use of com.github.lindenb.jvarkit.util.bio.structure.UTR in project jvarkit by lindenb.
the class GtfUpstreamOrf method doWork.
@Override
public int doWork(final List<String> args) {
GtfReader gtfReader = null;
PrintWriter pw = null;
try {
this.indexedFastaSequenceFile = ReferenceSequenceFileFactory.getReferenceSequenceFile(this.faidx);
final SAMSequenceDictionary refDict = SequenceDictionaryUtils.extractRequired(this.indexedFastaSequenceFile);
this.refCtgNameConverter = ContigNameConverter.fromOneDictionary(refDict);
final ContigDictComparator ctgDictComparator = new ContigDictComparator(refDict);
final String input = oneFileOrNull(args);
gtfReader = input == null ? new GtfReader(stdin()) : new GtfReader(input);
gtfReader.setContigNameConverter(this.refCtgNameConverter);
final List<Gene> genes = gtfReader.getAllGenes().stream().filter(G -> G.hasStrand()).sorted((A, B) -> {
int i = ctgDictComparator.compare(A.getContig(), B.getContig());
if (i != 0)
return i;
i = Integer.compare(A.getStart(), B.getStart());
if (i != 0)
return i;
return Integer.compare(A.getEnd(), B.getEnd());
}).collect(Collectors.toList());
gtfReader.close();
gtfReader = null;
pw = super.openPathOrStdoutAsPrintWriter(this.outputFile);
for (final KozakSequence.Strength f : KozakSequence.Strength.values()) {
pw.println("#kozak." + f.name() + "=" + kozakStrengthToScore(f));
}
final String gtfSource = getProgramName().toLowerCase();
for (final SAMSequenceRecord ssr : refDict.getSequences()) {
pw.println("##contig " + ssr.getSequenceName() + ": length:" + ssr.getSequenceLength());
}
pw.println("#" + gtfSource + ":" + JVarkitVersion.getInstance().toString());
if (!StringUtils.isBlank(input)) {
pw.println("#gtf:" + input);
}
final ProgressFactory.Watcher<Gene> progress = ProgressFactory.newInstance().dictionary(refDict).logger(LOG).build();
for (final Gene gene : genes) {
progress.apply(gene);
/* new reference sequence */
if (this.genomicSequence == null || !this.genomicSequence.getChrom().equals(gene.getContig())) {
this.genomicSequence = new GenomicSequence(this.indexedFastaSequenceFile, gene.getContig());
}
final List<RNASequence> rnas = gene.getTranscripts().stream().filter(T -> T.isCoding()).filter(T -> T.hasStrand()).filter(T -> T.hasCodonStartDefined()).filter(T -> T.getTranscriptUTR5().isPresent()).map(T -> new RNASequence(T)).collect(Collectors.toList());
if (rnas.isEmpty())
continue;
final Set<OpenReadingFrame> orfs = rnas.stream().flatMap(R -> R.getUpstreamOpenReadingFrames().stream()).collect(Collectors.toSet());
if (orfs.isEmpty())
continue;
boolean gene_printed = false;
for (final OpenReadingFrame uORF : orfs) {
/* is there any other RNA containing this uORF ?*/
if (rnas.stream().filter(other -> !other.getTranscript().getId().equals(uORF.mRNA.getTranscript().getId())).anyMatch(other -> {
// other must have atg in frame and ATG before the observed one
final int other_atg0 = other.getATG0InRNA();
