use of com.google.common.util.concurrent.ListenableFuture in project druid by druid-io.
the class KafkaSupervisor method generateReport.
private KafkaSupervisorReport generateReport(boolean includeOffsets) {
int numPartitions = 0;
for (Map<Integer, Long> partitionGroup : partitionGroups.values()) {
numPartitions += partitionGroup.size();
}
KafkaSupervisorReport report = new KafkaSupervisorReport(dataSource, DateTime.now(), ioConfig.getTopic(), numPartitions, ioConfig.getReplicas(), ioConfig.getTaskDuration().getMillis() / 1000);
List<TaskReportData> taskReports = Lists.newArrayList();
List<ListenableFuture<Map<Integer, Long>>> futures = Lists.newArrayList();
try {
for (TaskGroup taskGroup : taskGroups.values()) {
for (Map.Entry<String, TaskData> entry : taskGroup.tasks.entrySet()) {
String taskId = entry.getKey();
DateTime startTime = entry.getValue().startTime;
Long remainingSeconds = null;
if (startTime != null) {
remainingSeconds = Math.max(0, ioConfig.getTaskDuration().getMillis() - (DateTime.now().getMillis() - startTime.getMillis())) / 1000;
}
taskReports.add(new TaskReportData(taskId, (includeOffsets ? taskGroup.partitionOffsets : null), null, startTime, remainingSeconds, TaskReportData.TaskType.ACTIVE));
if (includeOffsets) {
futures.add(taskClient.getCurrentOffsetsAsync(taskId, false));
}
}
}
for (List<TaskGroup> taskGroups : pendingCompletionTaskGroups.values()) {
for (TaskGroup taskGroup : taskGroups) {
for (Map.Entry<String, TaskData> entry : taskGroup.tasks.entrySet()) {
String taskId = entry.getKey();
DateTime startTime = entry.getValue().startTime;
Long remainingSeconds = null;
if (taskGroup.completionTimeout != null) {
remainingSeconds = Math.max(0, taskGroup.completionTimeout.getMillis() - DateTime.now().getMillis()) / 1000;
}
taskReports.add(new TaskReportData(taskId, (includeOffsets ? taskGroup.partitionOffsets : null), null, startTime, remainingSeconds, TaskReportData.TaskType.PUBLISHING));
if (includeOffsets) {
futures.add(taskClient.getCurrentOffsetsAsync(taskId, false));
}
}
}
}
List<Map<Integer, Long>> results = Futures.successfulAsList(futures).get(futureTimeoutInSeconds, TimeUnit.SECONDS);
for (int i = 0; i < taskReports.size(); i++) {
TaskReportData reportData = taskReports.get(i);
if (includeOffsets) {
reportData.setCurrentOffsets(results.get(i));
}
report.addTask(reportData);
}
} catch (Exception e) {
log.warn(e, "Failed to generate status report");
}
return report;
}
use of com.google.common.util.concurrent.ListenableFuture in project druid by druid-io.
the class KafkaSupervisor method discoverTasks.
private void discoverTasks() throws ExecutionException, InterruptedException, TimeoutException {
int taskCount = 0;
List<String> futureTaskIds = Lists.newArrayList();
List<ListenableFuture<Boolean>> futures = Lists.newArrayList();
List<Task> tasks = taskStorage.getActiveTasks();
for (Task task : tasks) {
if (!(task instanceof KafkaIndexTask) || !dataSource.equals(task.getDataSource())) {
continue;
}
taskCount++;
final KafkaIndexTask kafkaTask = (KafkaIndexTask) task;
final String taskId = task.getId();
// Determine which task group this task belongs to based on one of the partitions handled by this task. If we
// later determine that this task is actively reading, we will make sure that it matches our current partition
// allocation (getTaskGroupIdForPartition(partition) should return the same value for every partition being read
// by this task) and kill it if it is not compatible. If the task is instead found to be in the publishing
// state, we will permit it to complete even if it doesn't match our current partition allocation to support
// seamless schema migration.
