use of com.simiacryptus.mindseye.lang.TensorList in project MindsEye by SimiaCryptus.
the class ScaleMetaLayer method eval.
@Nullable
@Override
public Result eval(@Nonnull final Result... inObj) {
final int itemCnt = inObj[0].getData().length();
Arrays.stream(inObj).forEach(nnResult -> nnResult.addRef());
Arrays.stream(inObj).forEach(x -> x.getData().addRef());
final Tensor[] tensors = IntStream.range(0, itemCnt).mapToObj(dataIndex -> inObj[0].getData().get(dataIndex).mapIndex((v, c) -> v * inObj[1].getData().get(0).get(c))).toArray(i -> new Tensor[i]);
Tensor tensor0 = tensors[0];
tensor0.addRef();
return new Result(TensorArray.wrap(tensors), (@Nonnull final DeltaSet<Layer> buffer, @Nonnull final TensorList data) -> {
if (inObj[0].isAlive()) {
@Nonnull TensorArray tensorArray = TensorArray.wrap(data.stream().map(t -> {
@Nullable Tensor t1 = inObj[1].getData().get(0);
@Nullable Tensor tensor = t.mapIndex((v, c) -> {
return v * t1.get(c);
});
t.freeRef();
t1.freeRef();
return tensor;
}).toArray(i -> new Tensor[i]));
inObj[0].accumulate(buffer, tensorArray);
}
if (inObj[1].isAlive()) {
@Nullable final Tensor passback = tensor0.mapIndex((v, c) -> {
return IntStream.range(0, itemCnt).mapToDouble(i -> data.get(i).get(c) * inObj[0].getData().get(i).get(c)).sum();
});
tensor0.freeRef();
@Nonnull TensorArray tensorArray = TensorArray.wrap(IntStream.range(0, inObj[1].getData().length()).mapToObj(i -> i == 0 ? passback : passback.map(v -> 0)).toArray(i -> new Tensor[i]));
inObj[1].accumulate(buffer, tensorArray);
}
Arrays.stream(inObj).forEach(x -> x.getData().addRef());
}) {
@Override
protected void _free() {
Arrays.stream(inObj).forEach(nnResult -> nnResult.freeRef());
}
@Override
public boolean isAlive() {
return inObj[0].isAlive() || inObj[1].isAlive();
}
};
}
use of com.simiacryptus.mindseye.lang.TensorList in project MindsEye by SimiaCryptus.
the class SimpleActivationLayer method eval.
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
final TensorList indata0 = inObj[0].getData();
final int itemCnt = indata0.length();
assert 0 < itemCnt;
Arrays.stream(inObj).forEach(nnResult -> nnResult.addRef());
Arrays.stream(inObj).forEach(nnResult -> nnResult.getData().addRef());
@Nonnull final Tensor[] inputGradientA = new Tensor[itemCnt];
return new Result(TensorArray.wrap(IntStream.range(0, itemCnt).parallel().mapToObj(dataIndex -> {
@Nullable final Tensor input = indata0.get(dataIndex);
@Nonnull final Tensor output = new Tensor(indata0.getDimensions());
@Nonnull final Tensor inputGradient = new Tensor(input.length());
inputGradientA[dataIndex] = inputGradient;
@Nonnull final double[] results = new double[2];
for (int i = 0; i < input.length(); i++) {
eval(input.getData()[i], results);
inputGradient.set(i, results[1]);
output.set(i, results[0]);
}
input.freeRef();
return output;
}).toArray(i -> new Tensor[i])), (@Nonnull final DeltaSet<Layer> buffer, @Nonnull final TensorList data) -> {
if (inObj[0].isAlive()) {
@Nonnull TensorArray tensorArray = TensorArray.wrap(IntStream.range(0, itemCnt).parallel().mapToObj(dataIndex -> {
@Nonnull final Tensor passback = new Tensor(data.getDimensions());
@Nullable final double[] gradientData = inputGradientA[dataIndex].getData();
@Nullable Tensor tensor = data.get(dataIndex);
IntStream.range(0, passback.length()).forEach(i -> {
final double v = gradientData[i];
if (Double.isFinite(v)) {
passback.set(i, tensor.get(i) * v);
}
});
tensor.freeRef();
return passback;
}).toArray(i -> new Tensor[i]));
inObj[0].accumulate(buffer, tensorArray);
}
}) {
@Override
protected void _free() {
Arrays.stream(inObj).forEach(nnResult -> nnResult.freeRef());
Arrays.stream(inObj).forEach(nnResult -> nnResult.getData().freeRef());
for (@Nonnull Tensor tensor : inputGradientA) {
tensor.freeRef();
}
}
@Override
public boolean isAlive() {
return inObj[0].isAlive();
}
};
}
use of com.simiacryptus.mindseye.lang.TensorList in project MindsEye by SimiaCryptus.
the class SumInputsLayer method eval.
