use of com.simiacryptus.mindseye.lang.cudnn.CudaTensor in project MindsEye by SimiaCryptus.
the class ImgTileSubnetLayer method evalAndFree.
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
assert 1 == inObj.length;
Result input = inObj[0];
TensorList inputData = input.getData();
@Nonnull final int[] inputDims = inputData.getDimensions();
assert 3 == inputDims.length;
int bands = inputDims[2];
int length = inputData.length();
CudaTensor passback = CudaSystem.run(gpu -> {
return CudaTensor.wrap(gpu.allocate(inputData.getElements() * precision.size, MemoryType.Managed, true), gpu.newTensorDescriptor(precision, length, inputDims[2], inputDims[1], inputDims[0]), precision);
});
try {
AtomicInteger counter = new AtomicInteger(0);
int cols = (int) (Math.ceil((inputDims[0] - width) * 1.0 / strideX) + 1);
int rows = (int) (Math.ceil((inputDims[1] - height) * 1.0 / strideY) + 1);
if (cols == 1 && rows == 1)
return getInner().evalAndFree(inObj);
ArrayList<CudaTensor> tiles = new ArrayList<>();
int[] tileDimensions = { width, height, bands };
Result[][] tileResults = new Result[rows][];
for (int row = 0; row < rows; row++) {
tileResults[row] = new Result[cols];
for (int col = 0; col < cols; col++) {
int positionX = col * strideX;
int positionY = row * strideY;
assert positionX >= 0;
assert positionY >= 0;
assert positionX < inputDims[0];
assert positionY < inputDims[1];
CudaTensor tile = CudaSystem.run(gpu -> {
return ImgTileSelectLayer.copy(gpu, inputData, inputData.getDimensions(), tileDimensions, precision, positionX, positionY, true);
});
passback.addRef();
tileResults[row][col] = getInner().evalAndFree(new Result(CudaTensorList.wrap(tile, length, tileDimensions, precision), (DeltaSet<Layer> ctx, TensorList delta) -> {
CudaSystem.run(gpu -> {
ImgTileSelectLayer.copy(gpu, delta, tileDimensions, -positionX, -positionY, precision, passback).freeRef();
});
if (counter.incrementAndGet() >= rows * cols) {
counter.set(0);
input.accumulate(ctx, CudaTensorList.create(passback, length, inputDims, precision));
}
}) {
@Override
protected void _free() {
super._free();
passback.freeRef();
}
});
}
}
inputData.freeRef();
logger.debug(String.format("Broke input %s into %s rows, %s cols", Arrays.toString(inputDims), rows, cols));
Result result = new ImgTileAssemblyLayer(cols, rows).setParallel(parallel).setPrecision(precision).evalAndFree(Arrays.stream(tileResults).flatMap(Arrays::stream).toArray(i -> new Result[i]));
return new Result(result.getData(), (ctx, delta) -> {
result.accumulate(ctx, delta);
}) {
@Override
public void accumulate(final DeltaSet<Layer> buffer, final TensorList delta) {
getAccumulator().accept(buffer, delta);
}
@Override
protected void _free() {
super._free();
result.freeRef();
input.freeRef();
}
};
} finally {
passback.freeRef();
}
}
use of com.simiacryptus.mindseye.lang.cudnn.CudaTensor in project MindsEye by SimiaCryptus.
the class NProductLayer method evalAndFree.
