom);
pw.print("\t");
pw.print(variants.size());
pw.println();
}
}
}
progress.close();
final ProgressFactory.Watcher<SimpleInterval> progress2 = ProgressFactory.newInstance().logger(LOG).dictionary(vcfDict).build();
/**
* scan intergenics ...
*/
for (final SimpleInterval intergenic : all_intergenic) {
progress2.apply(intergenic);
final int intergenic_window_size = 2000;
final int intergenic_window_shifr = 100;
final List<SimpleInterval> parts = new ArrayList<>();
if (intergenic.getLengthOnReference() <= intergenic_window_size)
continue;
int start_pos = intergenic.getStart();
while (start_pos + intergenic_window_size <= intergenic.getEnd()) {
int xend = Math.min(intergenic.getEnd(), start_pos + intergenic_window_size - 1);
int xstart = xend - intergenic_window_size - 1;
parts.add(new SimpleInterval(intergenic.getContig(), xstart, xend));
start_pos += intergenic_window_shifr;
}
for (final SimpleInterval part : parts) {
final List<VariantContext> variants = vcfReader.query(part).stream().filter(V -> accept(V)).collect(Collectors.toList());
if (variants.isEmpty())
continue;
final FisherResult fisher = runFisher(variants);
if (fisher.p_value > this.fisherTreshold)
continue;
final String label = "intergenic_" + part.getStart() + "_" + part.getEnd();
if (vcw != null) {
for (final VariantContext ctx : variants) {
vcw.add(new VariantContextBuilder(ctx).attribute(BURDEN_KEY, VCFUtils.escapeInfoField(label)).make());
}
}
pw.print(part.getContig());
pw.print("\t");
pw.print(part.getStart() - 1);
pw.print("\t");
pw.print(part.getEnd());
pw.print("\t");
pw.print(label);
pw.print("\t");
pw.print(part.getLengthOnReference());
pw.print("\t");
pw.print(".");
pw.print("\t");
pw.print("intergenic");
pw.print("\t");
pw.print(".");
pw.print("\t");
pw.print(".");
pw.print("\t");
pw.print(".");
pw.print("\t");
pw.print("" + part.getStart() + "-" + part.getEnd());
pw.print("\t");
pw.print(fisher.p_value);
pw.print("\t");
pw.print(fisher.affected_alt);
pw.print("\t");
pw.print(fisher.affected_hom);
pw.print("\t");
pw.print(fisher.unaffected_alt);
pw.print("\t");
pw.print(fisher.unaffected_hom);
pw.print("\t");
pw.print(variants.size());
pw.println();
}
}
progress2.close();
}
use of com.github.lindenb.jvarkit.util.bio.structure.Intron in project jvarkit by lindenb.
the class VcfGtfSplitter method doWork.
@Override
public int doWork(final List<String> args) {
ArchiveFactory archiveFactory = null;
PrintWriter manifest = null;
VCFReader vcfFileReader = null;
try {
this.attCleaner = AttributeCleaner.compile(this.xannotatePattern);
for (final String s : featuresString.split("[;, ]")) {
if (StringUtils.isBlank(s))
continue;
if (s.equals("cds")) {
use_cds = true;
} else if (s.equals("intron")) {
use_cds = true;
} else if (s.equals("exon")) {
use_exon = true;
} else if (s.equals("stop")) {
use_stop = true;
} else if (s.equals("start")) {
use_start = true;
} else if (s.equals("transcript")) {
use_exon = true;
use_intron = true;
} else if (s.equals("utr5")) {
use_utr5 = true;
} else if (s.equals("utr3")) {
use_utr3 = true;
} else if (s.equals("utr")) {
use_utr3 = true;
use_utr5 = true;
} else if (s.equals("upstream")) {
use_upstream = true;
} else if (s.equals("downstream")) {
use_downstream = true;
} else if (s.equals("splice")) {
use_splice = true;