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
Arrays.stream(inObj).forEach(nnResult -> nnResult.addRef());
Arrays.stream(inObj).forEach(x -> x.getData().addRef());
return new Result(Arrays.stream(inObj).parallel().map(x -> {
TensorList data = x.getData();
data.addRef();
return data;
}).reduce((l, r) -> {
assert l.length() == r.length() || 1 == l.length() || 1 == r.length();
@Nonnull TensorArray sum = TensorArray.wrap(IntStream.range(0, l.length()).parallel().mapToObj(i -> {
@Nullable final Tensor left = l.get(1 == l.length() ? 0 : i);
@Nullable final Tensor right = r.get(1 == r.length() ? 0 : i);
@Nullable Tensor tensor;
if (right.length() == 1) {
tensor = left.mapParallel(v -> v + right.get(0));
} else {
tensor = left.reduceParallel(right, (v1, v2) -> v1 + v2);
}
left.freeRef();
right.freeRef();
return tensor;
}).toArray(i -> new Tensor[i]));
l.freeRef();
r.freeRef();
return sum;
}).get(), (@Nonnull final DeltaSet<Layer> buffer, @Nonnull final TensorList delta) -> {
for (@Nonnull final Result input : inObj) {
if (input.isAlive()) {
@Nonnull TensorList projectedDelta = delta;
if (1 < projectedDelta.length() && input.getData().length() == 1) {
projectedDelta = TensorArray.wrap(projectedDelta.stream().parallel().reduce((a, b) -> {
@Nullable Tensor c = a.addAndFree(b);
b.freeRef();
return c;
}).get());
} else {
projectedDelta.addRef();
}
if (1 < Tensor.length(projectedDelta.getDimensions()) && Tensor.length(input.getData().getDimensions()) == 1) {
Tensor[] data = projectedDelta.stream().map(t -> new Tensor(new double[] { t.sum() })).toArray(i -> new Tensor[i]);
@Nonnull TensorArray data2 = TensorArray.wrap(data);
projectedDelta.freeRef();
projectedDelta = data2;
}
input.accumulate(buffer, projectedDelta);
}
}
}) {
@Override
protected void _free() {
Arrays.stream(inObj).forEach(nnResult -> nnResult.freeRef());
Arrays.stream(inObj).forEach(x -> x.getData().freeRef());
}
@Override
public boolean isAlive() {
for (@Nonnull final Result element : inObj) if (element.isAlive()) {
return true;
}
return false;
}
};
}
use of com.simiacryptus.mindseye.lang.TensorList in project MindsEye by SimiaCryptus.
the class GateBiasLayer method evalAndFree.
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
if (!CudaSystem.isEnabled())
return getCompatibilityLayer().evalAndFree(inObj);
if (inObj.length != 2) {
throw new IllegalArgumentException("inObj.length=" + inObj.length);
}
Result left = inObj[0];
Result right = inObj[1];
final TensorList leftData = left.getData();
final TensorList rightData = right.getData();
@Nonnull final int[] leftDimensions = leftData.getDimensions();
@Nonnull final int[] rightDimensions = rightData.getDimensions();
final int length = leftData.length();
if (3 != leftDimensions.length) {
throw new IllegalArgumentException("dimensions=" + Arrays.toString(leftDimensions));
}
return new Result(CudaSystem.run(gpu -> {
@Nonnull final CudaResource<cudnnOpTensorDescriptor> opDescriptor = gpu.newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_ADD, precision);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, leftDimensions[2], leftDimensions[1], leftDimensions[0], leftDimensions[2] * leftDimensions[1] * leftDimensions[0], leftDimensions[1] * leftDimensions[0], leftDimensions[0], 1);
@Nullable final CudaTensor lPtr = gpu.getTensor(leftData, precision, MemoryType.Device, false);
@Nullable final CudaTensor rPtr = gpu.getTensor(rightData, precision, MemoryType.Device, false);
// assert lPtr.size == rPtr.size;
@Nonnull final CudaMemory outputPtr = gpu.allocate((long) precision.size * outputDescriptor.nStride * length, MemoryType.Device, true);