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
if (!CudaSystem.isEnabled())
return getCompatibilityLayer().evalAndFree(inObj);
if (inObj.length <= 1) {
throw new IllegalArgumentException("inObj.length=" + inObj.length);
}
@Nonnull final int[] dimensions = inObj[0].getData().getDimensions();
final int length = inObj[0].getData().length();
if (3 != dimensions.length) {
throw new IllegalArgumentException("dimensions=" + Arrays.toString(dimensions));
}
for (int i = 1; i < inObj.length; i++) {
TensorList data = inObj[i].getData();
if (Tensor.length(dimensions) != Tensor.length(data.getDimensions())) {
throw new IllegalArgumentException(Arrays.toString(dimensions) + " != " + Arrays.toString(data.getDimensions()));
}
}
return new Result(CudaSystem.run(gpu -> {
@Nonnull final CudaResource<cudnnOpTensorDescriptor> opDescriptor = gpu.newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_MUL, precision);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, dimensions[2], dimensions[1], dimensions[0], dimensions[2] * dimensions[1] * dimensions[0], dimensions[1] * dimensions[0], dimensions[0], 1);
@Nonnull final TensorList result1 = Arrays.stream(inObj).map(x -> {
TensorList data = x.getData();
data.addRef();
return data;
}).reduce((l, r) -> {
@Nullable final CudaTensor lPtr = gpu.getTensor(l, precision, MemoryType.Device, false);
@Nullable final CudaTensor rPtr = gpu.getTensor(r, precision, MemoryType.Device, false);
// assert lPtr.memory.size == rPtr.memory.size;
@Nonnull final CudaMemory outputPtr = gpu.allocate((long) outputDescriptor.nStride * length * precision.size, MemoryType.Device, true);
CudaMemory lPtrMemory = lPtr.getMemory(gpu);
CudaMemory rPtrMemory = rPtr.getMemory(gpu);
CudaSystem.handle(JCudnn.cudnnOpTensor(gpu.handle, opDescriptor.getPtr(), precision.getPointer(1.0), lPtr.descriptor.getPtr(), lPtrMemory.getPtr(), precision.getPointer(1.0), rPtr.descriptor.getPtr(), rPtrMemory.getPtr(), precision.getPointer(0.0), outputDescriptor.getPtr(), outputPtr.getPtr()));
lPtrMemory.dirty();
rPtrMemory.dirty();
outputPtr.dirty();
lPtrMemory.freeRef();
rPtrMemory.freeRef();
Arrays.stream(new ReferenceCounting[] { lPtr, rPtr, l, r }).forEach(ReferenceCounting::freeRef);
outputDescriptor.addRef();
return CudaTensorList.wrap(CudaTensor.wrap(outputPtr, outputDescriptor, precision), length, dimensions, precision);
}).get();
Arrays.stream(new ReferenceCounting[] { opDescriptor, outputDescriptor }).forEach(ReferenceCounting::freeRef);
return result1;
}, Arrays.stream(inObj).map(Result::getData).toArray()), (@Nonnull final DeltaSet<Layer> buffer, @Nonnull final TensorList delta) -> {
for (int index = 0; index < inObj.length; index++) {
final Result input = inObj[index];
if (input.isAlive()) {
final int _index = index;
@Nonnull TensorList data = IntStream.range(0, inObj.length).mapToObj(i -> {
TensorList tensorList = i == _index ? delta : inObj[i].getData();
tensorList.addRef();
return tensorList;
}).reduce((l, r) -> {
return CudaSystem.run(gpu -> {
@Nonnull final CudaResource<cudnnOpTensorDescriptor> opDescriptor = gpu.newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_MUL, precision);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, dimensions[2], dimensions[1], dimensions[0], dimensions[2] * dimensions[1] * dimensions[0], dimensions[1] * dimensions[0], dimensions[0], 1);
@Nullable final CudaTensor lPtr = gpu.getTensor(l, precision, MemoryType.Device, false);
@Nullable final CudaTensor rPtr = gpu.getTensor(r, precision, MemoryType.Device, false);
// assert lPtr.memory.size == rPtr.memory.size;
@Nonnull final CudaMemory outputPtr = gpu.allocate((long) outputDescriptor.nStride * length * precision.size, MemoryType.Device, true);
CudaMemory lPtrMemory = lPtr.getMemory(gpu);
CudaMemory rPtrMemory = rPtr.getMemory(gpu);
CudaSystem.handle(JCudnn.cudnnOpTensor(gpu.handle, opDescriptor.getPtr(), precision.getPointer(1.0), lPtr.descriptor.getPtr(), lPtrMemory.getPtr(), precision.getPointer(1.0), rPtr.descriptor.getPtr(), rPtrMemory.getPtr(), precision.getPointer(0.0), outputDescriptor.getPtr(), outputPtr.getPtr()));
lPtrMemory.dirty();
rPtrMemory.dirty();
outputPtr.dirty();
lPtrMemory.freeRef();
rPtrMemory.freeRef();
Stream.of(lPtr, rPtr, opDescriptor, l, r).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(CudaTensor.wrap(outputPtr, outputDescriptor, precision), length, dimensions, precision);
}, l, r);
}).get();
input.accumulate(buffer, data);
}
}
delta.freeRef();
}) {
@Override
public final void accumulate(DeltaSet<Layer> buffer, TensorList delta) {
getAccumulator().accept(buffer, delta);
}
@Override
protected void _free() {
Arrays.stream(inObj).forEach(nnResult -> nnResult.freeRef());
for (int i = 0; i < inObj.length; i++) {
inObj[i].getData().freeRef();
}
}
@Override
public boolean isAlive() {
for (@Nonnull final Result element : inObj) if (element.isAlive()) {
return true;
}
return false;
}
};
}
use of com.simiacryptus.mindseye.lang.cudnn.CudaTensor in project MindsEye by SimiaCryptus.
the class ProductLayer method evalAndFree.
