use of com.simiacryptus.mindseye.lang.cudnn.CudaTensorList in project MindsEye by SimiaCryptus.
the class GramianLayer method getFeedback.
/**
* Gets feedback.
*
* @param gpu the gpu
* @param inputTensor the input tensor
* @param deltaTensor the delta tensor
* @return the feedback
*/
@Nonnull
public CudaTensorList getFeedback(final CudnnHandle gpu, final CudaTensor inputTensor, final CudaTensor deltaTensor) {
int pixels = inputTensor.descriptor.height * inputTensor.descriptor.width;
CudaMemory inputMemory = inputTensor.getMemory(gpu);
CudaMemory deltaMemory = deltaTensor.getMemory(gpu);
@Nonnull final int[] inputDimensions = { inputTensor.descriptor.width, inputTensor.descriptor.height, inputTensor.descriptor.channels };
final int length = inputTensor.descriptor.batchCount;
final int bands = inputDimensions[2];
@Nullable final CudaMemory bufferMemory = gpu.allocate((long) inputTensor.descriptor.nStride * length * precision.size, MemoryType.Device, true);
@Nonnull final CudaDevice.CudaTensorDescriptor bufferDescriptor = gpu.newTensorDescriptor(precision, length, bands, inputDimensions[1], inputDimensions[0], //
inputDimensions[0] * inputDimensions[1] * bands, //
inputDimensions[0] * inputDimensions[1], //
inputDimensions[0], 1);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, bands, inputDimensions[1], inputDimensions[0], //
inputDimensions[0] * inputDimensions[1] * bands, //
inputDimensions[0] * inputDimensions[1], //
inputDimensions[0], 1);
@Nullable final CudaMemory outputMemory = gpu.allocate((long) outputDescriptor.nStride * precision.size * length, MemoryType.Managed, true);
@Nonnull final CudaMemory workspacePtr = gpu.allocate(Math.max(outputMemory.size, inputMemory.size), MemoryType.Device, true);
@Nonnull final CudaMemory indexPtr = gpu.allocate(12 * length, MemoryType.Device, false);
@Nonnull final CudaResource<cudnnOpTensorDescriptor> multiplyDescriptor = gpu.newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_MUL, precision);
CudaResource<cudnnReduceTensorDescriptor> reduceAddDescriptor = gpu.cudnnCreateReduceTensorDescriptor(cudnnReduceTensorOp.CUDNN_REDUCE_TENSOR_ADD, precision.code, cudnnNanPropagation.CUDNN_NOT_PROPAGATE_NAN, cudnnReduceTensorIndices.CUDNN_REDUCE_TENSOR_NO_INDICES, cudnnIndicesType.CUDNN_32BIT_INDICES);
@Nonnull final CudaDevice.CudaTensorDescriptor bandDescriptor = gpu.newTensorDescriptor(precision, length, 1, inputDimensions[1], inputDimensions[0], inputDimensions[2] * inputDimensions[1] * inputDimensions[0], inputDimensions[1] * inputDimensions[0], inputDimensions[0], 1);
@Nonnull final CudaDevice.CudaTensorDescriptor viewDescriptor1 = gpu.newTensorDescriptor(//
precision, //
length, //
bands, //
1, //
1, //
deltaTensor.descriptor.nStride, //
deltaTensor.descriptor.cStride, //
deltaTensor.descriptor.hStride, deltaTensor.descriptor.wStride);
@Nonnull final CudaDevice.CudaTensorDescriptor viewDescriptor2 = gpu.newTensorDescriptor(//
precision, //
length, //
bands, //
1, //
1, //
deltaTensor.descriptor.nStride, //
deltaTensor.descriptor.cStride * bands, //
deltaTensor.descriptor.hStride, //
deltaTensor.descriptor.wStride);
IntStream.range(0, bands).forEach(band -> {
CudaMemory deltaView1 = deltaMemory.withByteOffset(band * precision.size * bands);
CudaSystem.handle(gpu.cudnnOpTensor(multiplyDescriptor.getPtr(), precision.getPointer(1.0), inputTensor.descriptor.getPtr(), inputMemory.getPtr(), precision.getPointer(1.0), viewDescriptor1.getPtr(), deltaView1.getPtr(), precision.getPointer(0.0), bufferDescriptor.getPtr(), bufferMemory.getPtr()));
