use of com.simiacryptus.mindseye.lang.cudnn.CudaMemory in project MindsEye by SimiaCryptus.
the class PoolingLayer method evalAndFree.
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
if (!CudaSystem.isEnabled())
return getCompatibilityLayer().evalAndFree(inObj);
final int poolDims = 2;
@Nonnull final int[] windowSize = { windowX, windowY };
@Nonnull final int[] padding = { paddingX, paddingY };
@Nonnull final int[] stride = { strideX, strideY };
final Result input = inObj[0];
final TensorList inputData = input.getData();
@Nonnull final int[] inputSize = inputData.getDimensions();
final int length = inputData.length();
final int inputDims = Tensor.length(inputSize);
@Nonnull final int[] outputSize = new int[4];
final CudaTensor outputData = CudaSystem.run(gpu -> {
try {
gpu.initThread();
@Nonnull final CudaResource<cudnnPoolingDescriptor> poolingDesc = gpu.createPoolingDescriptor(mode.id, poolDims, windowSize, padding, stride);
@Nullable final CudaTensor inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, false);
CudaSystem.handle(CudaSystem.cudnnGetPoolingNdForwardOutputDim(poolingDesc.getPtr(), inputTensor.descriptor.getPtr(), 4, outputSize));
assert inputSize[2] == outputSize[1];
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, outputSize[0], outputSize[1], outputSize[2], outputSize[3], outputSize[1] * outputSize[2] * outputSize[3], outputSize[2] * outputSize[3], outputSize[3], 1);
@Nonnull final CudaMemory outputTensor = gpu.allocate((long) precision.size * Tensor.length(outputSize), MemoryType.Managed.normalize(), true);
CudaMemory inputDataMemory = inputTensor.getMemory(gpu);
CudaSystem.handle(gpu.cudnnPoolingForward(poolingDesc.getPtr(), precision.getPointer(alpha), inputTensor.descriptor.getPtr(), inputDataMemory.getPtr(), precision.getPointer(0.0), outputDescriptor.getPtr(), outputTensor.getPtr()));
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
inputDataMemory.dirty();
outputTensor.dirty();
Stream.<ReferenceCounting>of(inputTensor, poolingDesc, inputDataMemory).forEach(ReferenceCounting::freeRef);
return CudaTensor.wrap(outputTensor, outputDescriptor, precision);
} catch (@Nonnull final Throwable e) {
throw new ComponentException("Error", e);
}
}, inputData);
return new Result(CudaTensorList.create(outputData, length, new int[] { outputSize[3], outputSize[2], outputSize[1] }, precision), (@Nonnull final DeltaSet<Layer> buffer, @Nonnull final TensorList error) -> {
assert error.length() == inputData.length();
if (input.isAlive()) {
TensorList data = CudaSystem.run(gpu -> {
@Nonnull final CudaDevice.CudaTensorDescriptor passbackDescriptor = gpu.newTensorDescriptor(precision, length, inputSize[2], inputSize[1], inputSize[0], inputSize[2] * inputSize[1] * inputSize[0], inputSize[1] * inputSize[0], inputSize[0], 1);
@Nonnull final CudaResource<cudnnPoolingDescriptor> poolingDesc = gpu.createPoolingDescriptor(mode.id, poolDims, windowSize, padding, stride);
@Nullable final CudaTensor inputTensor;
synchronized (gpu) {
inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, true);
}
@Nullable final CudaTensor errorPtr;
synchronized (gpu) {
errorPtr = gpu.getTensor(error, precision, MemoryType.Device, true);
}
@Nonnull final CudaMemory passbackBuffer = gpu.allocate((long) inputDims * precision.size * length, MemoryType.Managed.normalize(), true);
CudaMemory outputDataMemory = outputData.getMemory(gpu);
CudaMemory errorPtrMemory = errorPtr.getMemory(gpu);
CudaMemory inputDataMemory = inputTensor.getMemory(gpu);
CudaSystem.handle(gpu.cudnnPoolingBackward(poolingDesc.getPtr(), precision.getPointer(this.alpha), outputData.descriptor.getPtr(), outputDataMemory.getPtr(), errorPtr.descriptor.getPtr(), errorPtrMemory.getPtr(), inputTensor.descriptor.getPtr(), inputDataMemory.getPtr(), precision.getPointer(0.0), passbackDescriptor.getPtr(), passbackBuffer.getPtr()));
outputDataMemory.dirty();
errorPtrMemory.dirty();
inputDataMemory.dirty();
passbackBuffer.dirty();
Stream.<ReferenceCounting>of(errorPtr, inputTensor, poolingDesc, outputDataMemory, errorPtrMemory, inputDataMemory).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(CudaTensor.wrap(passbackBuffer, passbackDescriptor, precision), length, inputSize, precision);
}, error);
input.accumulate(buffer, data);
}
}) {
@Override
protected void _free() {
Arrays.stream(inObj).forEach(nnResult -> nnResult.freeRef());
inputData.freeRef();
outputData.freeRef();
}
@Override
public boolean isAlive() {
return input.isAlive() || !isFrozen();
}
};
}
use of com.simiacryptus.mindseye.lang.cudnn.CudaMemory in project MindsEye by SimiaCryptus.