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
if (!CudaSystem.isEnabled())
return getCompatibilityLayer().evalAndFree(inObj);
if (inObj.length != 2) {
throw new IllegalArgumentException("inObj.length=" + inObj.length);
}
Result left = inObj[0];
Result right = inObj[1];
final TensorList leftData = left.getData();
final TensorList rightData = right.getData();
@Nonnull final int[] leftDimensions = leftData.getDimensions();
@Nonnull final int[] rightDimensions = rightData.getDimensions();
final int length = leftData.length();
if (3 != leftDimensions.length) {
throw new IllegalArgumentException("dimensions=" + Arrays.toString(leftDimensions));
}
return new Result(CudaSystem.run(gpu -> {
@Nonnull final CudaResource<cudnnOpTensorDescriptor> opDescriptor = gpu.newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_MUL, precision);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, leftDimensions[2], leftDimensions[1], leftDimensions[0], leftDimensions[2] * leftDimensions[1] * leftDimensions[0], leftDimensions[1] * leftDimensions[0], leftDimensions[0], 1);
@Nullable final CudaTensor lPtr = gpu.getTensor(leftData, precision, MemoryType.Device, false);
@Nullable final CudaTensor rPtr = gpu.getTensor(rightData, precision, MemoryType.Device, false);
// assert lPtr.size == rPtr.size;
@Nonnull final CudaMemory outputPtr = gpu.allocate((long) precision.size * outputDescriptor.nStride * length, MemoryType.Device, true);
CudaMemory lPtrMemory = lPtr.getMemory(gpu);
CudaMemory rPtrMemory = rPtr.getMemory(gpu);
CudaSystem.handle(gpu.cudnnOpTensor(opDescriptor.getPtr(), precision.getPointer(1.0), lPtr.descriptor.getPtr(), lPtrMemory.getPtr(), precision.getPointer(1.0), rPtr.descriptor.getPtr(), rPtrMemory.getPtr(), precision.getPointer(0.0), outputDescriptor.getPtr(), outputPtr.getPtr()));
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
lPtrMemory.dirty();
rPtrMemory.dirty();
outputPtr.dirty();
lPtrMemory.freeRef();
rPtrMemory.freeRef();
rPtr.freeRef();
lPtr.freeRef();
opDescriptor.freeRef();
CudaTensor cudaTensor = CudaTensor.wrap(outputPtr, outputDescriptor, precision);
return CudaTensorList.wrap(cudaTensor, length, leftDimensions, precision);
}, leftData), (@Nonnull final DeltaSet<Layer> buffer, @Nonnull final TensorList delta) -> {
if (left.isAlive()) {
@Nonnull TensorList data = CudaSystem.run(gpu -> {
@Nonnull final CudaResource<cudnnOpTensorDescriptor> opDescriptor = gpu.newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_MUL, precision);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, leftDimensions[2], leftDimensions[1], leftDimensions[0], leftDimensions[2] * leftDimensions[1] * leftDimensions[0], leftDimensions[1] * leftDimensions[0], leftDimensions[0], 1);
@Nullable final CudaTensor deltaTensor = gpu.getTensor(delta, precision, MemoryType.Device, false);
@Nullable final CudaTensor rightTensor = gpu.getTensor(right.getData(), precision, MemoryType.Device, false);
// assert deltaTensor.size == rightTensor.size;
@Nonnull final CudaMemory outputPtr = gpu.allocate((long) precision.size * outputDescriptor.nStride * length, MemoryType.Device, true);
CudaMemory deltaTensorMemory = deltaTensor.getMemory(gpu);
CudaMemory rightTensorMemory = rightTensor.getMemory(gpu);
CudaSystem.handle(gpu.cudnnOpTensor(opDescriptor.getPtr(), precision.getPointer(1.0), deltaTensor.descriptor.getPtr(), deltaTensorMemory.getPtr(), precision.getPointer(1.0), rightTensor.descriptor.getPtr(), rightTensorMemory.getPtr(), precision.getPointer(0.0), outputDescriptor.getPtr(), outputPtr.getPtr()));
deltaTensorMemory.dirty();
rightTensorMemory.dirty();