inputMemory.dirty();
deltaView1.dirty();
bufferMemory.dirty();
deltaView1.freeRef();
CudaMemory deltaView2 = deltaMemory.withByteOffset(band * precision.size);
CudaSystem.handle(gpu.cudnnOpTensor(multiplyDescriptor.getPtr(), precision.getPointer(1.0), inputTensor.descriptor.getPtr(), inputMemory.getPtr(), precision.getPointer(1.0), viewDescriptor2.getPtr(), deltaView2.getPtr(), precision.getPointer(1.0), bufferDescriptor.getPtr(), bufferMemory.getPtr()));
inputMemory.dirty();
deltaView2.dirty();
bufferMemory.dirty();
deltaView2.freeRef();
CudaMemory outputViewMem = outputMemory.withByteOffset(bandDescriptor.cStride * band * precision.size);
gpu.cudnnReduceTensor(reduceAddDescriptor.getPtr(), indexPtr.getPtr(), indexPtr.size, workspacePtr.getPtr(), workspacePtr.size, precision.getPointer(alpha / pixels), bufferDescriptor.getPtr(), bufferMemory.getPtr(), precision.getPointer(0.0), bandDescriptor.getPtr(), outputViewMem.getPtr());
outputViewMem.dirty();
bufferMemory.dirty();
outputViewMem.freeRef();
});
CudaTensorList feedback = CudaTensorList.wrap(CudaTensor.wrap(outputMemory, outputDescriptor, precision), length, inputDimensions, precision);
bandDescriptor.freeRef();
viewDescriptor1.freeRef();
viewDescriptor2.freeRef();
workspacePtr.freeRef();
indexPtr.freeRef();
reduceAddDescriptor.freeRef();
inputMemory.freeRef();
multiplyDescriptor.freeRef();
deltaMemory.freeRef();
bufferMemory.freeRef();
bufferDescriptor.freeRef();
return feedback;
}
use of com.simiacryptus.mindseye.lang.cudnn.CudaTensorList in project MindsEye by SimiaCryptus.
the class GramianLayer method evalAndFree.
@Nullable
@Override
public Result evalAndFree(final Result... inObj) {
assert 1 == inObj.length;
TensorList inputData = inObj[0].getData();
int[] inputDimensions = inputData.getDimensions();
assert 3 == inputDimensions.length;
return new Result(CudaSystem.run(gpu -> {
CudaTensor tensor = gpu.getTensor(inputData, precision, MemoryType.Device, false);
CudaTensorList output = getOutput(gpu, tensor);
tensor.freeRef();
return output;
}, inputData), (@Nonnull final DeltaSet<Layer> buffer, @Nonnull final TensorList delta) -> {
@Nonnull final int[] outputDimensions = { 1, 1, inputDimensions[2] * inputDimensions[2] };
if (!Arrays.equals(delta.getDimensions(), outputDimensions)) {
throw new AssertionError(Arrays.toString(delta.getDimensions()) + " != " + Arrays.toString(outputDimensions));
}
if (inObj[0].isAlive()) {
final TensorList passbackTensorList = CudaSystem.run(gpu -> {
@Nullable final CudaTensor inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, false);
CudaTensor deltaTensor = gpu.getTensor(delta, precision, MemoryType.Device, true);
delta.freeRef();
CudaTensorList feedback = getFeedback(gpu, inputTensor, deltaTensor);
deltaTensor.freeRef();
inputTensor.freeRef();
return feedback;
}, delta);
inObj[0].accumulate(buffer, passbackTensorList);
} else {
delta.freeRef();
}
}) {
@Override
public final void accumulate(DeltaSet<Layer> buffer, TensorList delta) {
getAccumulator().accept(buffer, delta);
}
@Override
protected void _free() {
inputData.freeRef();
Arrays.stream(inObj).forEach(nnResult -> nnResult.freeRef());
}
@Override
public boolean isAlive() {
return Arrays.stream(inObj).anyMatch(x -> x.isAlive());
}
};
}
use of com.simiacryptus.mindseye.lang.cudnn.CudaTensorList in project MindsEye by SimiaCryptus.
the class BandAvgReducerLayer method evalAndFree.