CudaMemory lPtrMemory = lPtr.getMemory(gpu);
CudaMemory rPtrMemory = rPtr.getMemory(gpu);
CudaSystem.handle(gpu.cudnnOpTensor(opDescriptor.getPtr(), precision.getPointer(1.0), lPtr.descriptor.getPtr(), lPtrMemory.getPtr(), precision.getPointer(1.0), rPtr.descriptor.getPtr(), rPtrMemory.getPtr(), precision.getPointer(0.0), outputDescriptor.getPtr(), outputPtr.getPtr()));
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
lPtrMemory.dirty();
rPtrMemory.dirty();
outputPtr.dirty();
lPtrMemory.freeRef();
rPtrMemory.freeRef();
rPtr.freeRef();
lPtr.freeRef();
opDescriptor.freeRef();
CudaTensor cudaTensor = CudaTensor.wrap(outputPtr, outputDescriptor, precision);
return CudaTensorList.wrap(cudaTensor, length, leftDimensions, precision);
}, leftData), (@Nonnull final DeltaSet<Layer> buffer, @Nonnull final TensorList delta) -> {
if (left.isAlive()) {
delta.addRef();
left.accumulate(buffer, delta);
}
if (right.isAlive()) {
@Nonnull TensorList data = CudaSystem.run(gpu -> {
// assert deltaTensor.size == rightTensor.size;
if (Arrays.equals(rightDimensions, leftDimensions) && length == rightData.length()) {
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
delta.addRef();
return delta;
} else {
@Nonnull final CudaDevice.CudaTensorDescriptor reducedOutputDescriptor = gpu.newTensorDescriptor(precision, rightData.length(), rightDimensions[2], rightDimensions[1], rightDimensions[0], rightDimensions[2] * rightDimensions[1] * rightDimensions[0], rightDimensions[1] * rightDimensions[0], rightDimensions[0], 1);
long size = (long) precision.size * reducedOutputDescriptor.nStride * rightData.length();
@Nonnull final CudaMemory reducedOutputPtr = gpu.allocate(size, MemoryType.Managed, true);
CudaResource<cudnnReduceTensorDescriptor> reduceTensorDescriptor = gpu.cudnnCreateReduceTensorDescriptor(cudnnReduceTensorOp.CUDNN_REDUCE_TENSOR_ADD, precision.code, cudnnNanPropagation.CUDNN_NOT_PROPAGATE_NAN, cudnnReduceTensorIndices.CUDNN_REDUCE_TENSOR_NO_INDICES, cudnnIndicesType.CUDNN_32BIT_INDICES);
@Nullable final CudaTensor deltaTensor = gpu.getTensor(delta, precision, MemoryType.Device, false);
CudaMemory deltaTensorMemory = deltaTensor.getMemory(gpu);
@Nonnull final CudaMemory workspacePtr = gpu.allocate(deltaTensorMemory.size, MemoryType.Device, true);
@Nonnull final CudaMemory indexPtr = gpu.allocate(12 * delta.length(), MemoryType.Device, false);
delta.freeRef();
// outputPtr.synchronize();
gpu.cudnnReduceTensor(reduceTensorDescriptor.getPtr(), indexPtr.getPtr(), indexPtr.size, workspacePtr.getPtr(), workspacePtr.size, precision.getPointer(1.0), deltaTensor.descriptor.getPtr(), deltaTensorMemory.getPtr(), precision.getPointer(0.0), reducedOutputDescriptor.getPtr(), reducedOutputPtr.getPtr());
reducedOutputPtr.dirty();
deltaTensorMemory.dirty();
Stream.of(deltaTensorMemory, deltaTensor, reduceTensorDescriptor, workspacePtr, indexPtr).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(CudaTensor.wrap(reducedOutputPtr, reducedOutputDescriptor, precision), rightData.length(), rightDimensions, precision);
}
}, delta);
right.accumulate(buffer, data);
} else {
delta.freeRef();
}
}) {
@Override
public final void accumulate(DeltaSet<Layer> buffer, TensorList delta) {
getAccumulator().accept(buffer, delta);
}
@Override
protected void _free() {
leftData.freeRef();
rightData.freeRef();
left.freeRef();
right.freeRef();
}
@Override
public boolean isAlive() {
for (@Nonnull final Result element : inObj) if (element.isAlive()) {
return true;
}
return false;
}
};
}
use of com.simiacryptus.mindseye.lang.TensorList in project MindsEye by SimiaCryptus.
the class ImgBandSelectLayer method evalAndFree.