if (uORF.in_rna_atg0 % 3 != other_atg0 % 3)
return false;
return uORF.in_rna_atg0 >= other_atg0;
}))
continue;
final String transcript_id = uORF.getTranscript().getId() + ".uorf" + (1 + uORF.in_rna_atg0);
if (!gene_printed) {
gene_printed = true;
pw.print(gene.getContig());
pw.print("\t");
// source
pw.print(gtfSource);
pw.print("\t");
pw.print("gene");
pw.print("\t");
// start
pw.print(gene.getStart());
pw.print("\t");
// end
pw.print(gene.getEnd());
pw.print("\t");
// score
pw.print(".");
pw.print("\t");
// strand
pw.print(gene.getStrand());
pw.print("\t");
// phase
pw.print(".");
pw.print("\t");
pw.print(keyvalue("gene_id", gene.getId()));
pw.println();
}
// TRANSCRIPT
final UTR utr_5_prime = uORF.getTranscript().getTranscriptUTR5().get();
pw.print(gene.getContig());
pw.print("\t");
pw.print(gtfSource);
pw.print("\t");
pw.print("transcript");
pw.print("\t");
if (gene.isPositiveStrand()) {
pw.print(uORF.mRNA.mrnaIndex0ToGenomic0[uORF.in_rna_atg0] + 1);
pw.print("\t");
// pw.print(transcriptSequence.mrnaIndex0ToBase[uORF.in_rna_stop0]+1);
if (uORF.in_rna_stop0 == NPOS) {
pw.print(uORF.mRNA.getTranscript().getTxEnd());
} else {
pw.print(uORF.mRNA.mrnaIndex0ToGenomic0[uORF.in_rna_stop0] + 1);
}
} else {
if (uORF.in_rna_stop0 == NPOS) {
pw.print(uORF.mRNA.getTranscript().getTxStart());
} else {
pw.print(uORF.mRNA.mrnaIndex0ToGenomic0[uORF.in_rna_stop0] + 1);
}
pw.print("\t");
pw.print(uORF.mRNA.mrnaIndex0ToGenomic0[uORF.in_rna_atg0] + 1);
}
pw.print("\t");
// score
pw.print(kozakStrengthToScore(uORF.kozak.getStrength()));
pw.print("\t");
// strand
pw.print(gene.getStrand());
pw.print("\t");
// phase
pw.print("0");
pw.print("\t");
pw.print(keyvalue("gene_id", gene.getId()));
pw.print(keyvalue("transcript_id", transcript_id));
pw.print(keyvalue("transcript_biotype", "uORF"));
pw.print(keyvalue("kozak-seq", uORF.kozak.getString()));
pw.print(keyvalue("kozak-strength", uORF.kozak.getStrength()));
pw.print(keyvalue("translation", uORF.peptide));
pw.print(keyvalue("uORF-atg-in-frame-with-transcript-atg", uORF.uorf_atg_in_frame));
pw.print(keyvalue("utr", utr_5_prime.toString() + " " + utr_5_prime.getStart() + "-" + utr_5_prime.getEnd()));
pw.println();
// Exon
for (final Exon exon : uORF.getTranscript().getExons()) {
pw.print(exon.getContig());
pw.print("\t");
pw.print(gtfSource);
pw.print("\t");
pw.print("exon");
pw.print("\t");
pw.print(exon.getStart());
pw.print("\t");
pw.print(exon.getEnd());
pw.print("\t");
// score
pw.print(kozakStrengthToScore(uORF.kozak.getStrength()));
pw.print("\t");
// strand
pw.print(exon.getStrand());
pw.print("\t");
// phase
pw.print(0);
pw.print("\t");
pw.print(keyvalue("gene_id", gene.getId()));
pw.print(keyvalue("transcript_id", transcript_id));
pw.println();
}
final List<Interval> startBlocks = uORF.mRNA.getCodonBlocks(uORF.in_rna_atg0, uORF.in_rna_atg0 + 1, uORF.in_rna_atg0 + 2);