} else if (s.equals("cds_utr5")) {
use_cds_utr5 = true;
} else if (s.equals("cds_utr3")) {
use_cds_utr3 = true;
} else if (s.equals("cds_utr")) {
use_cds_utr3 = true;
use_cds_utr5 = true;
} else {
LOG.error("unknown code " + s + " in " + this.featuresString);
return -1;
}
}
final Path tmpVcf = Files.createTempFile("tmp.", (use_bcf ? FileExtensions.BCF : FileExtensions.COMPRESSED_VCF));
String input = oneAndOnlyOneFile(args);
vcfFileReader = VCFReaderFactory.makeDefault().open(Paths.get(input), true);
final VCFHeader header1 = vcfFileReader.getHeader();
final SAMSequenceDictionary dict = header1.getSequenceDictionary();
if (dict == null && this.use_bcf) {
throw new JvarkitException.VcfDictionaryMissing(input);
}
if (dict != null && !limitToContigs.isEmpty()) {
final ContigNameConverter ctgNameConverter = ContigNameConverter.fromOneDictionary(dict);
final Set<String> set2 = new HashSet<>(this.limitToContigs.size());
for (final String ctg : this.limitToContigs) {
final String ctg2 = ctgNameConverter.apply(ctg);
if (StringUtils.isBlank(ctg2)) {
LOG.error(JvarkitException.ContigNotFoundInDictionary.getMessage(ctg, dict));
return -1;
}
set2.add(ctg2);
}
this.limitToContigs = set2;
}
final List<Gene> all_genes;
try (GtfReader gtfReader = new GtfReader(this.gtfPath)) {
final Comparator<Gene> cmp;
if (dict != null) {
gtfReader.setContigNameConverter(ContigNameConverter.fromOneDictionary(dict));
cmp = new ContigDictComparator(dict).createLocatableComparator();
} else {
cmp = (A, B) -> {
final int i = A.getContig().compareTo(B.getContig());
if (i != 0)
return i;
return Integer.compare(A.getStart(), B.getStart());
};
}
all_genes = gtfReader.getAllGenes().stream().filter(G -> {
if (this.protein_coding_only && !"protein_coding".equals(G.getGeneBiotype()))
return false;
if (this.limitToContigs.isEmpty())
return true;
return this.limitToContigs.contains(G.getContig());
}).sorted(cmp).collect(Collectors.toList());
}
archiveFactory = ArchiveFactory.open(this.outputFile);
archiveFactory.setCompressionLevel(0);
manifest = new PrintWriter(this.manifestFile == null ? new NullOuputStream() : IOUtils.openPathForWriting(manifestFile));
manifest.println("#chrom\tstart\tend\tGene-Id\tGene-Name\tGene-Biotype\tTranscript-Id\tpath\tCount_Variants");
if (this.split_by_transcript) {
final Iterator<Transcript> triter = all_genes.stream().flatMap(G -> G.getTranscripts().stream()).iterator();
while (triter.hasNext()) {
final Transcript tr = triter.next();
final AbstractSplitter splitter = new TranscriptSplitter(tr);
this.split(splitter, vcfFileReader, header1, dict, archiveFactory, tmpVcf, manifest);
}
} else {
for (Gene gene : all_genes) {
final AbstractSplitter splitter = new GeneSplitter(gene);
this.split(splitter, vcfFileReader, header1, dict, archiveFactory, tmpVcf, manifest);
}
}
vcfFileReader.close();
vcfFileReader = null;
manifest.flush();
manifest.close();
manifest = null;
archiveFactory.close();
Files.deleteIfExists(tmpVcf);
return RETURN_OK;
} catch (final Exception err) {
LOG.error(err);
return -1;
} finally {
CloserUtil.close(vcfFileReader);
CloserUtil.close(archiveFactory);
CloserUtil.close(manifest);
}
}
use of com.github.lindenb.jvarkit.util.bio.structure.Intron in project jvarkit by lindenb.
the class GtfRetroCopy method doWork.