outputPtr.dirty();
deltaTensorMemory.freeRef();
rightTensorMemory.freeRef();
CudaTensor cudaTensor = new CudaTensor(outputPtr, outputDescriptor, precision);
Arrays.stream(new ReferenceCounting[] { deltaTensor, rightTensor, opDescriptor, outputDescriptor }).forEach(ReferenceCounting::freeRef);
outputPtr.freeRef();
return CudaTensorList.wrap(cudaTensor, length, leftDimensions, precision);
}, delta);
left.accumulate(buffer, data);
}
if (right.isAlive()) {
@Nonnull TensorList data = CudaSystem.run(gpu -> {
@Nonnull final CudaResource<cudnnOpTensorDescriptor> opDescriptor = gpu.newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_MUL, precision);
@Nonnull final CudaDevice.CudaTensorDescriptor expandedDescriptor = gpu.newTensorDescriptor(precision, length, leftDimensions[2], leftDimensions[1], leftDimensions[0], leftDimensions[2] * leftDimensions[1] * leftDimensions[0], leftDimensions[1] * leftDimensions[0], leftDimensions[0], 1);
@Nullable final CudaTensor deltaTensor = gpu.getTensor(delta, precision, MemoryType.Device, false);
delta.freeRef();
@Nullable final CudaTensor leftTensor = gpu.getTensor(left.getData(), precision, MemoryType.Device, false);
// assert deltaTensor.size == rightTensor.size;
@Nonnull final CudaMemory outputPtr = gpu.allocate((long) precision.size * expandedDescriptor.nStride * length, MemoryType.Device, true);
CudaMemory deltaTensorMemory = deltaTensor.getMemory(gpu);
CudaMemory leftTensorMemory = leftTensor.getMemory(gpu);
CudaSystem.handle(gpu.cudnnOpTensor(opDescriptor.getPtr(), precision.getPointer(1.0), deltaTensor.descriptor.getPtr(), deltaTensorMemory.getPtr(), precision.getPointer(1.0), leftTensor.descriptor.getPtr(), leftTensorMemory.getPtr(), precision.getPointer(0.0), expandedDescriptor.getPtr(), outputPtr.getPtr()));
deltaTensorMemory.dirty();
leftTensorMemory.dirty();
outputPtr.dirty();
if (Arrays.equals(rightDimensions, leftDimensions) && length == rightData.length()) {
deltaTensorMemory.freeRef();
leftTensorMemory.freeRef();
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
outputPtr.dirty();
CudaTensor cudaTensor = new CudaTensor(outputPtr, expandedDescriptor, precision);
Stream.of(deltaTensor, leftTensor, opDescriptor, expandedDescriptor, outputPtr).forEach(ReferenceCounting::freeRef);
CudaTensorList tensorList = CudaTensorList.wrap(cudaTensor, length, rightDimensions, precision);
return tensorList;
} else {
@Nonnull final CudaDevice.CudaTensorDescriptor reducedOutputDescriptor = gpu.newTensorDescriptor(precision, rightData.length(), rightDimensions[2], rightDimensions[1], rightDimensions[0], rightDimensions[2] * rightDimensions[1] * rightDimensions[0], rightDimensions[1] * rightDimensions[0], rightDimensions[0], 1);
long size = (long) precision.size * reducedOutputDescriptor.nStride * rightData.length();
@Nonnull final CudaMemory reducedOutputPtr = gpu.allocate(size, MemoryType.Managed, true);
CudaResource<cudnnReduceTensorDescriptor> reduceTensorDescriptor = gpu.cudnnCreateReduceTensorDescriptor(cudnnReduceTensorOp.CUDNN_REDUCE_TENSOR_ADD, precision.code, cudnnNanPropagation.CUDNN_NOT_PROPAGATE_NAN, cudnnReduceTensorIndices.CUDNN_REDUCE_TENSOR_NO_INDICES, cudnnIndicesType.CUDNN_32BIT_INDICES);
@Nonnull final CudaMemory workspacePtr = gpu.allocate(outputPtr.size, MemoryType.Device, true);
@Nonnull final CudaMemory indexPtr = gpu.allocate(3, MemoryType.Device, false);
// outputPtr.synchronize();
gpu.cudnnReduceTensor(reduceTensorDescriptor.getPtr(), indexPtr.getPtr(), indexPtr.size, workspacePtr.getPtr(), workspacePtr.size, precision.getPointer(1.0), expandedDescriptor.getPtr(), outputPtr.getPtr(), precision.getPointer(0.0), reducedOutputDescriptor.getPtr(), reducedOutputPtr.getPtr());