Iterator<Integer> it = kafkaTask.getIOConfig().getStartPartitions().getPartitionOffsetMap().keySet().iterator();
final Integer taskGroupId = (it.hasNext() ? getTaskGroupIdForPartition(it.next()) : null);
if (taskGroupId != null) {
// check to see if we already know about this task, either in [taskGroups] or in [pendingCompletionTaskGroups]
// and if not add it to taskGroups or pendingCompletionTaskGroups (if status = PUBLISHING)
TaskGroup taskGroup = taskGroups.get(taskGroupId);
if (!isTaskInPendingCompletionGroups(taskId) && (taskGroup == null || !taskGroup.tasks.containsKey(taskId))) {
futureTaskIds.add(taskId);
futures.add(Futures.transform(taskClient.getStatusAsync(taskId), new Function<KafkaIndexTask.Status, Boolean>() {
@Override
public Boolean apply(KafkaIndexTask.Status status) {
if (status == KafkaIndexTask.Status.PUBLISHING) {
addDiscoveredTaskToPendingCompletionTaskGroups(taskGroupId, taskId, kafkaTask.getIOConfig().getStartPartitions().getPartitionOffsetMap());
// update partitionGroups with the publishing task's offsets (if they are greater than what is
// existing) so that the next tasks will start reading from where this task left off
Map<Integer, Long> publishingTaskCurrentOffsets = taskClient.getCurrentOffsets(taskId, true);
for (Map.Entry<Integer, Long> entry : publishingTaskCurrentOffsets.entrySet()) {
Integer partition = entry.getKey();
Long offset = entry.getValue();
ConcurrentHashMap<Integer, Long> partitionOffsets = partitionGroups.get(getTaskGroupIdForPartition(partition));
boolean succeeded;
do {
succeeded = true;
Long previousOffset = partitionOffsets.putIfAbsent(partition, offset);
if (previousOffset != null && previousOffset < offset) {
succeeded = partitionOffsets.replace(partition, previousOffset, offset);
}
} while (!succeeded);
}
} else {
for (Integer partition : kafkaTask.getIOConfig().getStartPartitions().getPartitionOffsetMap().keySet()) {
if (!taskGroupId.equals(getTaskGroupIdForPartition(partition))) {
log.warn("Stopping task [%s] which does not match the expected partition allocation", taskId);
try {
stopTask(taskId, false).get(futureTimeoutInSeconds, TimeUnit.SECONDS);
} catch (InterruptedException | ExecutionException | TimeoutException e) {
log.warn(e, "Exception while stopping task");
}
return false;
}
}
if (taskGroups.putIfAbsent(taskGroupId, new TaskGroup(ImmutableMap.copyOf(kafkaTask.getIOConfig().getStartPartitions().getPartitionOffsetMap()), kafkaTask.getIOConfig().getMinimumMessageTime())) == null) {
log.debug("Created new task group [%d]", taskGroupId);
}
if (!isTaskCurrent(taskGroupId, taskId)) {
log.info("Stopping task [%s] which does not match the expected parameters and ingestion spec", taskId);
try {
stopTask(taskId, false).get(futureTimeoutInSeconds, TimeUnit.SECONDS);
} catch (InterruptedException | ExecutionException | TimeoutException e) {
log.warn(e, "Exception while stopping task");
}
return false;
} else {
taskGroups.get(taskGroupId).tasks.putIfAbsent(taskId, new TaskData());
}
}
return true;
}
}, workerExec));
}
}
}
List<Boolean> results = Futures.successfulAsList(futures).get(futureTimeoutInSeconds, TimeUnit.SECONDS);
for (int i = 0; i < results.size(); i++) {
if (results.get(i) == null) {
String taskId = futureTaskIds.get(i);
log.warn("Task [%s] failed to return status, killing task", taskId);
killTask(taskId);
}
}
log.debug("Found [%d] Kafka indexing tasks for dataSource [%s]", taskCount, dataSource);
}
use of com.google.common.util.concurrent.ListenableFuture in project druid by druid-io.