the class SquareActivationLayer method evalAndFree.
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
if (!CudaSystem.isEnabled())
return getCompatibilityLayer().evalAndFree(inObj);
if (inObj.length != 1) {
throw new IllegalArgumentException("inObj.length=" + inObj.length);
}
Result input = inObj[0];
final TensorList inputData = input.getData();
@Nonnull final int[] dimensions = inputData.getDimensions();
final int length = inputData.length();
if (3 != dimensions.length) {
throw new IllegalArgumentException("dimensions=" + Arrays.toString(dimensions));
}
return new Result(CudaSystem.run(gpu -> {
@Nonnull final CudaResource<cudnnOpTensorDescriptor> opDescriptor = gpu.newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_MUL, precision);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, dimensions[2], dimensions[1], dimensions[0], dimensions[2] * dimensions[1] * dimensions[0], dimensions[1] * dimensions[0], dimensions[0], 1);
@Nullable final CudaTensor inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, false);
// assert inputTensor.size == rPtr.size;
@Nonnull final CudaMemory outputPtr = gpu.allocate((long) precision.size * outputDescriptor.nStride * length, MemoryType.Device, true);
CudaMemory lPtrMemory = inputTensor.getMemory(gpu);
CudaSystem.handle(gpu.cudnnOpTensor(opDescriptor.getPtr(), precision.getPointer(alpha), inputTensor.descriptor.getPtr(), lPtrMemory.getPtr(), precision.getPointer(1.0), inputTensor.descriptor.getPtr(), lPtrMemory.getPtr(), precision.getPointer(0.0), outputDescriptor.getPtr(), outputPtr.getPtr()));
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
outputPtr.dirty();
lPtrMemory.dirty();
outputPtr.dirty();
lPtrMemory.freeRef();
inputTensor.freeRef();
opDescriptor.freeRef();
CudaTensor cudaTensor = CudaTensor.wrap(outputPtr, outputDescriptor, precision);
return CudaTensorList.wrap(cudaTensor, length, dimensions, precision);
}, inputData), (@Nonnull final DeltaSet<Layer> buffer, @Nonnull final TensorList delta) -> {
if (input.isAlive()) {
@Nonnull TensorList data = CudaSystem.run(gpu -> {
@Nonnull final CudaResource<cudnnOpTensorDescriptor> opDescriptor = gpu.newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_MUL, precision);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, dimensions[2], dimensions[1], dimensions[0], dimensions[2] * dimensions[1] * dimensions[0], dimensions[1] * dimensions[0], dimensions[0], 1);
@Nullable final CudaTensor deltaTensor = gpu.getTensor(delta, precision, MemoryType.Device, true);
delta.freeRef();
@Nullable final CudaTensor inputTensor = gpu.getTensor(input.getData(), precision, MemoryType.Device, false);
// assert deltaTensor.size == inputTensor.size;
@Nonnull final CudaMemory outputPtr = gpu.allocate((long) precision.size * outputDescriptor.nStride * length, MemoryType.Device, true);
CudaMemory deltaTensorMemory = deltaTensor.getMemory(gpu);
CudaMemory rightTensorMemory = inputTensor.getMemory(gpu);
CudaSystem.handle(gpu.cudnnOpTensor(opDescriptor.getPtr(), precision.getPointer(2), deltaTensor.descriptor.getPtr(), deltaTensorMemory.getPtr(), precision.getPointer(alpha), inputTensor.descriptor.getPtr(), rightTensorMemory.getPtr(), precision.getPointer(0.0), outputDescriptor.getPtr(), outputPtr.getPtr()));