reducedOutputPtr.dirty();
workspacePtr.dirty();
outputPtr.dirty();
deltaTensorMemory.freeRef();
leftTensorMemory.freeRef();
CudaTensor cudaTensor = new CudaTensor(reducedOutputPtr, reducedOutputDescriptor, precision);
Stream.of(deltaTensor, leftTensor, opDescriptor, expandedDescriptor, outputPtr, reducedOutputPtr, reducedOutputDescriptor, reduceTensorDescriptor, workspacePtr, indexPtr).forEach(ReferenceCounting::freeRef);
CudaTensorList tensorList = CudaTensorList.wrap(cudaTensor, rightData.length(), rightDimensions, precision);
return tensorList;
}
}, delta);
right.accumulate(buffer, data);
} else {
delta.freeRef();
}
}) {
@Override
public void accumulate(final DeltaSet<Layer> buffer, final TensorList delta) {
getAccumulator().accept(buffer, delta);
}
@Override
protected void _free() {
leftData.freeRef();
rightData.freeRef();
left.freeRef();
right.freeRef();
}
@Override
public boolean isAlive() {
for (@Nonnull final Result element : inObj) if (element.isAlive()) {
return true;
}
return false;
}
};
}
use of com.simiacryptus.mindseye.lang.cudnn.CudaTensor in project MindsEye by SimiaCryptus.
the class SimpleConvolutionLayer method evalAndFree.
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
if (!CudaSystem.isEnabled())
return getCompatibilityLayer().eval(inObj);
final Result input = inObj[0];
final TensorList inputData = input.getData();
@Nonnull final int[] inputSize = inputData.getDimensions();
@Nonnull final int[] kernelSize = kernel.getDimensions();
final int[] outputSize = getOutputSize(inputSize);
final int length = inputData.length();
kernel.addRef();
SimpleConvolutionLayer.this.addRef();
return new Result(CudaSystem.run(gpu -> {
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
@Nullable final CudaTensor inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, false);
final CudaResource<cudnnFilterDescriptor> filterDescriptor = gpu.newFilterDescriptor(precision, cudnnTensorFormat.CUDNN_TENSOR_NCHW, outputSize[2], inputSize[2], kernelSize[1], kernelSize[0]);
final CudaResource<cudnnConvolutionDescriptor> convolutionDescriptor = gpu.newConvolutions2dDescriptor(cudnnConvolutionMode.CUDNN_CONVOLUTION, precision, paddingY, paddingX, strideY, strideX, 1, 1);
final int[] outputDims = IntStream.of(reverse(CudaSystem.getOutputDims(inputTensor.descriptor.getPtr(), filterDescriptor.getPtr(), convolutionDescriptor.getPtr()))).limit(3).toArray();
final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, outputDims[2], outputDims[1], outputDims[0], outputDims[2] * outputDims[1] * outputDims[0], outputDims[1] * outputDims[0], outputDims[0], 1);
final int forwardAlgorithm = getForwardAlgorithm(gpu, inputTensor, filterDescriptor, convolutionDescriptor, outputDescriptor);
final CudaMemory forwardWorkspace = gpu.allocateForwardWorkspace(inputTensor.descriptor.getPtr(), filterDescriptor.getPtr(), convolutionDescriptor.getPtr(), outputDescriptor.getPtr(), forwardAlgorithm, 1);
try {
assert 0 < kernel.getData().length;
assert kernelSize[0] * kernelSize[1] * kernelSize[2] == kernel.getData().length;
@Nonnull CudaMemory filterPtr = getCudaFilter(gpu);
@Nonnull final CudaMemory outputBuffer = gpu.allocate((long) Tensor.length(outputDims) * length * precision.size, MemoryType.Managed.normalize(), true);
CudaMemory inputTensorMemory = inputTensor.getMemory(gpu);
// inputTensorMemory.synchronize();