the class KafkaSupervisor method checkTaskDuration.
private void checkTaskDuration() throws InterruptedException, ExecutionException, TimeoutException {
final List<ListenableFuture<Map<Integer, Long>>> futures = Lists.newArrayList();
final List<Integer> futureGroupIds = Lists.newArrayList();
for (Map.Entry<Integer, TaskGroup> entry : taskGroups.entrySet()) {
Integer groupId = entry.getKey();
TaskGroup group = entry.getValue();
// find the longest running task from this group
DateTime earliestTaskStart = DateTime.now();
for (TaskData taskData : group.tasks.values()) {
if (earliestTaskStart.isAfter(taskData.startTime)) {
earliestTaskStart = taskData.startTime;
}
}
// if this task has run longer than the configured duration, signal all tasks in the group to persist
if (earliestTaskStart.plus(ioConfig.getTaskDuration()).isBeforeNow()) {
log.info("Task group [%d] has run for [%s]", groupId, ioConfig.getTaskDuration());
futureGroupIds.add(groupId);
futures.add(signalTasksToFinish(groupId));
}
}
List<Map<Integer, Long>> results = Futures.successfulAsList(futures).get(futureTimeoutInSeconds, TimeUnit.SECONDS);
for (int j = 0; j < results.size(); j++) {
Integer groupId = futureGroupIds.get(j);
TaskGroup group = taskGroups.get(groupId);
Map<Integer, Long> endOffsets = results.get(j);
if (endOffsets != null) {
// set a timeout and put this group in pendingCompletionTaskGroups so that it can be monitored for completion
group.completionTimeout = DateTime.now().plus(ioConfig.getCompletionTimeout());
pendingCompletionTaskGroups.putIfAbsent(groupId, Lists.<TaskGroup>newCopyOnWriteArrayList());
pendingCompletionTaskGroups.get(groupId).add(group);
// set endOffsets as the next startOffsets
for (Map.Entry<Integer, Long> entry : endOffsets.entrySet()) {
partitionGroups.get(groupId).put(entry.getKey(), entry.getValue());
}
} else {
log.warn("All tasks in group [%s] failed to transition to publishing state, killing tasks [%s]", groupId, group.taskIds());
for (String id : group.taskIds()) {
killTask(id);
}
}
// remove this task group from the list of current task groups now that it has been handled
taskGroups.remove(groupId);
}
}
use of com.google.common.util.concurrent.ListenableFuture in project druid by druid-io.
the class KafkaIndexTaskClientTest method testGetStatusAsync.
@Test
public void testGetStatusAsync() throws Exception {
final int numRequests = TEST_IDS.size();
Capture<Request> captured = Capture.newInstance(CaptureType.ALL);
expect(responseHolder.getStatus()).andReturn(HttpResponseStatus.OK).anyTimes();
expect(responseHolder.getContent()).andReturn("\"READING\"").anyTimes();
expect(httpClient.go(capture(captured), anyObject(FullResponseHandler.class), eq(TEST_HTTP_TIMEOUT))).andReturn(Futures.immediateFuture(responseHolder)).times(numRequests);
replayAll();
List<URL> expectedUrls = Lists.newArrayList();
List<ListenableFuture<KafkaIndexTask.Status>> futures = Lists.newArrayList();
for (int i = 0; i < numRequests; i++) {
expectedUrls.add(new URL(String.format(URL_FORMATTER, TEST_HOST, TEST_PORT, TEST_IDS.get(i), "status")));
futures.add(client.getStatusAsync(TEST_IDS.get(i)));
}
List<KafkaIndexTask.Status> responses = Futures.allAsList(futures).get();
verifyAll();
List<Request> requests = captured.getValues();
Assert.assertEquals(numRequests, requests.size());
Assert.assertEquals(numRequests, responses.size());
for (int i = 0; i < numRequests; i++) {
Assert.assertEquals(HttpMethod.GET, requests.get(i).getMethod());
Assert.assertTrue("unexpectedURL", expectedUrls.contains(requests.get(i).getUrl()));
Assert.assertEquals(KafkaIndexTask.Status.READING, responses.get(i));
}
}
use of com.google.common.util.concurrent.ListenableFuture in project druid by druid-io.