final List<Interval> stopBlocks = uORF.in_rna_stop0 != NPOS ? uORF.mRNA.getCodonBlocks(uORF.in_rna_stop0, uORF.in_rna_stop0 + 1, uORF.in_rna_stop0 + 2) : Collections.emptyList();
// CDS
if (!stopBlocks.isEmpty()) {
final int cdsStart = startBlocks.stream().mapToInt(B -> B.getStart()).min().orElseThrow(IllegalStateException::new);
final int cdsEnd = stopBlocks.stream().mapToInt(B -> B.getEnd()).max().orElseThrow(IllegalStateException::new);
for (final Exon exon : uORF.getTranscript().getExons()) {
if (exon.getEnd() < cdsStart)
continue;
if (exon.getStart() > cdsEnd)
break;
pw.print(exon.getContig());
pw.print("\t");
pw.print(gtfSource);
pw.print("\t");
pw.print("CDS");
pw.print("\t");
pw.print(Math.max(cdsStart, exon.getStart()));
pw.print("\t");
pw.print(Math.min(cdsEnd, exon.getEnd()));
pw.print("\t");
// score
pw.print(kozakStrengthToScore(uORF.kozak.getStrength()));
pw.print("\t");
// strand
pw.print(exon.getStrand());
pw.print("\t");
// phase
pw.print(uORF.getFrameAt(Math.max(cdsStart, exon.getStart())));
pw.print("\t");
pw.print(keyvalue("gene_id", gene.getId()));
pw.print(keyvalue("transcript_id", transcript_id));
pw.println();
}
}
// CODON START
for (final Interval startc : startBlocks) {
PARANOID.assertLe(startc.getStart(), startc.getEnd());
pw.print(startc.getContig());
pw.print("\t");
pw.print(gtfSource);
pw.print("\t");
pw.print("start_codon");
pw.print("\t");
pw.print(startc.getStart());
pw.print("\t");
pw.print(startc.getEnd());
pw.print("\t");
// score
pw.print(kozakStrengthToScore(uORF.kozak.getStrength()));
pw.print("\t");
// strand
pw.print(gene.getStrand());
pw.print("\t");
// phase
pw.print(uORF.getFrameAt(startc.getStart()));
pw.print("\t");
pw.print(keyvalue("gene_id", gene.getId()));
pw.print(keyvalue("transcript_id", transcript_id));
pw.print(keyvalue("distance-mrna-atg", uORF.mRNA.getATG0InRNA() - uORF.in_rna_atg0));
pw.print(keyvalue("pos0-in-mrna", uORF.in_rna_atg0));
pw.print(keyvalue("spliced", startBlocks.size() > 1));
pw.println();
}
// CODON END
for (final Interval stopc : stopBlocks) /* might be empty */
{
PARANOID.assertLe(stopc.getStart(), stopc.getEnd());
pw.print(stopc.getContig());
pw.print("\t");
pw.print(gtfSource);
pw.print("\t");
pw.print("stop_codon");
pw.print("\t");
pw.print(stopc.getStart());
pw.print("\t");
pw.print(stopc.getEnd());
pw.print("\t");
// score
pw.print(kozakStrengthToScore(uORF.kozak.getStrength()));
pw.print("\t");
// strand
pw.print(gene.getStrand());
pw.print("\t");
// phase
pw.print(uORF.getFrameAt(stopc.getStart()));
pw.print("\t");
pw.print(keyvalue("gene_id", gene.getId()));
pw.print(keyvalue("transcript_id", transcript_id));
pw.print(keyvalue("spliced", stopBlocks.size() > 1));
pw.println();
}
}
}
progress.close();
pw.flush();
pw.close();
return 0;
} catch (final Throwable err) {
LOG.error(err);
return -1;
} finally {
CloserUtil.close(this.indexedFastaSequenceFile);
}
}
use of com.github.lindenb.jvarkit.util.bio.structure.UTR in project jvarkit by lindenb.
the class VCFPredictions method doVcfToVcf.