@Override
public int doWork(final List<String> args) {
VCFReader vcfFileReader = null;
VariantContextWriter vcw0 = null;
try {
/* load the reference genome */
/* create a contig name converter from the REF */
final Set<String> knownGeneIds;
if (this.knownPath != null) {
try (BufferedReader br = IOUtils.openPathForBufferedReading(this.knownPath)) {
knownGeneIds = br.lines().filter(L -> !StringUtils.isBlank(L)).map(S -> S.trim()).filter(S -> !(S.equals("-") || S.equals(".") || S.startsWith("#"))).collect(Collectors.toSet());
}
} else {
knownGeneIds = Collections.emptySet();
}
// open the sam file
final String input = oneAndOnlyOneFile(args);
vcfFileReader = VCFReaderFactory.makeDefault().open(Paths.get(input), true);
final VCFHeader header = vcfFileReader.getHeader();
final SAMSequenceDictionary dict = header.getSequenceDictionary();
final Comparator<String> contigCmp = dict == null ? (A, B) -> A.compareTo(B) : new ContigDictComparator(dict);
final Comparator<Gene> geneCmp = (A, B) -> {
int i = contigCmp.compare(A.getContig(), B.getContig());
if (i != 0)
return i;
i = Integer.compare(A.getStart(), B.getStart());
if (i != 0)
return i;
return Integer.compare(A.getEnd(), B.getEnd());
};
final GtfReader gtfReader = new GtfReader(this.gtfPath);
if (dict != null && !dict.isEmpty()) {
this.writingVcf.dictionary(dict);
gtfReader.setContigNameConverter(ContigNameConverter.fromOneDictionary(dict));
}
final List<Gene> genes = gtfReader.getAllGenes().stream().filter(G -> G.getTranscripts().stream().count() > 0L).filter(G -> G.getTranscripts().stream().anyMatch(T -> T.getIntronCount() >= this.min_intron_count)).sorted(geneCmp).collect(Collectors.toList());
gtfReader.close();
/**
* build vcf header
*/
final Set<VCFHeaderLine> metaData = new HashSet<>();
metaData.add(VCFStandardHeaderLines.getFormatLine(VCFConstants.GENOTYPE_KEY, true));
metaData.add(VCFStandardHeaderLines.getFormatLine(VCFConstants.GENOTYPE_QUALITY_KEY, true));
metaData.add(VCFStandardHeaderLines.getFormatLine(VCFConstants.DEPTH_KEY, true));
metaData.add(VCFStandardHeaderLines.getFormatLine(VCFConstants.GENOTYPE_ALLELE_DEPTHS, true));
metaData.add(VCFStandardHeaderLines.getInfoLine(VCFConstants.DEPTH_KEY, true));
metaData.add(VCFStandardHeaderLines.getInfoLine(VCFConstants.ALLELE_NUMBER_KEY, true));
metaData.add(VCFStandardHeaderLines.getInfoLine(VCFConstants.ALLELE_COUNT_KEY, true));
metaData.add(VCFStandardHeaderLines.getInfoLine(VCFConstants.ALLELE_COUNT_KEY, true));
metaData.add(VCFStandardHeaderLines.getInfoLine(VCFConstants.ALLELE_FREQUENCY_KEY, true));
metaData.add(VCFStandardHeaderLines.getInfoLine(VCFConstants.END_KEY, true));
metaData.add(new VCFInfoHeaderLine(VCFConstants.SVTYPE, 1, VCFHeaderLineType.String, "Variation type"));
metaData.add(new VCFInfoHeaderLine("SVLEN", 1, VCFHeaderLineType.Integer, "Variation Length"));
metaData.add(new VCFInfoHeaderLine(ATT_INTRONS_BOUNDS, VCFHeaderLineCount.UNBOUNDED, VCFHeaderLineType.String, "Introns boundaries"));