the class CachingClusteredClient method run.
@Override
public Sequence<T> run(final Query<T> query, final Map<String, Object> responseContext) {
final QueryToolChest<T, Query<T>> toolChest = warehouse.getToolChest(query);
final CacheStrategy<T, Object, Query<T>> strategy = toolChest.getCacheStrategy(query);
final Map<DruidServer, List<SegmentDescriptor>> serverSegments = Maps.newTreeMap();
final List<Pair<Interval, byte[]>> cachedResults = Lists.newArrayList();
final Map<String, CachePopulator> cachePopulatorMap = Maps.newHashMap();
final boolean useCache = CacheUtil.useCacheOnBrokers(query, strategy, cacheConfig);
final boolean populateCache = CacheUtil.populateCacheOnBrokers(query, strategy, cacheConfig);
final boolean isBySegment = BaseQuery.getContextBySegment(query, false);
final ImmutableMap.Builder<String, Object> contextBuilder = new ImmutableMap.Builder<>();
final int priority = BaseQuery.getContextPriority(query, 0);
contextBuilder.put("priority", priority);
if (populateCache) {
// prevent down-stream nodes from caching results as well if we are populating the cache
contextBuilder.put(CacheConfig.POPULATE_CACHE, false);
contextBuilder.put("bySegment", true);
}
TimelineLookup<String, ServerSelector> timeline = serverView.getTimeline(query.getDataSource());
if (timeline == null) {
return Sequences.empty();
}
// build set of segments to query
Set<Pair<ServerSelector, SegmentDescriptor>> segments = Sets.newLinkedHashSet();
List<TimelineObjectHolder<String, ServerSelector>> serversLookup = Lists.newLinkedList();
// Note that enabling this leads to putting uncovered intervals information in the response headers
// and might blow up in some cases https://github.com/druid-io/druid/issues/2108
int uncoveredIntervalsLimit = BaseQuery.getContextUncoveredIntervalsLimit(query, 0);
if (uncoveredIntervalsLimit > 0) {
List<Interval> uncoveredIntervals = Lists.newArrayListWithCapacity(uncoveredIntervalsLimit);
boolean uncoveredIntervalsOverflowed = false;
for (Interval interval : query.getIntervals()) {
Iterable<TimelineObjectHolder<String, ServerSelector>> lookup = timeline.lookup(interval);
long startMillis = interval.getStartMillis();
long endMillis = interval.getEndMillis();
for (TimelineObjectHolder<String, ServerSelector> holder : lookup) {
Interval holderInterval = holder.getInterval();
long intervalStart = holderInterval.getStartMillis();
if (!uncoveredIntervalsOverflowed && startMillis != intervalStart) {
if (uncoveredIntervalsLimit > uncoveredIntervals.size()) {
uncoveredIntervals.add(new Interval(startMillis, intervalStart));
} else {
uncoveredIntervalsOverflowed = true;
}
}
startMillis = holderInterval.getEndMillis();
serversLookup.add(holder);
}
if (!uncoveredIntervalsOverflowed && startMillis < endMillis) {
if (uncoveredIntervalsLimit > uncoveredIntervals.size()) {
uncoveredIntervals.add(new Interval(startMillis, endMillis));
} else {
uncoveredIntervalsOverflowed = true;
}
}
}
if (!uncoveredIntervals.isEmpty()) {
// This returns intervals for which NO segment is present.