@Nullable
@Override
public Result evalAndFree(final Result... inObj) {
if (!CudaSystem.isEnabled())
return getCompatibilityLayer().evalAndFree(inObj);
final Result input = inObj[0];
TensorList inputData = input.getData();
@Nonnull final int[] inputSize = inputData.getDimensions();
int length = inputData.length();
final int bands = inputSize[2];
CudaTensorList result = CudaSystem.run(gpu -> {
CudaTensor inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, false);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, bands, 1, 1);
long size = (long) precision.size * outputDescriptor.nStride * length;
@Nonnull final CudaMemory outputPtr = gpu.allocate(size, MemoryType.Managed, true);
CudaResource<cudnnReduceTensorDescriptor> reduceTensorDescriptor = gpu.cudnnCreateReduceTensorDescriptor(cudnnReduceTensorOp.CUDNN_REDUCE_TENSOR_AVG, precision.code, cudnnNanPropagation.CUDNN_NOT_PROPAGATE_NAN, cudnnReduceTensorIndices.CUDNN_REDUCE_TENSOR_NO_INDICES, cudnnIndicesType.CUDNN_32BIT_INDICES);
CudaMemory inputMemory = inputTensor.getMemory(gpu);
@Nonnull final CudaMemory workspacePtr = gpu.allocate(inputMemory.size, MemoryType.Device, true);
@Nonnull final CudaMemory indexPtr = gpu.allocate(12 * length, MemoryType.Device, false);
gpu.cudnnReduceTensor(reduceTensorDescriptor.getPtr(), indexPtr.getPtr(), indexPtr.size, workspacePtr.getPtr(), workspacePtr.size, precision.getPointer(alpha), inputTensor.descriptor.getPtr(), inputMemory.getPtr(), precision.getPointer(0.0), outputDescriptor.getPtr(), outputPtr.getPtr());
outputPtr.dirty();
inputMemory.dirty();
Stream.of(inputMemory, inputTensor, reduceTensorDescriptor, workspacePtr, indexPtr, inputData).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(CudaTensor.wrap(outputPtr, outputDescriptor, precision), length, new int[] { 1, 1, bands }, precision);
});
int pixels = inputSize[0] * inputSize[1];
return new Result(result, (DeltaSet<Layer> ctx, TensorList delta) -> {
TensorList passback;
passback = TensorArray.wrap(delta.stream().map(x -> {
Tensor tensor = new Tensor(inputSize[0], inputSize[1], inputSize[2]).setByCoord(c -> x.get(c.getCoords()[2]) * alpha / pixels);
x.freeRef();
return tensor;
}).toArray(i -> new Tensor[i]));
// passback = CudaSystem.run(gpu -> {
// CudaTensor deltaTensor = gpu.getTensor(delta, precision, MemoryType.Device, true);
// @Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision,
// length, inputSize[2], inputSize[1], inputSize[0]);
// @Nonnull final CudaMemory outputPtr = gpu.allocate((long) precision.size * outputDescriptor.nStride * length, MemoryType.Device, true);
// CudaMemory deltaMemory = deltaTensor.getMemory(gpu);
// @Nonnull final CudaDevice.CudaTensorDescriptor inputDescriptor = gpu.newTensorDescriptor(precision,
// 1, 1, inputSize[1], inputSize[0]);
// for(int batch=0;batch<length;batch++){
// Tensor tensor = delta.get(batch);
// for(int band=0;band<bands;band++){
// int i = batch * bands + band;
// CudaMemory img = outputPtr.withByteOffset(precision.size * i * outputDescriptor.cStride);
// CudaMemory val = deltaMemory.withByteOffset(precision.size * i);
// gpu.cudnnSetTensor(inputDescriptor.getPtr(), img.getPtr(), precision.getPointer(tensor.get(band) / outputDescriptor.cStride));
// img.freeRef();
// val.freeRef();
// outputPtr.dirty().synchronize();
// }
// }
// Stream.of(deltaMemory, deltaTensor, inputDescriptor).forEach(ReferenceCounting::freeRef);
// return CudaTensorList.wrap(CudaTensor.wrap(outputPtr, outputDescriptor, precision), length, inputSize, precision);
// });
input.accumulate(ctx, passback);
}) {
@Override
protected void _free() {
super._free();
input.freeRef();
}
};
}
use of com.simiacryptus.mindseye.lang.cudnn.CudaTensorList in project MindsEye by SimiaCryptus.