metaData.add(new VCFInfoHeaderLine(ATT_INTRONS_SIZES, VCFHeaderLineCount.UNBOUNDED, VCFHeaderLineType.Integer, "Introns sizes"));
metaData.add(new VCFFilterHeaderLine(ATT_NOT_ALL_INTRONS, "Not all introns were found retrocopied"));
for (final String att : ENSEMBL_TRANSCRIPT_ATTS) {
metaData.add(new VCFInfoHeaderLine(att, 1, VCFHeaderLineType.String, "Value for the attribute '" + att + "' in the gtf"));
}
// metaData.add(new VCFFormatHeaderLine(ATT_COUNT_SUPPORTING_READS, 2,VCFHeaderLineType.Integer,"Count supporting reads [intron-left/intron-right]"));
// metaData.add(new VCFInfoHeaderLine(ATT_RETRO_DESC, VCFHeaderLineCount.UNBOUNDED,VCFHeaderLineType.String,
// "Retrocopy attributes: transcript-id|strand|exon-left|exon-left-bases|exon-right-bases|exon-right"));
metaData.add(new VCFInfoHeaderLine(ATT_INTRONS_COUNT, 1, VCFHeaderLineType.Integer, "Number of introns for the Transcript"));
metaData.add(new VCFInfoHeaderLine(ATT_INTRONS_CANDIDATE_COUNT, 1, VCFHeaderLineType.Integer, "Number of introns found retrocopied for the transcript"));
metaData.add(new VCFInfoHeaderLine(ATT_INTRONS_CANDIDATE_FRACTION, 1, VCFHeaderLineType.Float, "Fraction of introns found retrocopied for the transcript"));
metaData.add(new VCFFilterHeaderLine(ATT_NOT_ALL_INTRONS, "Not all introns were found retrocopied"));
metaData.add(new VCFFilterHeaderLine(ATT_KNOWN, "Known RetroGenes. " + (this.knownPath == null ? "" : " Source: " + this.knownPath)));
final VCFHeader header2 = new VCFHeader(header);
metaData.stream().forEach(H -> header2.addMetaDataLine(H));
JVarkitVersion.getInstance().addMetaData(this, header2);
final Allele ref = Allele.create((byte) 'N', true);
final Allele alt = Allele.create("<RETROCOPY>", false);
/* open vcf for writing*/
vcw0 = this.writingVcf.open(this.outputFile);
vcw0.writeHeader(header2);
final ProgressFactory.Watcher<Gene> progress = ProgressFactory.newInstance().logger(LOG).dictionary(dict).build();
for (final Gene gene : genes) {
progress.apply(gene);
final List<VariantContext> variants = new ArrayList<>();
final CloseableIterator<VariantContext> iter2 = vcfFileReader.query(gene.getContig(), gene.getStart(), gene.getEnd());
while (iter2.hasNext()) {
final VariantContext ctx = iter2.next();
// SNV
if (ctx.getStart() == ctx.getEnd())
continue;
StructuralVariantType svType = ctx.getStructuralVariantType();
if (StructuralVariantType.BND.equals(svType))
continue;
if (StructuralVariantType.INS.equals(svType))
continue;
variants.add(ctx);
}
iter2.close();
if (variants.isEmpty())
continue;
for (final Transcript transcript : gene.getTranscripts()) {
if (!transcript.hasIntron())
continue;
if (transcript.getIntronCount() < this.min_intron_count)
continue;
final Counter<String> samples = new Counter<>();
for (final Intron intron : transcript.getIntrons()) {
for (final VariantContext ctx : variants) {
if (!isWithinDistance(intron.getStart(), ctx.getStart()))
continue;
if (!isWithinDistance(intron.getEnd(), ctx.getEnd()))
continue;
if (ctx.hasGenotypes()) {