// Which is not necessarily an indication that the data doesn't exist or is
// incomplete. The data could exist and just not be loaded yet. In either
// case, though, this query will not include any data from the identified intervals.
responseContext.put("uncoveredIntervals", uncoveredIntervals);
responseContext.put("uncoveredIntervalsOverflowed", uncoveredIntervalsOverflowed);
}
} else {
for (Interval interval : query.getIntervals()) {
Iterables.addAll(serversLookup, timeline.lookup(interval));
}
}
// Let tool chest filter out unneeded segments
final List<TimelineObjectHolder<String, ServerSelector>> filteredServersLookup = toolChest.filterSegments(query, serversLookup);
Map<String, Optional<RangeSet<String>>> dimensionRangeCache = Maps.newHashMap();
// Filter unneeded chunks based on partition dimension
for (TimelineObjectHolder<String, ServerSelector> holder : filteredServersLookup) {
final Set<PartitionChunk<ServerSelector>> filteredChunks = DimFilterUtils.filterShards(query.getFilter(), holder.getObject(), new Function<PartitionChunk<ServerSelector>, ShardSpec>() {
@Override
public ShardSpec apply(PartitionChunk<ServerSelector> input) {
return input.getObject().getSegment().getShardSpec();
}
}, dimensionRangeCache);
for (PartitionChunk<ServerSelector> chunk : filteredChunks) {
ServerSelector selector = chunk.getObject();
final SegmentDescriptor descriptor = new SegmentDescriptor(holder.getInterval(), holder.getVersion(), chunk.getChunkNumber());
segments.add(Pair.of(selector, descriptor));
}
}
final byte[] queryCacheKey;
if (// implies strategy != null
(populateCache || useCache) && // explicit bySegment queries are never cached
!isBySegment) {
queryCacheKey = strategy.computeCacheKey(query);
} else {
queryCacheKey = null;
}
if (query.getContext().get(QueryResource.HDR_IF_NONE_MATCH) != null) {
String prevEtag = (String) query.getContext().get(QueryResource.HDR_IF_NONE_MATCH);
//compute current Etag
Hasher hasher = Hashing.sha1().newHasher();
boolean hasOnlyHistoricalSegments = true;
for (Pair<ServerSelector, SegmentDescriptor> p : segments) {
if (!p.lhs.pick().getServer().isAssignable()) {
hasOnlyHistoricalSegments = false;
break;
}
hasher.putString(p.lhs.getSegment().getIdentifier(), Charsets.UTF_8);
}
if (hasOnlyHistoricalSegments) {
hasher.putBytes(queryCacheKey == null ? strategy.computeCacheKey(query) : queryCacheKey);
String currEtag = Base64.encodeBase64String(hasher.hash().asBytes());
responseContext.put(QueryResource.HDR_ETAG, currEtag);
if (prevEtag.equals(currEtag)) {
return Sequences.empty();
}
}
}
if (queryCacheKey != null) {
// cachKeys map must preserve segment ordering, in order for shards to always be combined in the same order
Map<Pair<ServerSelector, SegmentDescriptor>, Cache.NamedKey> cacheKeys = Maps.newLinkedHashMap();
for (Pair<ServerSelector, SegmentDescriptor> segment : segments) {
final Cache.NamedKey segmentCacheKey = CacheUtil.computeSegmentCacheKey(segment.lhs.getSegment().getIdentifier(), segment.rhs, queryCacheKey);
cacheKeys.put(segment, segmentCacheKey);
}
// Pull cached segments from cache and remove from set of segments to query
final Map<Cache.NamedKey, byte[]> cachedValues;
if (useCache) {