deltaTensorMemory.dirty();
rightTensorMemory.dirty();
outputPtr.dirty();
deltaTensorMemory.freeRef();
rightTensorMemory.freeRef();
CudaTensor cudaTensor = new CudaTensor(outputPtr, outputDescriptor, precision);
Arrays.stream(new ReferenceCounting[] { deltaTensor, inputTensor, opDescriptor, outputDescriptor }).forEach(ReferenceCounting::freeRef);
outputPtr.freeRef();
return CudaTensorList.wrap(cudaTensor, length, dimensions, precision);
}, delta);
input.accumulate(buffer, data);
} else {
delta.freeRef();
}
}) {
@Override
public void accumulate(final DeltaSet<Layer> buffer, final TensorList delta) {
getAccumulator().accept(buffer, delta);
}
@Override
protected void _free() {
inputData.freeRef();
input.freeRef();
}
@Override
public boolean isAlive() {
for (@Nonnull final Result element : inObj) if (element.isAlive()) {
return true;
}
return false;
}
};
}
use of com.simiacryptus.mindseye.lang.cudnn.CudaMemory in project MindsEye by SimiaCryptus.
the class AvgReducerLayer method evalAndFree.
@Nullable
@Override
public Result evalAndFree(final Result... inObj) {
if (!CudaSystem.isEnabled())
return getCompatibilityLayer().evalAndFree(inObj);
final Result input = inObj[0];
final TensorList inputData = input.getData();
@Nonnull final int[] inputSize = inputData.getDimensions();
int length = inputData.length();
CudaTensorList result = CudaSystem.run(gpu -> {
CudaTensor inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, false);
inputData.freeRef();
CudaMemory inputMemory = inputTensor.getMemory(gpu);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, 1, 1, 1);
long size = (long) precision.size * outputDescriptor.nStride * length;
@Nonnull final CudaMemory outputMemory = gpu.allocate(size, MemoryType.Managed, true);
CudaResource<cudnnReduceTensorDescriptor> reduceTensorDescriptor = gpu.cudnnCreateReduceTensorDescriptor(cudnnReduceTensorOp.CUDNN_REDUCE_TENSOR_AVG, precision.code, cudnnNanPropagation.CUDNN_NOT_PROPAGATE_NAN, cudnnReduceTensorIndices.CUDNN_REDUCE_TENSOR_NO_INDICES, cudnnIndicesType.CUDNN_32BIT_INDICES);
@Nonnull final CudaMemory workspacePtr = gpu.allocate(inputMemory.size, MemoryType.Device, true);
@Nonnull final CudaMemory indexPtr = gpu.allocate(12 * length, MemoryType.Device, false);
// outputPtr.synchronize();
gpu.cudnnReduceTensor(reduceTensorDescriptor.getPtr(), indexPtr.getPtr(), indexPtr.size, workspacePtr.getPtr(), workspacePtr.size, precision.getPointer(1.0), inputTensor.descriptor.getPtr(), inputMemory.getPtr(), precision.getPointer(0.0), outputDescriptor.getPtr(), outputMemory.getPtr());
outputMemory.dirty();
inputMemory.dirty();
Stream.of(inputTensor, inputMemory, reduceTensorDescriptor, workspacePtr, indexPtr).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(CudaTensor.wrap(outputMemory, outputDescriptor, precision), length, new int[] { 1, 1, 1 }, precision);
});
return new Result(result, (DeltaSet<Layer> ctx, TensorList delta) -> {
// Not supported by CuDNN?