for (final Genotype g : ctx.getGenotypes()) {
if (g.isNoCall() || g.isHomRef())
continue;
samples.incr(g.getSampleName());
}
} else {
samples.incr("*");
}
}
// end iter2
}
// end intron
final long max_count = samples.stream().mapToLong(E -> E.getValue()).max().orElse(0L);
if (max_count == 0)
continue;
if (this.only_all_introns && max_count != transcript.getIntronCount())
continue;
// ok good candidate
final VariantContextBuilder vcb = new VariantContextBuilder();
vcb.chr(transcript.getContig());
vcb.start(transcript.getStart());
vcb.stop(transcript.getEnd());
switch(this.idKey) {
case gene_name:
final String gn = transcript.getGene().getGeneName();
vcb.id(StringUtils.isBlank(gn) ? transcript.getId() : gn);
break;
case gene_id:
vcb.id(transcript.getGene().getId());
break;
case transcript_id:
vcb.id(transcript.getId());
break;
default:
throw new IllegalStateException();
}
final List<Allele> alleles = Arrays.asList(ref, alt);
// vcb.attribute(VCFConstants.ALLELE_NUMBER_KEY,2);
// vcb.attribute(VCFConstants.ALLELE_COUNT_KEY,1);
// vcb.attribute(VCFConstants.ALLELE_FREQUENCY_KEY,0.5);
vcb.attribute(VCFConstants.SVTYPE, "DEL");
vcb.attribute(VCFConstants.END_KEY, transcript.getEnd());
vcb.attribute("SVLEN", transcript.getLengthOnReference());
vcb.attribute(ATT_INTRONS_BOUNDS, transcript.getIntrons().stream().map(S -> "" + S.getStart() + "-" + S.getEnd()).collect(Collectors.toList()));
vcb.attribute(ATT_INTRONS_SIZES, transcript.getIntrons().stream().mapToInt(S -> S.getLengthOnReference()).toArray());
for (final String att : ENSEMBL_TRANSCRIPT_ATTS) {
final String v = transcript.getProperties().get(att);
if (StringUtils.isBlank(v))
continue;
vcb.attribute(att, v);
}
vcb.alleles(alleles);
boolean pass_filter = true;
// introns sequences
vcb.attribute(ATT_INTRONS_CANDIDATE_COUNT, max_count);
vcb.attribute(ATT_INTRONS_COUNT, transcript.getIntronCount());
vcb.attribute(ATT_INTRONS_CANDIDATE_FRACTION, max_count / (float) transcript.getIntronCount());
if (transcript.getIntronCount() != max_count) {
vcb.filter(ATT_NOT_ALL_INTRONS);
pass_filter = false;
}
if (knownGeneIds.contains(transcript.getGene().getId())) {
vcb.filter(ATT_KNOWN);
pass_filter = false;
}
if (header.hasGenotypingData()) {
final List<Genotype> genotypes = new ArrayList<>();
for (final String sn : header.getSampleNamesInOrder()) {
final List<Allele> gtalleles;
if (samples.count(sn) == 0L) {
gtalleles = Arrays.asList(ref, ref);
} else {
gtalleles = Arrays.asList(ref, alt);
}
final GenotypeBuilder gb = new GenotypeBuilder(sn, gtalleles);
genotypes.add(gb.make());
}
vcb.genotypes(genotypes);
}
if (pass_filter)
vcb.passFilters();
vcw0.add(vcb.make());
}
}
progress.close();
vcw0.close();
vcfFileReader.close();
vcfFileReader = null;
return 0;
} catch (final Exception err) {
LOG.error(err);
return -1;
} finally {
CloserUtil.close(vcfFileReader);
CloserUtil.close(vcw0);
}
}
use of com.github.lindenb.jvarkit.util.bio.structure.Intron in project jvarkit by lindenb.
the class KnownRetroCopy method doVcfToVcf.