the class BinarySumLayer method evalAndFree.
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
if (inObj.length == 1) {
if (rightFactor != 1)
throw new IllegalStateException();
if (leftFactor != 1)
throw new IllegalStateException();
return inObj[0];
}
if (inObj.length > 2) {
if (rightFactor != 1)
throw new IllegalStateException();
if (leftFactor != 1)
throw new IllegalStateException();
return Arrays.stream(inObj).reduce((a, b) -> evalAndFree(a, b)).get();
}
assert (inObj.length == 2);
final TensorList leftData = inObj[0].getData();
final TensorList rightData = inObj[1].getData();
int[] leftDimensions = leftData.getDimensions();
if (3 < leftDimensions.length) {
throw new IllegalArgumentException("dimensions=" + Arrays.toString(leftDimensions));
}
@Nonnull final int[] dimensions = { leftDimensions.length < 1 ? 0 : leftDimensions[0], leftDimensions.length < 2 ? 1 : leftDimensions[1], leftDimensions.length < 3 ? 1 : leftDimensions[2] };
final int length = leftData.length();
if (length != rightData.length())
throw new IllegalArgumentException();
if (3 != dimensions.length) {
throw new IllegalArgumentException("dimensions=" + Arrays.toString(dimensions));
}
for (int i = 1; i < inObj.length; i++) {
if (Tensor.length(dimensions) != Tensor.length(inObj[i].getData().getDimensions())) {
throw new IllegalArgumentException(Arrays.toString(dimensions) + " != " + Arrays.toString(inObj[i].getData().getDimensions()));
}
}
if (!CudaSystem.isEnabled())
return getCompatibilityLayer().evalAndFree(inObj);
return new Result(CudaSystem.run(gpu -> {
@Nonnull final CudaResource<cudnnOpTensorDescriptor> opDescriptor = gpu.newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_ADD, precision);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, dimensions[2], dimensions[1], dimensions[0], dimensions[2] * dimensions[1] * dimensions[0], dimensions[1] * dimensions[0], dimensions[0], 1);
// .getDenseAndFree(gpu);//.moveTo(gpu.getDeviceNumber());
@Nullable final CudaTensor lPtr = gpu.getTensor(leftData, precision, MemoryType.Device, false);
// .getDenseAndFree(gpu);//.moveTo(gpu.getDeviceNumber());
@Nullable final CudaTensor rPtr = gpu.getTensor(rightData, precision, MemoryType.Device, false);
@Nonnull final CudaMemory outputPtr = gpu.allocate(precision.size * Tensor.length(dimensions) * length, MemoryType.Managed, true);
CudaMemory lPtrMemory = lPtr.getMemory(gpu);
CudaMemory rPtrMemory = rPtr.getMemory(gpu);
gpu.cudnnOpTensor(opDescriptor.getPtr(), precision.getPointer(leftFactor), lPtr.descriptor.getPtr(), lPtrMemory.getPtr(), precision.getPointer(rightFactor), rPtr.descriptor.getPtr(), rPtrMemory.getPtr(), precision.getPointer(0.0), outputDescriptor.getPtr(), outputPtr.getPtr());
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
lPtrMemory.dirty();
rPtrMemory.dirty();
outputPtr.dirty();
rPtrMemory.freeRef();
lPtrMemory.freeRef();
CudaTensor cudaTensor = CudaTensor.wrap(outputPtr, outputDescriptor, precision);