@Override
protected int doVcfToVcf(String inputName, VCFIterator r, VariantContextWriter w) {
try {
this.referenceGenome = ReferenceSequenceFileFactory.getReferenceSequenceFile(this.faidxPath);
final SAMSequenceDictionary dict = SequenceDictionaryUtils.extractRequired(this.referenceGenome);
final ContigNameConverter contigNameConverter = ContigNameConverter.fromOneDictionary(dict);
loadGtf(dict);
final VCFHeader header = r.getHeader();
final VCFHeader h2 = new VCFHeader(header);
JVarkitVersion.getInstance().addMetaData(this, h2);
switch(this.outputSyntax) {
case Vep:
{
h2.addMetaDataLine(new VCFInfoHeaderLine("CSQ", VCFHeaderLineCount.UNBOUNDED, VCFHeaderLineType.String, "Consequence type as predicted by VEP" + ". Format: Allele|Feature|Feature_type|Consequence|CDS_position|Protein_position|Amino_acids|Codons"));
break;
}
case SnpEff:
{
h2.addMetaDataLine(new VCFInfoHeaderLine("ANN", VCFHeaderLineCount.UNBOUNDED, VCFHeaderLineType.String, "Functional annotations: 'Allele | Annotation | Annotation_Impact | Gene_Name | Gene_ID | Feature_Type | Feature_ID | Transcript_BioType | Rank | HGVS.c | HGVS.p | cDNA.pos / cDNA.length | CDS.pos / CDS.length | AA.pos / AA.length | Distance | ERRORS / WARNINGS / INFO'"));
break;
}
default:
{
final StringBuilder format = new StringBuilder();
for (FORMAT1 f : FORMAT1.values()) {
if (format.length() > 0)
format.append("|");
format.append(f.name());
}
h2.addMetaDataLine(new VCFInfoHeaderLine(TAG, VCFHeaderLineCount.UNBOUNDED, VCFHeaderLineType.String, "Prediction from " + getClass().getSimpleName() + ". Format: " + format));
break;
}
}
w.writeHeader(h2);
final RNASequenceFactory rnaSeqFactory = new RNASequenceFactory();
rnaSeqFactory.setContigToGenomicSequence(S -> getGenomicSequence(S));
while (r.hasNext()) {
final VariantContext ctx = r.next();
final String normalizedContig = contigNameConverter.apply(ctx.getContig());
if (StringUtil.isBlank(normalizedContig)) {
w.add(ctx);
continue;
}
final List<Transcript> transcripts = this.transcriptTreeMap.getOverlapping(new SimpleInterval(normalizedContig, ctx.getStart(), ctx.getEnd())).stream().flatMap(L -> L.stream()).collect(Collectors.toList());
final List<Annotation> all_annotations = new ArrayList<>();
final List<Allele> alternateAlleles;
if (ctx.getNAlleles() <= 1) {
// not a variant, just REF
alternateAlleles = Arrays.asList(Allele.NO_CALL);
} else {
alternateAlleles = ctx.getAlternateAlleles();
}
for (final Allele altAllele : alternateAlleles) {
if (altAllele.isReference() || altAllele.equals(Allele.SPAN_DEL) || altAllele.equals(Allele.NON_REF_ALLELE))
continue;
/* intergenic ====================================================== */
if (transcripts.isEmpty()) {
Transcript leftGene = null;
String leftId = "";
String leftName = "";
for (Iterator<Transcript> iter = this.transcriptTreeMap.getOverlapping(new SimpleInterval(normalizedContig, 1, ctx.getStart())).stream().flatMap(L -> L.stream()).iterator(); iter.hasNext(); ) {
final Transcript t = iter.next();
if (leftGene == null || leftGene.getEnd() < t.getEnd()) {
leftGene = t;
leftId = t.getGene().getId();
leftName = t.getGene().getGeneName();
}
}
Transcript rightGene = null;
String rightId = "";
String rightName = "";
for (Iterator<Transcript> iter = this.transcriptTreeMap.getOverlapping(new SimpleInterval(normalizedContig, ctx.getEnd(), dict.getSequence(normalizedContig).getSequenceLength())).stream().flatMap(L -> L.stream()).iterator(); iter.hasNext(); ) {
final Transcript t = iter.next();
if (rightGene == null || t.getStart() < rightGene.getStart()) {
rightGene = t;
rightId = t.getGene().getId();
rightName = t.getGene().getGeneName();
}
}
// intergenic
final Annotation annot = new Annotation(altAllele);
annot.seqont.add("intergenic");
annot.geneId = leftId + "-" + rightId;
annot.geneName = leftName + "-" + rightName;
all_annotations.add(annot);
} else {
for (final Transcript transcript : transcripts) {
final Annotation annotation = new Annotation(altAllele, transcript);
all_annotations.add(annotation);
if (!transcript.overlaps(ctx)) {
if (((ctx.getEnd() < transcript.getStart() && transcript.isNegativeStrand()) || (ctx.getStart() > transcript.getEnd() && transcript.isPositiveStrand()))) {
if (ctx.withinDistanceOf(transcript, 500)) {
annotation.seqont.add("500B_downstream_variant");
} else if (ctx.withinDistanceOf(transcript, 2_000)) {
annotation.seqont.add("2KB_downstream_variant");
}
} else if (((ctx.getEnd() < transcript.getStart() && transcript.isPositiveStrand()) || (ctx.getStart() > transcript.getEnd() && transcript.isNegativeStrand()))) {
if (ctx.withinDistanceOf(transcript, 2_000)) {
annotation.seqont.add("2KB_upstream_variant");
} else if (ctx.withinDistanceOf(transcript, 5_000)) {
annotation.seqont.add("5KB_upstream_variant");
}
}
continue;
}
if (CoordMath.encloses(ctx.getStart(), ctx.getEnd(), transcript.getStart(), transcript.getEnd())) {
// TODO can be inversion ,etc...