CudaSystem.handle(gpu.cudnnConvolutionForward(precision.getPointer(1.0), inputTensor.descriptor.getPtr(), inputTensorMemory.getPtr(), filterDescriptor.getPtr(), filterPtr.getPtr(), convolutionDescriptor.getPtr(), forwardAlgorithm, null == forwardWorkspace ? null : forwardWorkspace.getPtr(), null == forwardWorkspace ? 0 : forwardWorkspace.size, precision.getPointer(0.0), outputDescriptor.getPtr(), outputBuffer.getPtr()));
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
forwardWorkspace.dirty();
filterPtr.dirty();
outputBuffer.dirty();
inputTensorMemory.dirty();
// inputTensorMemory.synchronize();
inputTensorMemory.freeRef();
filterPtr.freeRef();
outputDescriptor.addRef();
return CudaTensorList.wrap(CudaTensor.wrap(outputBuffer, outputDescriptor, precision), length, outputDims, precision);
} catch (@Nonnull final Throwable e) {
throw new ComponentException(String.format("Error in convolution %s x %s", Arrays.toString(inputSize), Arrays.toString(kernelSize)), e);
} finally {
Stream.of(inputTensor, filterDescriptor, outputDescriptor, forwardWorkspace, convolutionDescriptor).forEach(ReferenceCounting::freeRef);
}
}, inputData), (@Nonnull final DeltaSet<Layer> buffer, @Nonnull final TensorList delta) -> {
delta.assertAlive();
buffer.assertAlive();
inputData.assertAlive();
assert delta.length() == length;
delta.addRef();
Runnable learnFn = () -> {
if (!isFrozen()) {
@Nonnull final Tensor weightGradient = CudaSystem.run(gpu -> {
@Nullable final CudaTensor deltaTensor = gpu.getTensor(delta, precision, MemoryType.Device, true);
delta.freeRef();
@Nullable final CudaTensor inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, false);
final CudaResource<cudnnFilterDescriptor> filterDescriptor = gpu.newFilterDescriptor(precision, cudnnTensorFormat.CUDNN_TENSOR_NCHW, outputSize[2], inputSize[2], kernelSize[1], kernelSize[0]);
final CudaResource<cudnnConvolutionDescriptor> convolutionDescriptor = gpu.newConvolutions2dDescriptor(cudnnConvolutionMode.CUDNN_CONVOLUTION, precision, paddingY, paddingX, strideY, strideX, 1, 1);
final int backwardFilterAlgorithm = getBackwardFilterAlgorithm(gpu, deltaTensor, inputTensor, filterDescriptor, convolutionDescriptor);
final CudaMemory backwardsFilterWorkSpace = gpu.allocateBackwardFilterWorkspace(inputTensor.descriptor.getPtr(), filterDescriptor.getPtr(), convolutionDescriptor.getPtr(), deltaTensor.descriptor.getPtr(), backwardFilterAlgorithm, 1);
@Nonnull CudaMemory filterPtr = gpu.allocate((long) kernel.length() * precision.size, MemoryType.Device, true);
try {
CudaMemory inputTensorMemory = inputTensor.getMemory(gpu);
CudaMemory deltaTensorMemory = deltaTensor.getMemory(gpu, MemoryType.Managed.normalize());
// inputTensorMemory.synchronize();
CudaSystem.handle(gpu.cudnnConvolutionBackwardFilter(precision.getPointer(1.0), inputTensor.descriptor.getPtr(), inputTensorMemory.getPtr(), deltaTensor.descriptor.getPtr(), deltaTensorMemory.getPtr(), convolutionDescriptor.getPtr(), backwardFilterAlgorithm, backwardsFilterWorkSpace.getPtr(), backwardsFilterWorkSpace.size, precision.getPointer(0.0), filterDescriptor.getPtr(), filterPtr.getPtr()));
filterPtr.dirty();
deltaTensorMemory.dirty();
inputTensorMemory.dirty();
backwardsFilterWorkSpace.dirty();
// backwardsFilterWorkSpace.synchronize();
inputTensorMemory.freeRef();
deltaTensorMemory.freeRef();
return filterPtr.read(precision, kernel.getDimensions());
} catch (@Nonnull final Throwable e) {
throw new ComponentException(String.format("Error in convolution %s x %s => %s", Arrays.toString(inputSize), Arrays.toString(kernelSize), Arrays.toString(outputSize)), e);
} finally {
inputTensor.freeRef();
filterPtr.freeRef();
deltaTensor.freeRef();
Stream.of(filterDescriptor, convolutionDescriptor, backwardsFilterWorkSpace).forEach(ReferenceCounting::freeRef);