@Override
protected int doVcfToVcf(String inputName, VCFIterator iterin, VariantContextWriter out) {
try {
/* load the reference genome */
/* create a contig name converter from the REF */
final Set<String> knownGeneIds;
if (this.knownPath != null) {
try (BufferedReader br = IOUtils.openPathForBufferedReading(this.knownPath)) {
knownGeneIds = br.lines().filter(L -> !StringUtils.isBlank(L)).map(S -> S.trim()).filter(S -> !(S.equals("-") || S.equals(".") || S.startsWith("#"))).collect(Collectors.toSet());
}
} else {
knownGeneIds = Collections.emptySet();
}
// open the sam file
final VCFHeader header = iterin.getHeader();
final SAMSequenceDictionary dict = header.getSequenceDictionary();
final IntervalTreeMap<List<Intron>> intronMap = new IntervalTreeMap<>();
final GtfReader gtfReader = new GtfReader(this.gtfPath);
if (dict != null && !dict.isEmpty())
gtfReader.setContigNameConverter(ContigNameConverter.fromOneDictionary(dict));
gtfReader.getAllGenes().stream().filter(G -> G.getTranscripts().stream().count() > 0L).filter(G -> G.getTranscripts().stream().anyMatch(T -> T.getIntronCount() >= this.min_intron_count)).flatMap(G -> G.getTranscripts().stream()).flatMap(G -> G.getIntrons().stream()).forEach(INTRON -> {
List<Intron> introns = intronMap.get(INTRON);
if (introns == null) {
introns = new ArrayList<>();
intronMap.put(INTRON.toInterval(), introns);
}
introns.add(INTRON);
});
gtfReader.close();
/**
* build vcf header
*/
final VCFHeader header2 = new VCFHeader(header);
header2.addMetaDataLine(new VCFFilterHeaderLine(ATT_FILTER_INTRON, "variant could be a deleted intron from a retrocopy"));
header2.addMetaDataLine(new VCFFilterHeaderLine(ATT_FILTER_KNOWN, "variant could be a deleted intron from a known retrocopy"));
header2.addMetaDataLine(new VCFInfoHeaderLine(ATT_RETROCOPY, VCFHeaderLineCount.UNBOUNDED, VCFHeaderLineType.String, "Identifiers for the retrocopies."));
JVarkitVersion.getInstance().addMetaData(this, header2);
out.writeHeader(header2);
final ProgressFactory.Watcher<VariantContext> progress = ProgressFactory.newInstance().logger(LOG).dictionary(dict).build();
while (iterin.hasNext()) {
final VariantContext ctx = progress.apply(iterin.next());
if (ctx.getStart() == ctx.getEnd()) {
out.add(ctx);
continue;
}
final String svType = ctx.getAttributeAsString(VCFConstants.SVTYPE, "");
if (svType.equals("BND") || svType.equals("INS")) {
out.add(ctx);
continue;
}
boolean known_flag = false;
final Set<String> retrocopy_identifiers = new TreeSet<>();
for (final Intron intron : intronMap.getOverlapping(ctx).stream().flatMap(L -> L.stream()).filter(I -> isWithinDistance(I.getStart(), ctx.getStart())).filter(I -> isWithinDistance(I.getEnd(), ctx.getEnd())).collect(Collectors.toList())) {
if (knownGeneIds.contains(intron.getTranscript().getGene().getId())) {
known_flag = true;
}
retrocopy_identifiers.add(VCFUtils.escapeInfoField(intron.getTranscript().getGene().getId()));
retrocopy_identifiers.add(VCFUtils.escapeInfoField(intron.getTranscript().getId()));
String s = intron.getTranscript().getGene().getProperties().getOrDefault("gene_name", "");
if (!StringUtils.isBlank(s))
retrocopy_identifiers.add(VCFUtils.escapeInfoField(s));
s = intron.getTranscript().getProperties().getOrDefault("transcript_name", "");
if (!StringUtils.isBlank(s))
retrocopy_identifiers.add(VCFUtils.escapeInfoField(s));
}
if (retrocopy_identifiers.isEmpty()) {
out.add(ctx);
continue;
}
final VariantContextBuilder vcb = new VariantContextBuilder(ctx);
vcb.filter(ATT_FILTER_INTRON);
if (known_flag)
vcb.filter(ATT_FILTER_KNOWN);
vcb.attribute(ATT_RETROCOPY, new ArrayList<>(retrocopy_identifiers));
out.add(vcb.make());
}
progress.close();
return 0;
} catch (final Exception err) {
LOG.error(err);
return -1;
} finally {
}
}
Aggregations