cachedValues = cache.getBulk(Iterables.limit(cacheKeys.values(), cacheConfig.getCacheBulkMergeLimit()));
} else {
cachedValues = ImmutableMap.of();
}
for (Map.Entry<Pair<ServerSelector, SegmentDescriptor>, Cache.NamedKey> entry : cacheKeys.entrySet()) {
Pair<ServerSelector, SegmentDescriptor> segment = entry.getKey();
Cache.NamedKey segmentCacheKey = entry.getValue();
final Interval segmentQueryInterval = segment.rhs.getInterval();
final byte[] cachedValue = cachedValues.get(segmentCacheKey);
if (cachedValue != null) {
// remove cached segment from set of segments to query
segments.remove(segment);
cachedResults.add(Pair.of(segmentQueryInterval, cachedValue));
} else if (populateCache) {
// otherwise, if populating cache, add segment to list of segments to cache
final String segmentIdentifier = segment.lhs.getSegment().getIdentifier();
cachePopulatorMap.put(String.format("%s_%s", segmentIdentifier, segmentQueryInterval), new CachePopulator(cache, objectMapper, segmentCacheKey));
}
}
}
// Compile list of all segments not pulled from cache
for (Pair<ServerSelector, SegmentDescriptor> segment : segments) {
final QueryableDruidServer queryableDruidServer = segment.lhs.pick();
if (queryableDruidServer == null) {
log.makeAlert("No servers found for SegmentDescriptor[%s] for DataSource[%s]?! How can this be?!", segment.rhs, query.getDataSource()).emit();
} else {
final DruidServer server = queryableDruidServer.getServer();
List<SegmentDescriptor> descriptors = serverSegments.get(server);
if (descriptors == null) {
descriptors = Lists.newArrayList();
serverSegments.put(server, descriptors);
}
descriptors.add(segment.rhs);
}
}
return new LazySequence<>(new Supplier<Sequence<T>>() {
@Override
public Sequence<T> get() {
ArrayList<Sequence<T>> sequencesByInterval = Lists.newArrayList();
addSequencesFromCache(sequencesByInterval);
addSequencesFromServer(sequencesByInterval);
return mergeCachedAndUncachedSequences(query, sequencesByInterval);
}
private void addSequencesFromCache(ArrayList<Sequence<T>> listOfSequences) {
if (strategy == null) {
return;
}
final Function<Object, T> pullFromCacheFunction = strategy.pullFromCache();
final TypeReference<Object> cacheObjectClazz = strategy.getCacheObjectClazz();
for (Pair<Interval, byte[]> cachedResultPair : cachedResults) {
final byte[] cachedResult = cachedResultPair.rhs;
Sequence<Object> cachedSequence = new BaseSequence<>(new BaseSequence.IteratorMaker<Object, Iterator<Object>>() {
@Override
public Iterator<Object> make() {
try {
if (cachedResult.length == 0) {
return Iterators.emptyIterator();
}
return objectMapper.readValues(objectMapper.getFactory().createParser(cachedResult), cacheObjectClazz);
} catch (IOException e) {
throw Throwables.propagate(e);
}
}
@Override
public void cleanup(Iterator<Object> iterFromMake) {
}
});
listOfSequences.add(Sequences.map(cachedSequence, pullFromCacheFunction));
}
}
private void addSequencesFromServer(ArrayList<Sequence<T>> listOfSequences) {
listOfSequences.ensureCapacity(listOfSequences.size() + serverSegments.size());
final Query<T> rewrittenQuery = query.withOverriddenContext(contextBuilder.build());
// The data gets handled as a Future and parsed in the long Sequence chain in the resultSeqToAdd setter.