}
}, delta);
buffer.get(SimpleConvolutionLayer.this, kernel.getData()).addInPlace(weightGradient.getData()).freeRef();
weightGradient.freeRef();
clearCudaFilters();
} else {
delta.freeRef();
}
};
Runnable backpropFn = () -> {
if (input.isAlive()) {
final TensorList inputBufferTensors = CudaSystem.run(gpu -> {
final CudaDevice.CudaTensorDescriptor inputDescriptor = gpu.newTensorDescriptor(precision, length, inputSize[2], inputSize[1], inputSize[0], inputSize[2] * inputSize[1] * inputSize[0], inputSize[1] * inputSize[0], inputSize[0], 1);
final CudaResource<cudnnFilterDescriptor> filterDescriptor = gpu.newFilterDescriptor(precision, cudnnTensorFormat.CUDNN_TENSOR_NCHW, outputSize[2], inputSize[2], kernelSize[1], kernelSize[0]);
final CudaResource<cudnnConvolutionDescriptor> convolutionDescriptor = gpu.newConvolutions2dDescriptor(cudnnConvolutionMode.CUDNN_CONVOLUTION, precision, paddingY, paddingX, strideY, strideX, 1, 1);
@Nullable final CudaTensor deltaTensor = gpu.getTensor(delta, precision, MemoryType.Device, false);
delta.freeRef();
final int backwardDataAlgorithm = getBackwardDataAlgorithm(gpu, inputDescriptor, filterDescriptor, convolutionDescriptor, deltaTensor);
final CudaMemory backwardsDataWorkSpace = gpu.allocateBackwardDataWorkspace(inputDescriptor.getPtr(), filterDescriptor.getPtr(), convolutionDescriptor.getPtr(), deltaTensor.descriptor.getPtr(), backwardDataAlgorithm, 1);
@Nonnull final CudaMemory filterPtr = getCudaFilter(gpu);
try {
@Nonnull final CudaMemory passbackMemory = gpu.allocate((long) Tensor.length(inputData.getDimensions()) * length * precision.size, MemoryType.Managed.normalize(), true);
CudaMemory deltaTensorMemory = deltaTensor.getMemory(gpu);
// deltaTensorMemory.synchronize();
CudaSystem.handle(gpu.cudnnConvolutionBackwardData(precision.getPointer(1.0), filterDescriptor.getPtr(), filterPtr.getPtr(), deltaTensor.descriptor.getPtr(), deltaTensorMemory.getPtr(), convolutionDescriptor.getPtr(), backwardDataAlgorithm, backwardsDataWorkSpace.getPtr(), backwardsDataWorkSpace.size, precision.getPointer(0.0), inputDescriptor.getPtr(), passbackMemory.getPtr()));
passbackMemory.dirty();
backwardsDataWorkSpace.dirty();
deltaTensorMemory.dirty();
// deltaTensorMemory.synchronize();
filterPtr.dirty();
deltaTensorMemory.freeRef();
inputDescriptor.addRef();
return CudaTensorList.wrap(CudaTensor.wrap(passbackMemory, inputDescriptor, precision), length, inputSize, precision);
} catch (@Nonnull final Throwable e) {
throw new ComponentException(String.format("Error in convolution %s x %s => %s", Arrays.toString(inputSize), Arrays.toString(kernelSize), Arrays.toString(outputSize)), e);
} finally {
filterPtr.freeRef();
deltaTensor.freeRef();
Stream.of(inputDescriptor, filterDescriptor, convolutionDescriptor, backwardsDataWorkSpace).forEach(ReferenceCounting::freeRef);
}
}, delta);
if (null != inputBufferTensors) {
input.accumulate(buffer, inputBufferTensors);
}
} else {
delta.freeRef();
}
};
Stream.of(learnFn, backpropFn).forEach(Runnable::run);
}) {
@Override
public final void accumulate(DeltaSet<Layer> buffer, TensorList delta) {
getAccumulator().accept(buffer, delta);
}
@Override
protected void _free() {
kernel.freeRef();
inputData.freeRef();
Arrays.stream(inObj).forEach(ReferenceCounting::freeRef);
SimpleConvolutionLayer.this.freeRef();
}
@Override
public boolean isAlive() {
return input.isAlive() || !isFrozen();
}
};
}
use of com.simiacryptus.mindseye.lang.cudnn.CudaTensor in project MindsEye by SimiaCryptus.
the class SoftmaxActivationLayer method evalAndFree.