annotation.seqont.add("transcript_ablation");
continue;
}
for (int side = 0; side < 2; ++side) {
final Optional<UTR> opt_utr = (side == 0 ? transcript.getTranscriptUTR5() : transcript.getTranscriptUTR3());
if (!opt_utr.isPresent())
continue;
final UTR utr = opt_utr.get();
if (CoordMath.overlaps(utr.getStart(), utr.getEnd(), ctx.getStart(), ctx.getEnd())) {
annotation.seqont.add(side == 0 ? "5_prime_UTR_variant" : "3_prime_UTR_variant");
}
}
for (int side = 0; side < 2; ++side) {
final Optional<? extends ExonOrIntron> opt_ex;
if (side == 0) {
opt_ex = transcript.getExons().stream().filter(E -> E.overlaps(ctx)).findFirst();
} else {
opt_ex = transcript.getIntrons().stream().filter(E -> E.overlaps(ctx)).findFirst();
}
if (!opt_ex.isPresent())
continue;
final ExonOrIntron ei = opt_ex.get();
if (side == 0) {
if (transcript.isNonCoding())
annotation.seqont.add("non_coding_transcript_exon_variant");
} else {
if (transcript.isNonCoding())
annotation.seqont.add("non_coding_transcript_intron_variant");
annotation.seqont.add("intron");
}
if (ctx.getStart() == ctx.getEnd() && ei.isSplicing(ctx.getStart())) {
if (ei.isSplicingAcceptor(ctx.getStart())) {
// SPLICING_ACCEPTOR
annotation.seqont.add("splice_acceptor");
} else if (ei.isSplicingDonor(ctx.getStart())) {
// SPLICING_DONOR
annotation.seqont.add("splice_donor");
} else // ??
{
annotation.seqont.add("splicing_variant");
}
}
}
final StructuralVariantType svType = ctx.getStructuralVariantType();
if (svType != null) {
continue;
}
if (transcript.isNonCoding()) {
// TODO
annotation.seqont.add("non_coding_transcript_variant");
continue;
}
RNASequence cDNA = this.transcriptId2cdna.get(transcript.getId());
if (cDNA == null) {
cDNA = rnaSeqFactory.getCodingRNA(transcript);
this.transcriptId2cdna.put(transcript.getId(), cDNA);
}
final OptionalInt opt_pos_cdna0 = cDNA.convertGenomic0ToRnaIndex0(ctx.getStart() - 1);
if (!opt_pos_cdna0.isPresent())
continue;
final int pos_cdna0 = opt_pos_cdna0.getAsInt();
final int pos_aa = pos_cdna0 / 3;
final GeneticCode geneticCode = GeneticCode.getStandard();
if (AcidNucleics.isATGC(altAllele.getBaseString())) {
String bases = altAllele.getBaseString().toUpperCase();
if (transcript.isNegativeStrand()) {
bases = AcidNucleics.reverseComplement(bases);
}
final MutedSequence mutRNA = new MutedSequence(cDNA, pos_cdna0, ctx.getReference().length(), bases);
final PeptideSequence<CharSequence> wildProt = PeptideSequence.of(cDNA, geneticCode);
final PeptideSequence<CharSequence> mutProt = PeptideSequence.of(mutRNA, geneticCode);
final int mod = pos_cdna0 % 3;
annotation.wildCodon = ("" + cDNA.charAt(pos_cdna0 - mod + 0) + cDNA.charAt(pos_cdna0 - mod + 1) + cDNA.charAt(pos_cdna0 - mod + 2));
annotation.mutCodon = ("" + mutRNA.charAt(pos_cdna0 - mod + 0) + mutRNA.charAt(pos_cdna0 - mod + 1) + mutRNA.charAt(pos_cdna0 - mod + 2));
annotation.position_protein = (pos_aa + 1);
annotation.wildAA = String.valueOf(wildProt.charAt(pos_aa));
annotation.mutAA = (String.valueOf(mutProt.charAt(pos_aa)));
if (isStop(wildProt.charAt(pos_aa)) && !isStop(mutProt.charAt(pos_aa))) {
annotation.seqont.add("stop_lost");
} else if (!isStop(wildProt.charAt(pos_aa)) && isStop(mutProt.charAt(pos_aa))) {
annotation.seqont.add("stop_gained");