// CudaTensorList passback = CudaSystem.run(gpu -> {
// CudaTensor deltaTensor = gpu.getTensor(delta, precision, MemoryType.Device, false);
// CudaMemory deltaMemory = deltaTensor.getMemory(gpu);
//
// @Nonnull final CudaDevice.CudaTensorDescriptor passbackDescriptor1 = gpu.newTensorDescriptor(
// precision, length, inputSize[2], inputSize[1], inputSize[0]
// );
// @Nonnull final CudaMemory passbackPtr1 = gpu.allocate((long) precision.size * passbackDescriptor1.nStride * length, MemoryType.Device, false);
// gpu.cudnnAddTensor(precision.getPointer(1.0), deltaTensor.descriptor.getPtr(), deltaMemory.getPtr(),
// precision.getPointer(1.0), passbackDescriptor1.getPtr(), passbackPtr1.getPtr());
// passbackPtr1.dirty();
//
// Stream.of(deltaTensor, deltaMemory, passbackDescriptor1, passbackPtr1).forEach(ReferenceCounting::freeRef);
// return CudaTensorList.wrap(CudaTensor.wrap(passbackPtr1, passbackDescriptor1, precision), length, inputSize, precision);
// });
TensorList passback = TensorArray.wrap(IntStream.range(0, length).mapToObj(i -> {
Tensor tensor = delta.get(i);
Tensor tensor1 = new Tensor(inputSize).setAll((double) tensor.get(0) / Tensor.length(inputSize));
tensor.freeRef();
return tensor1;
}).toArray(i -> new Tensor[i]));
input.accumulate(ctx, passback);
}) {
@Override
protected void _free() {
super._free();
input.freeRef();
}
};
}
use of com.simiacryptus.mindseye.lang.cudnn.CudaMemory in project MindsEye by SimiaCryptus.
the class GateBiasLayer method evalAndFree.
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
if (!CudaSystem.isEnabled())
return getCompatibilityLayer().evalAndFree(inObj);
if (inObj.length != 2) {
throw new IllegalArgumentException("inObj.length=" + inObj.length);
}
Result left = inObj[0];
Result right = inObj[1];
final TensorList leftData = left.getData();
final TensorList rightData = right.getData();
@Nonnull final int[] leftDimensions = leftData.getDimensions();
@Nonnull final int[] rightDimensions = rightData.getDimensions();
final int length = leftData.length();
if (3 != leftDimensions.length) {
throw new IllegalArgumentException("dimensions=" + Arrays.toString(leftDimensions));
}
return new Result(CudaSystem.run(gpu -> {
@Nonnull final CudaResource<cudnnOpTensorDescriptor> opDescriptor = gpu.newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_ADD, precision);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, leftDimensions[2], leftDimensions[1], leftDimensions[0], leftDimensions[2] * leftDimensions[1] * leftDimensions[0], leftDimensions[1] * leftDimensions[0], leftDimensions[0], 1);
@Nullable final CudaTensor lPtr = gpu.getTensor(leftData, precision, MemoryType.Device, false);
@Nullable final CudaTensor rPtr = gpu.getTensor(rightData, precision, MemoryType.Device, false);
// assert lPtr.size == rPtr.size;
@Nonnull final CudaMemory outputPtr = gpu.allocate((long) precision.size * outputDescriptor.nStride * length, MemoryType.Device, true);
CudaMemory lPtrMemory = lPtr.getMemory(gpu);
CudaMemory rPtrMemory = rPtr.getMemory(gpu);
CudaSystem.handle(gpu.cudnnOpTensor(opDescriptor.getPtr(), precision.getPointer(1.0), lPtr.descriptor.getPtr(), lPtrMemory.getPtr(), precision.getPointer(1.0), rPtr.descriptor.getPtr(), rPtrMemory.getPtr(), precision.getPointer(0.0), outputDescriptor.getPtr(), outputPtr.getPtr()));