Stream.<ReferenceCounting>of(opDescriptor, lPtr, rPtr).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(cudaTensor, length, dimensions, precision);
}, leftData), (@Nonnull final DeltaSet<Layer> buffer, @Nonnull final TensorList delta) -> {
Runnable a = () -> {
if (inObj[0].isAlive()) {
CudaTensorList tensorList = CudaSystem.run(gpu -> {
@Nullable final CudaTensor lPtr = gpu.getTensor(delta, precision, MemoryType.Device, false);
@Nonnull final CudaMemory passbackPtr = gpu.allocate(precision.size * Tensor.length(dimensions) * length, MemoryType.Managed.normalize(), true);
@Nonnull final CudaDevice.CudaTensorDescriptor passbackDescriptor = gpu.newTensorDescriptor(precision, length, dimensions[2], dimensions[1], dimensions[0], dimensions[2] * dimensions[1] * dimensions[0], dimensions[1] * dimensions[0], dimensions[0], 1);
CudaMemory lPtrMemory = lPtr.getMemory(gpu);
gpu.cudnnTransformTensor(precision.getPointer(leftFactor), lPtr.descriptor.getPtr(), lPtrMemory.getPtr(), precision.getPointer(0.0), passbackDescriptor.getPtr(), passbackPtr.getPtr());
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
passbackPtr.dirty();
lPtrMemory.dirty();
lPtrMemory.freeRef();
CudaTensor cudaTensor = CudaTensor.wrap(passbackPtr, passbackDescriptor, precision);
lPtr.freeRef();
return CudaTensorList.wrap(cudaTensor, length, dimensions, precision);
}, delta);
inObj[0].accumulate(buffer, tensorList);
}
};
Runnable b = () -> {
if (inObj[1].isAlive()) {
CudaTensorList tensorList = CudaSystem.run(gpu -> {
@Nullable final CudaTensor lPtr = gpu.getTensor(delta, precision, MemoryType.Device, false);
@Nonnull final CudaMemory outputPtr = gpu.allocate(precision.size * Tensor.length(dimensions) * length, MemoryType.Managed.normalize(), true);
@Nonnull final CudaDevice.CudaTensorDescriptor passbackDescriptor = gpu.newTensorDescriptor(precision, length, dimensions[2], dimensions[1], dimensions[0], dimensions[2] * dimensions[1] * dimensions[0], dimensions[1] * dimensions[0], dimensions[0], 1);
CudaMemory lPtrMemory = lPtr.getMemory(gpu);
gpu.cudnnTransformTensor(precision.getPointer(rightFactor), lPtr.descriptor.getPtr(), lPtrMemory.getPtr(), precision.getPointer(0.0), passbackDescriptor.getPtr(), outputPtr.getPtr());
outputPtr.dirty();
lPtrMemory.dirty();
lPtrMemory.freeRef();
CudaTensor cudaTensor = CudaTensor.wrap(outputPtr, passbackDescriptor, precision);
lPtr.freeRef();
return CudaTensorList.wrap(cudaTensor, length, dimensions, precision);
}, delta);
inObj[1].accumulate(buffer, tensorList);
}
};
if (CoreSettings.INSTANCE.isSingleThreaded())
TestUtil.runAllSerial(a, b);
else
TestUtil.runAllParallel(a, b);
}) {
@Override
protected void _free() {
Arrays.stream(inObj).forEach(x -> x.freeRef());
leftData.freeRef();
rightData.freeRef();
}
@Override
public boolean isAlive() {
for (@Nonnull final Result element : inObj) if (element.isAlive()) {
return true;
}
return false;
}
};
}
use of com.simiacryptus.mindseye.lang.cudnn.CudaTensorList in project MindsEye by SimiaCryptus.
the class AvgReducerLayer method evalAndFree.