} else if (wildProt.charAt(pos_aa) == mutProt.charAt(pos_aa)) {
annotation.seqont.add("synonymous");
} else {
annotation.seqont.add("missense_variant");
}
}
}
}
}
final Set<String> info = new HashSet<String>(all_annotations.size());
for (final Annotation a : all_annotations) {
info.add(a.toString());
}
final VariantContextBuilder vb = new VariantContextBuilder(ctx);
final String thetag;
switch(this.outputSyntax) {
case Vep:
thetag = "CSQ";
break;
case SnpEff:
thetag = "ANN";
break;
default:
thetag = TAG;
break;
}
vb.attribute(thetag, info.toArray());
w.add(vb.make());
}
return 0;
} catch (final Throwable err) {
LOG.error(err);
return -1;
} finally {
CloserUtil.close(w);
CloserUtil.close(r);
CloserUtil.close(this.referenceGenome);
}
}
use of com.github.lindenb.jvarkit.util.bio.structure.UTR in project jvarkit by lindenb.
the class VcfBurdenGtf method runBurden.
@Override
protected void runBurden(PrintWriter pw, VCFReader vcfReader, VariantContextWriter vcw) throws IOException {
final SAMSequenceDictionary vcfDict = SequenceDictionaryUtils.extractRequired(vcfReader.getHeader());
final List<Gene> all_genes;
try (GtfReader gtfReader = new GtfReader(this.gtfFile)) {
gtfReader.setContigNameConverter(ContigNameConverter.fromOneDictionary(vcfDict));
all_genes = gtfReader.getAllGenes().stream().filter(G -> StringUtil.isBlank(this.intergenic_contig) || this.intergenic_contig.equals("*") || this.intergenic_contig.equals(G.getContig())).sorted(new ContigDictComparator(vcfDict).createLocatableComparator()).collect(Collectors.toCollection(ArrayList::new));
}
pw.print("#chrom");
pw.print("\t");
pw.print("start0");
pw.print("\t");
pw.print("end");
pw.print("\t");
pw.print("name");
pw.print("\t");
pw.print("length");
pw.print("\t");
pw.print("gene");
pw.print("\t");
pw.print("type");
pw.print("\t");
pw.print("strand");
pw.print("\t");
pw.print("transcript");
pw.print("\t");
pw.print("gene-id");
pw.print("\t");
pw.print("intervals");
pw.print("\t");
pw.print("p-value");
pw.print("\t");
pw.print("affected_alt");
pw.print("\t");
pw.print("affected_hom");
pw.print("\t");
pw.print("unaffected_alt");
pw.print("\t");
pw.print("unaffected_hom");
pw.print("\t");
pw.print("variants.count");
pw.println();
final List<SimpleInterval> all_intergenic = new ArrayList<>();
if (!StringUtil.isBlank(this.intergenic_contig)) {
for (final SAMSequenceRecord ssr : vcfDict.getSequences()) {
if (!(this.intergenic_contig.equals("*") || this.intergenic_contig.equals(ssr.getSequenceName())))
continue;
final BitSet filled = new BitSet(ssr.getSequenceLength() + 2);
all_genes.stream().filter(G -> G.getContig().equals(ssr.getSequenceName())).forEach(G -> filled.set(G.getStart(), 1 + /* bit set is 0 based */
Math.min(G.getEnd(), ssr.getSequenceLength())));
int i = 1;
while (i < ssr.getSequenceLength()) {
if (filled.get(i)) {
i++;
continue;
}
int j = i;
while (j < ssr.getSequenceLength() && !filled.get(j)) {
j++;
}
all_intergenic.add(new SimpleInterval(ssr.getSequenceName(), i, j));
i = j + 1;
}
all_genes.removeIf(G -> G.getContig().equals(ssr.getSequenceName()));
}
all_genes.clear();
}
final ProgressFactory.Watcher<Gene> progress = ProgressFactory.newInstance().logger(LOG).dictionary(vcfDict).build();
/* run genes */