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
lPtrMemory.dirty();
rPtrMemory.dirty();
outputPtr.dirty();
lPtrMemory.freeRef();
rPtrMemory.freeRef();
rPtr.freeRef();
lPtr.freeRef();
opDescriptor.freeRef();
CudaTensor cudaTensor = CudaTensor.wrap(outputPtr, outputDescriptor, precision);
return CudaTensorList.wrap(cudaTensor, length, leftDimensions, precision);
}, leftData), (@Nonnull final DeltaSet<Layer> buffer, @Nonnull final TensorList delta) -> {
if (left.isAlive()) {
delta.addRef();
left.accumulate(buffer, delta);
}
if (right.isAlive()) {
@Nonnull TensorList data = CudaSystem.run(gpu -> {
// assert deltaTensor.size == rightTensor.size;
if (Arrays.equals(rightDimensions, leftDimensions) && length == rightData.length()) {
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
delta.addRef();
return delta;
} else {
@Nonnull final CudaDevice.CudaTensorDescriptor reducedOutputDescriptor = gpu.newTensorDescriptor(precision, rightData.length(), rightDimensions[2], rightDimensions[1], rightDimensions[0], rightDimensions[2] * rightDimensions[1] * rightDimensions[0], rightDimensions[1] * rightDimensions[0], rightDimensions[0], 1);
long size = (long) precision.size * reducedOutputDescriptor.nStride * rightData.length();
@Nonnull final CudaMemory reducedOutputPtr = gpu.allocate(size, MemoryType.Managed, true);
CudaResource<cudnnReduceTensorDescriptor> reduceTensorDescriptor = gpu.cudnnCreateReduceTensorDescriptor(cudnnReduceTensorOp.CUDNN_REDUCE_TENSOR_ADD, precision.code, cudnnNanPropagation.CUDNN_NOT_PROPAGATE_NAN, cudnnReduceTensorIndices.CUDNN_REDUCE_TENSOR_NO_INDICES, cudnnIndicesType.CUDNN_32BIT_INDICES);
@Nullable final CudaTensor deltaTensor = gpu.getTensor(delta, precision, MemoryType.Device, false);
CudaMemory deltaTensorMemory = deltaTensor.getMemory(gpu);
@Nonnull final CudaMemory workspacePtr = gpu.allocate(deltaTensorMemory.size, MemoryType.Device, true);
@Nonnull final CudaMemory indexPtr = gpu.allocate(12 * delta.length(), MemoryType.Device, false);
delta.freeRef();
// outputPtr.synchronize();
gpu.cudnnReduceTensor(reduceTensorDescriptor.getPtr(), indexPtr.getPtr(), indexPtr.size, workspacePtr.getPtr(), workspacePtr.size, precision.getPointer(1.0), deltaTensor.descriptor.getPtr(), deltaTensorMemory.getPtr(), precision.getPointer(0.0), reducedOutputDescriptor.getPtr(), reducedOutputPtr.getPtr());
reducedOutputPtr.dirty();
deltaTensorMemory.dirty();
Stream.of(deltaTensorMemory, deltaTensor, reduceTensorDescriptor, workspacePtr, indexPtr).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(CudaTensor.wrap(reducedOutputPtr, reducedOutputDescriptor, precision), rightData.length(), rightDimensions, precision);
}
}, delta);
right.accumulate(buffer, data);
} else {
delta.freeRef();
}
}) {
@Override
public final void accumulate(DeltaSet<Layer> buffer, TensorList delta) {
getAccumulator().accept(buffer, delta);
}
@Override
protected void _free() {
leftData.freeRef();
rightData.freeRef();
left.freeRef();
right.freeRef();
}
@Override
public boolean isAlive() {
for (@Nonnull final Result element : inObj) if (element.isAlive()) {
return true;
}
return false;
}
};
}
use of com.simiacryptus.mindseye.lang.cudnn.CudaMemory in project MindsEye by SimiaCryptus.
the class ImgBandSelectLayer method evalAndFree.