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
// assert Arrays.stream(inObj).flatMapToDouble(input->input.data.stream().flatMapToDouble(x-> Arrays.stream(x.getData()))).allMatch(v->Double.isFinite(v));
assert getFrom() < getTo();
assert getFrom() >= 0;
assert getTo() > 0;
assert 1 == inObj.length;
assert 3 == inObj[0].getData().getDimensions().length;
if (!CudaSystem.isEnabled())
return getCompatibilityLayer().eval(inObj);
final TensorList inputData = inObj[0].getData();
@Nonnull final int[] inputDimensions = inputData.getDimensions();
final int length = inputData.length();
@Nonnull final int[] outputDimensions = Arrays.copyOf(inputDimensions, 3);
outputDimensions[2] = getTo() - getFrom();
long size = (length * outputDimensions[2] * outputDimensions[1] * outputDimensions[0] * precision.size);
return new Result(CudaSystem.run(gpu -> {
@Nullable final CudaTensor cudaInput = gpu.getTensor(inputData, precision, MemoryType.Device, false);
inputData.freeRef();
final int byteOffset = cudaInput.descriptor.cStride * getFrom() * precision.size;
@Nonnull final CudaDevice.CudaTensorDescriptor inputDescriptor = gpu.newTensorDescriptor(//
precision, //
length, //
outputDimensions[2], //
outputDimensions[1], //
outputDimensions[0], //
cudaInput.descriptor.nStride, //
cudaInput.descriptor.cStride, //
cudaInput.descriptor.hStride, cudaInput.descriptor.wStride);
CudaMemory cudaInputMemory = cudaInput.getMemory(gpu);
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
CudaTensor cudaTensor = CudaTensor.wrap(cudaInputMemory.withByteOffset(byteOffset), inputDescriptor, precision);
Stream.<ReferenceCounting>of(cudaInput, cudaInputMemory).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(cudaTensor, length, outputDimensions, precision);
}, inputData), (@Nonnull final DeltaSet<Layer> buffer, @Nonnull final TensorList delta) -> {
if (!Arrays.equals(delta.getDimensions(), outputDimensions)) {
throw new AssertionError(Arrays.toString(delta.getDimensions()) + " != " + Arrays.toString(outputDimensions));
}
if (inObj[0].isAlive()) {
final TensorList passbackTensorList = CudaSystem.run(gpu -> {
@Nonnull final CudaDevice.CudaTensorDescriptor viewDescriptor = gpu.newTensorDescriptor(//
precision, //
length, //
outputDimensions[2], //
outputDimensions[1], //
outputDimensions[0], //
inputDimensions[2] * inputDimensions[1] * inputDimensions[0], //
inputDimensions[1] * inputDimensions[0], //
inputDimensions[0], 1);
@Nonnull final CudaDevice.CudaTensorDescriptor inputDescriptor = gpu.newTensorDescriptor(//
precision, //
length, //
inputDimensions[2], //
inputDimensions[1], //
inputDimensions[0], //
inputDimensions[2] * inputDimensions[1] * inputDimensions[0], //
inputDimensions[1] * inputDimensions[0], //
inputDimensions[0], 1);
final int byteOffset = viewDescriptor.cStride * getFrom() * precision.size;
assert delta.length() == length;
// assert error.stream().flatMapToDouble(x-> Arrays.stream(x.getData())).allMatch(Double::isFinite);
@Nullable final CudaTensor errorPtr = gpu.getTensor(delta, precision, MemoryType.Device, false);
delta.freeRef();
long size1 = (length * inputDimensions[2] * inputDimensions[1] * inputDimensions[0] * precision.size);
@Nonnull final CudaMemory passbackBuffer = gpu.allocate(size1, MemoryType.Managed.normalize(), false);
CudaMemory errorPtrMemory = errorPtr.getMemory(gpu);
gpu.cudnnTransformTensor(precision.getPointer(1.0), errorPtr.descriptor.getPtr(), errorPtrMemory.getPtr(), precision.getPointer(0.0), viewDescriptor.getPtr(), passbackBuffer.getPtr().withByteOffset(byteOffset));
errorPtrMemory.dirty();
passbackBuffer.dirty();
errorPtrMemory.freeRef();
CudaTensor cudaTensor = CudaTensor.wrap(passbackBuffer, inputDescriptor, precision);
Stream.<ReferenceCounting>of(errorPtr, viewDescriptor).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(cudaTensor, length, inputDimensions, precision);
// assert passbackTensorList.stream().flatMapToDouble(x-> Arrays.stream(x.getData())).allMatch(v->Double.isFinite(v));
}, delta);
inObj[0].accumulate(buffer, passbackTensorList);
} else {
delta.freeRef();
}
}) {
@Override
public void accumulate(final DeltaSet<Layer> buffer, final TensorList delta) {
getAccumulator().accept(buffer, delta);
}
@Override
protected void _free() {
Arrays.stream(inObj).forEach(nnResult -> nnResult.freeRef());
}
@Override
public boolean isAlive() {
return Arrays.stream(inObj).anyMatch(x -> x.isAlive());
}
};
}
Aggregations