for (final Gene gene : all_genes) {
progress.apply(gene);
final IntervalTree<VariantContext> intervalTree = new IntervalTree<>();
vcfReader.query(gene).stream().filter(V -> accept(V)).forEach(V -> intervalTree.put(V.getStart(), V.getEnd(), V));
if (intervalTree.size() == 0)
continue;
for (final Transcript transcript : gene.getTranscripts()) {
final List<SubPartOfTranscript> parts = new ArrayList<>();
parts.addAll(transcript.getExons().stream().map(R -> new SubPartOfTranscript(R)).collect(Collectors.toList()));
parts.addAll(transcript.getIntrons().stream().map(R -> new SubPartOfTranscript(R)).collect(Collectors.toList()));
final int intron_window_size = 1000;
final int intron_window_shift = 500;
for (final Intron intron : transcript.getIntrons()) {
if (intron.getLengthOnReference() <= intron_window_size)
continue;
int start_pos = intron.getStart();
while (start_pos + intron_window_size <= intron.getEnd()) {
int xend = Math.min(intron.getEnd(), start_pos + intron_window_size - 1);
int xstart = xend - intron_window_size - 1;
parts.add(new SubPartOfTranscript(transcript, intron.getName() + ".Sliding", Collections.singletonList(new SimpleInterval(intron.getContig(), xstart, xend))));
start_pos += intron_window_shift;
}
}
for (final UTR utr : transcript.getUTRs()) {
parts.add(new SubPartOfTranscript(transcript, utr.getName(), utr.getIntervals()));
}
if (transcript.getExonCount() > 1) {
parts.add(new SubPartOfTranscript(transcript, "AllExons", transcript.getExons().stream().map(E -> E.toInterval()).collect(Collectors.toList())));
}
if (transcript.hasCodonStartDefined() && transcript.hasCodonStopDefined() && transcript.getAllCds().size() > 1) {
parts.add(new SubPartOfTranscript(transcript, "AllCds", transcript.getAllCds().stream().map(E -> E.toInterval()).collect(Collectors.toList())));
}
final int L = transcript.getTranscriptLength();
final int[] index2genomic = new int[L];
int pos = 0;
for (final Exon exon : transcript.getExons()) {
for (int i = exon.getStart(); i <= exon.getEnd(); i++) {
index2genomic[pos] = i;
pos++;
}
}
final int window_size = 200;
final int window_shift = 100;
int array_index = 0;
while (array_index < index2genomic.length) {
final List<Locatable> intervals = new ArrayList<>();
int prev_pos = -1;
int start_pos = index2genomic[array_index];
int i = 0;
while (i < window_size && array_index + i < index2genomic.length) {
final int curr_pos = index2genomic[array_index + i];
if (i > 0 && prev_pos + 1 != curr_pos) {
intervals.add(new SimpleInterval(transcript.getContig(), start_pos, prev_pos));
start_pos = curr_pos;
}
prev_pos = curr_pos;
i++;
}
intervals.add(new SimpleInterval(transcript.getContig(), start_pos, prev_pos));
parts.add(new SubPartOfTranscript(transcript, "Sliding", intervals));
array_index += window_shift;
}
for (final SubPartOfTranscript part : parts) {
final List<VariantContext> variants = new ArrayList<>();
for (final Locatable loc : part.intervals) {
Iterator<IntervalTree.Node<VariantContext>> iter = intervalTree.overlappers(loc.getStart(), loc.getEnd());
while (iter.hasNext()) variants.add(iter.next().getValue());
}
if (variants.isEmpty())
continue;
final FisherResult fisher = runFisher(variants);
if (fisher.p_value > this.fisherTreshold)
continue;
if (vcw != null) {