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
// assert Arrays.stream(inObj).flatMapToDouble(input->input.data.stream().flatMapToDouble(x-> Arrays.stream(x.getData()))).allMatch(v->Double.isFinite(v));
assert getFrom() < getTo();
assert getFrom() >= 0;
assert getTo() > 0;
assert 1 == inObj.length;
assert 3 == inObj[0].getData().getDimensions().length;
if (!CudaSystem.isEnabled())
return getCompatibilityLayer().eval(inObj);
final TensorList inputData = inObj[0].getData();
@Nonnull final int[] inputDimensions = inputData.getDimensions();
final int length = inputData.length();
@Nonnull final int[] outputDimensions = Arrays.copyOf(inputDimensions, 3);
outputDimensions[2] = getTo() - getFrom();
long size = (length * outputDimensions[2] * outputDimensions[1] * outputDimensions[0] * precision.size);
return new Result(CudaSystem.run(gpu -> {
@Nullable final CudaTensor cudaInput = gpu.getTensor(inputData, precision, MemoryType.Device, false);
inputData.freeRef();
final int byteOffset = cudaInput.descriptor.cStride * getFrom() * precision.size;
@Nonnull final CudaDevice.CudaTensorDescriptor inputDescriptor = gpu.newTensorDescriptor(//
precision, //
length, //
outputDimensions[2], //
outputDimensions[1], //
outputDimensions[0], //
cudaInput.descriptor.nStride, //
cudaInput.descriptor.cStride, //
cudaInput.descriptor.hStride, cudaInput.descriptor.wStride);
CudaMemory cudaInputMemory = cudaInput.getMemory(gpu);
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
CudaTensor cudaTensor = CudaTensor.wrap(cudaInputMemory.withByteOffset(byteOffset), inputDescriptor, precision);
Stream.<ReferenceCounting>of(cudaInput, cudaInputMemory).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(cudaTensor, length, outputDimensions, precision);
}, inputData), (@Nonnull final DeltaSet<Layer> buffer, @Nonnull final TensorList delta) -> {
if (!Arrays.equals(delta.getDimensions(), outputDimensions)) {
throw new AssertionError(Arrays.toString(delta.getDimensions()) + " != " + Arrays.toString(outputDimensions));
}
if (inObj[0].isAlive()) {
final TensorList passbackTensorList = CudaSystem.run(gpu -> {
@Nonnull final CudaDevice.CudaTensorDescriptor viewDescriptor = gpu.newTensorDescriptor(//
precision, //
length, //
outputDimensions[2], //
outputDimensions[1], //
outputDimensions[0], //
inputDimensions[2] * inputDimensions[1] * inputDimensions[0], //
inputDimensions[1] * inputDimensions[0], //
inputDimensions[0], 1);
@Nonnull final CudaDevice.CudaTensorDescriptor inputDescriptor = gpu.newTensorDescriptor(//
precision, //
length, //
inputDimensions[2], //
inputDimensions[1], //
inputDimensions[0], //
inputDimensions[2] * inputDimensions[1] * inputDimensions[0], //
inputDimensions[1] * inputDimensions[0], //
inputDimensions[0], 1);
final int byteOffset = viewDescriptor.cStride * getFrom() * precision.size;
assert delta.length() == length;
// assert error.stream().flatMapToDouble(x-> Arrays.stream(x.getData())).allMatch(Double::isFinite);
@Nullable final CudaTensor errorPtr = gpu.getTensor(delta, precision, MemoryType.Device, false);
delta.freeRef();
long size1 = (length * inputDimensions[2] * inputDimensions[1] * inputDimensions[0] * precision.size);
@Nonnull final CudaMemory passbackBuffer = gpu.allocate(size1, MemoryType.Managed.normalize(), false);
CudaMemory errorPtrMemory = errorPtr.getMemory(gpu);
gpu.cudnnTransformTensor(precision.getPointer(1.0), errorPtr.descriptor.getPtr(), errorPtrMemory.getPtr(), precision.getPointer(0.0), viewDescriptor.getPtr(), passbackBuffer.getPtr().withByteOffset(byteOffset));
errorPtrMemory.dirty();
passbackBuffer.dirty();
errorPtrMemory.freeRef();
CudaTensor cudaTensor = CudaTensor.wrap(passbackBuffer, inputDescriptor, precision);
Stream.<ReferenceCounting>of(errorPtr, viewDescriptor).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(cudaTensor, length, inputDimensions, precision);
// assert passbackTensorList.stream().flatMapToDouble(x-> Arrays.stream(x.getData())).allMatch(v->Double.isFinite(v));
}, delta);
inObj[0].accumulate(buffer, passbackTensorList);
} else {
delta.freeRef();
}
}) {
@Override
public void accumulate(final DeltaSet<Layer> buffer, final TensorList delta) {
getAccumulator().accept(buffer, delta);
}
@Override
protected void _free() {
Arrays.stream(inObj).forEach(nnResult -> nnResult.freeRef());
}
@Override
public boolean isAlive() {
return Arrays.stream(inObj).anyMatch(x -> x.isAlive());
}
};
}
Aggregations