for (Map.Entry<DruidServer, List<SegmentDescriptor>> entry : serverSegments.entrySet()) {
final DruidServer server = entry.getKey();
final List<SegmentDescriptor> descriptors = entry.getValue();
final QueryRunner clientQueryable = serverView.getQueryRunner(server);
if (clientQueryable == null) {
log.error("WTF!? server[%s] doesn't have a client Queryable?", server);
continue;
}
final MultipleSpecificSegmentSpec segmentSpec = new MultipleSpecificSegmentSpec(descriptors);
final Sequence<T> resultSeqToAdd;
if (!server.isAssignable() || !populateCache || isBySegment) {
// Direct server queryable
if (!isBySegment) {
resultSeqToAdd = clientQueryable.run(query.withQuerySegmentSpec(segmentSpec), responseContext);
} else {
// bySegment queries need to be de-serialized, see DirectDruidClient.run()
@SuppressWarnings("unchecked") final Query<Result<BySegmentResultValueClass<T>>> bySegmentQuery = (Query<Result<BySegmentResultValueClass<T>>>) ((Query) query);
@SuppressWarnings("unchecked") final Sequence<Result<BySegmentResultValueClass<T>>> resultSequence = clientQueryable.run(bySegmentQuery.withQuerySegmentSpec(segmentSpec), responseContext);
resultSeqToAdd = (Sequence) Sequences.map(resultSequence, new Function<Result<BySegmentResultValueClass<T>>, Result<BySegmentResultValueClass<T>>>() {
@Override
public Result<BySegmentResultValueClass<T>> apply(Result<BySegmentResultValueClass<T>> input) {
final BySegmentResultValueClass<T> bySegmentValue = input.getValue();
return new Result<>(input.getTimestamp(), new BySegmentResultValueClass<T>(Lists.transform(bySegmentValue.getResults(), toolChest.makePreComputeManipulatorFn(query, MetricManipulatorFns.deserializing())), bySegmentValue.getSegmentId(), bySegmentValue.getInterval()));
}
});
}
} else {
// Requires some manipulation on broker side
@SuppressWarnings("unchecked") final Sequence<Result<BySegmentResultValueClass<T>>> runningSequence = clientQueryable.run(rewrittenQuery.withQuerySegmentSpec(segmentSpec), responseContext);
resultSeqToAdd = new MergeSequence(query.getResultOrdering(), Sequences.<Result<BySegmentResultValueClass<T>>, Sequence<T>>map(runningSequence, new Function<Result<BySegmentResultValueClass<T>>, Sequence<T>>() {
private final Function<T, Object> cacheFn = strategy.prepareForCache();
// Acctually do something with the results
@Override
public Sequence<T> apply(Result<BySegmentResultValueClass<T>> input) {
final BySegmentResultValueClass<T> value = input.getValue();
final CachePopulator cachePopulator = cachePopulatorMap.get(String.format("%s_%s", value.getSegmentId(), value.getInterval()));
final Queue<ListenableFuture<Object>> cacheFutures = new ConcurrentLinkedQueue<>();
return Sequences.<T>withEffect(Sequences.<T, T>map(Sequences.<T, T>map(Sequences.<T>simple(value.getResults()), new Function<T, T>() {
@Override
public T apply(final T input) {
if (cachePopulator != null) {
// only compute cache data if populating cache
cacheFutures.add(backgroundExecutorService.submit(new Callable<Object>() {
@Override
public Object call() {
return cacheFn.apply(input);
}
}));
}
return input;
}
}), toolChest.makePreComputeManipulatorFn(// This casting is sub-optimal, but hasn't caused any major problems yet...
(Query) rewrittenQuery, MetricManipulatorFns.deserializing())), new Runnable() {
@Override
public void run() {
if (cachePopulator != null) {
Futures.addCallback(Futures.allAsList(cacheFutures), new FutureCallback<List<Object>>() {
@Override
public void onSuccess(List<Object> cacheData) {
cachePopulator.populate(cacheData);
// Help out GC by making sure all references are gone
cacheFutures.clear();
}
@Override
public void onFailure(Throwable throwable) {
log.error(throwable, "Background caching failed");
}
}, backgroundExecutorService);
}
}
}, MoreExecutors.sameThreadExecutor());
// End withEffect
}
}));
}
listOfSequences.add(resultSeqToAdd);
}
}
});
}
Aggregations