for (final VariantContext ctx : variants) {
vcw.add(new VariantContextBuilder(ctx).attribute(BURDEN_KEY, VCFUtils.escapeInfoField(part.label)).make());
}
}
pw.print(part.getContig());
pw.print("\t");
pw.print(part.getStart() - 1);
pw.print("\t");
pw.print(part.getEnd());
pw.print("\t");
pw.print(part.label);
pw.print("\t");
pw.print(part.getLengthOnReference());
pw.print("\t");
pw.print(transcript.getProperties().getOrDefault("gene_name", "."));
pw.print("\t");
pw.print(transcript.getProperties().getOrDefault("transcript_type", "."));
pw.print("\t");
pw.print(gene.getStrand());
pw.print("\t");
pw.print(transcript.getId());
pw.print("\t");
pw.print(gene.getId());
pw.print("\t");
pw.print(part.intervals.stream().map(R -> String.valueOf(R.getStart()) + "-" + R.getEnd()).collect(Collectors.joining(";")));
pw.print("\t");
pw.print(fisher.p_value);
pw.print("\t");
pw.print(fisher.affected_alt);
pw.print("\t");
pw.print(fisher.affected_hom);
pw.print("\t");
pw.print(fisher.unaffected_alt);
pw.print("\t");
pw.print(fisher.unaffected_hom);
pw.print("\t");
pw.print(variants.size());
pw.println();
}
}
}
progress.close();
final ProgressFactory.Watcher<SimpleInterval> progress2 = ProgressFactory.newInstance().logger(LOG).dictionary(vcfDict).build();
/**
* scan intergenics ...
*/
for (final SimpleInterval intergenic : all_intergenic) {
progress2.apply(intergenic);
final int intergenic_window_size = 2000;
final int intergenic_window_shifr = 100;
final List<SimpleInterval> parts = new ArrayList<>();
if (intergenic.getLengthOnReference() <= intergenic_window_size)
continue;
int start_pos = intergenic.getStart();
while (start_pos + intergenic_window_size <= intergenic.getEnd()) {
int xend = Math.min(intergenic.getEnd(), start_pos + intergenic_window_size - 1);
int xstart = xend - intergenic_window_size - 1;
parts.add(new SimpleInterval(intergenic.getContig(), xstart, xend));
start_pos += intergenic_window_shifr;
}
for (final SimpleInterval part : parts) {
final List<VariantContext> variants = vcfReader.query(part).stream().filter(V -> accept(V)).collect(Collectors.toList());
if (variants.isEmpty())
continue;
final FisherResult fisher = runFisher(variants);
if (fisher.p_value > this.fisherTreshold)
continue;
final String label = "intergenic_" + part.getStart() + "_" + part.getEnd();
if (vcw != null) {
for (final VariantContext ctx : variants) {
vcw.add(new VariantContextBuilder(ctx).attribute(BURDEN_KEY, VCFUtils.escapeInfoField(label)).make());
}
}
pw.print(part.getContig());
pw.print("\t");
pw.print(part.getStart() - 1);
pw.print("\t");
pw.print(part.getEnd());
pw.print("\t");
pw.print(label);
pw.print("\t");
pw.print(part.getLengthOnReference());
pw.print("\t");
pw.print(".");
pw.print("\t");
pw.print("intergenic");
pw.print("\t");
pw.print(".");
pw.print("\t");
pw.print(".");
pw.print("\t");
pw.print(".");
pw.print("\t");
pw.print("" + part.getStart() + "-" + part.getEnd());
pw.print("\t");
pw.print(fisher.p_value);
pw.print("\t");
pw.print(fisher.affected_alt);
pw.print("\t");
pw.print(fisher.affected_hom);
pw.print("\t");
pw.print(fisher.unaffected_alt);
pw.print("\t");
pw.print(fisher.unaffected_hom);
pw.print("\t");
pw.print(variants.size());
pw.println();
}
}
progress2.close();
}
Aggregations