@Nullable
@Override
public Result evalAndFree(final Result... inObj) {
if (!CudaSystem.isEnabled())
return getCompatibilityLayer().evalAndFree(inObj);
final Result input = inObj[0];
final TensorList inputData = input.getData();
@Nonnull final int[] inputSize = inputData.getDimensions();
int length = inputData.length();
CudaTensorList result = CudaSystem.run(gpu -> {
CudaTensor inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, false);
inputData.freeRef();
CudaMemory inputMemory = inputTensor.getMemory(gpu);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, 1, 1, 1);
long size = (long) precision.size * outputDescriptor.nStride * length;
@Nonnull final CudaMemory outputMemory = gpu.allocate(size, MemoryType.Managed, true);
CudaResource<cudnnReduceTensorDescriptor> reduceTensorDescriptor = gpu.cudnnCreateReduceTensorDescriptor(cudnnReduceTensorOp.CUDNN_REDUCE_TENSOR_AVG, precision.code, cudnnNanPropagation.CUDNN_NOT_PROPAGATE_NAN, cudnnReduceTensorIndices.CUDNN_REDUCE_TENSOR_NO_INDICES, cudnnIndicesType.CUDNN_32BIT_INDICES);
@Nonnull final CudaMemory workspacePtr = gpu.allocate(inputMemory.size, MemoryType.Device, true);
@Nonnull final CudaMemory indexPtr = gpu.allocate(12 * length, MemoryType.Device, false);
// outputPtr.synchronize();
gpu.cudnnReduceTensor(reduceTensorDescriptor.getPtr(), indexPtr.getPtr(), indexPtr.size, workspacePtr.getPtr(), workspacePtr.size, precision.getPointer(1.0), inputTensor.descriptor.getPtr(), inputMemory.getPtr(), precision.getPointer(0.0), outputDescriptor.getPtr(), outputMemory.getPtr());
outputMemory.dirty();
inputMemory.dirty();
Stream.of(inputTensor, inputMemory, reduceTensorDescriptor, workspacePtr, indexPtr).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(CudaTensor.wrap(outputMemory, outputDescriptor, precision), length, new int[] { 1, 1, 1 }, precision);
});
return new Result(result, (DeltaSet<Layer> ctx, TensorList delta) -> {
// Not supported by CuDNN?
// CudaTensorList passback = CudaSystem.run(gpu -> {
// CudaTensor deltaTensor = gpu.getTensor(delta, precision, MemoryType.Device, false);
// CudaMemory deltaMemory = deltaTensor.getMemory(gpu);
//
// @Nonnull final CudaDevice.CudaTensorDescriptor passbackDescriptor1 = gpu.newTensorDescriptor(
// precision, length, inputSize[2], inputSize[1], inputSize[0]
// );
// @Nonnull final CudaMemory passbackPtr1 = gpu.allocate((long) precision.size * passbackDescriptor1.nStride * length, MemoryType.Device, false);
// gpu.cudnnAddTensor(precision.getPointer(1.0), deltaTensor.descriptor.getPtr(), deltaMemory.getPtr(),
// precision.getPointer(1.0), passbackDescriptor1.getPtr(), passbackPtr1.getPtr());
// passbackPtr1.dirty();
//
// Stream.of(deltaTensor, deltaMemory, passbackDescriptor1, passbackPtr1).forEach(ReferenceCounting::freeRef);
// return CudaTensorList.wrap(CudaTensor.wrap(passbackPtr1, passbackDescriptor1, precision), length, inputSize, precision);
// });
TensorList passback = TensorArray.wrap(IntStream.range(0, length).mapToObj(i -> {
Tensor tensor = delta.get(i);
Tensor tensor1 = new Tensor(inputSize).setAll((double) tensor.get(0) / Tensor.length(inputSize));
tensor.freeRef();
return tensor1;
}).toArray(i -> new Tensor[i]));
input.accumulate(ctx, passback);
}) {
@Override
protected void _free() {
super._free();
input.freeRef();
}
};
}
Aggregations