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
if (!CudaSystem.isEnabled())
return getCompatibilityLayer().evalAndFree(inObj);
final Result inputResult = inObj[0];
final TensorList inputData = inputResult.getData();
@Nonnull final int[] inputSize = inputData.getDimensions();
@Nonnull final int[] outputSize = inputSize;
final int length = inputData.length();
final int inputDims = Tensor.length(inputSize);
try {
final CudaTensor outPtr = CudaSystem.run(gpu -> {
@Nullable CudaTensor inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, false);
final CudaTensor outputTensor;
if (1 == inputData.currentRefCount() && 1 == inputTensor.currentRefCount()) {
outputTensor = inputTensor;
outputTensor.addRef();
} else {
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, inputSize[2], inputSize[1], inputSize[0], inputSize[2] * inputSize[1] * inputSize[0], inputSize[1] * inputSize[0], inputSize[0], 1);
@Nonnull final CudaMemory outputData = gpu.allocate(precision.size * 1l * inputDims * length, MemoryType.Managed.normalize(), true);
outputTensor = CudaTensor.wrap(outputData, outputDescriptor, precision);
}
try {
CudaMemory inputMemory = inputTensor.getMemory(gpu);
CudaMemory outputMemory = outputTensor.getMemory(gpu);
CudaSystem.handle(gpu.cudnnSoftmaxForward(algorithm.code, mode.code, precision.getPointer(1.0), inputTensor.descriptor.getPtr(), inputMemory.getPtr(), precision.getPointer(0.0), outputTensor.descriptor.getPtr(), outputMemory.getPtr()));
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
inputMemory.dirty();
outputMemory.dirty();
outputMemory.freeRef();
inputMemory.freeRef();
return outputTensor;
} catch (@Nonnull final Throwable e) {
throw new ComponentException("Error apply " + Arrays.toString(inputSize), e);
} finally {
inputTensor.freeRef();
}
}, inputData);
return new Result(CudaTensorList.create(outPtr, length, outputSize, precision), (@Nonnull final DeltaSet<Layer> buffer, @Nonnull final TensorList delta) -> {
if (inputResult.isAlive()) {
final TensorList data = CudaSystem.run(gpu -> {
@Nullable CudaTensor inputTensor;
synchronized (gpu) {
inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, true);
}
@Nullable CudaTensor deltaTensor;
synchronized (gpu) {
deltaTensor = gpu.getTensor(delta, precision, MemoryType.Device, true);
}
outPtr.addRef();
CudaTensor localOut = outPtr.getDenseAndFree(gpu);
delta.freeRef();
CudaTensor passbackTensor;
passbackTensor = CudaTensor.wrap(gpu.allocate((long) Tensor.length(inputSize) * length * precision.size, MemoryType.Managed.normalize(), false), gpu.newTensorDescriptor(precision, delta.length(), inputSize[2], inputSize[1], inputSize[0], inputSize[2] * inputSize[1] * inputSize[0], inputSize[1] * inputSize[0], inputSize[0], 1), precision);
try {
CudaMemory localOutMemory = localOut.getMemory(gpu);
CudaMemory deltaTensorMemory = deltaTensor.getMemory(gpu);
CudaMemory inputMemory = inputTensor.getMemory(gpu);
CudaMemory passbackMemory = passbackTensor.getMemory(gpu);
CudaSystem.handle(gpu.cudnnSoftmaxBackward(algorithm.code, mode.code, precision.getPointer(1.0), localOut.descriptor.getPtr(), localOutMemory.getPtr(), deltaTensor.descriptor.getPtr(), deltaTensorMemory.getPtr(), precision.getPointer(0.0), passbackTensor.descriptor.getPtr(), passbackMemory.getPtr()));
localOutMemory.dirty();
deltaTensorMemory.dirty();
passbackMemory.dirty();
localOutMemory.freeRef();
deltaTensorMemory.freeRef();
inputMemory.freeRef();
passbackMemory.freeRef();
} catch (@Nonnull final Throwable e) {
throw new ComponentException("Error apply " + Arrays.toString(inputSize), e);
} finally {
localOut.freeRef();
inputTensor.freeRef();
deltaTensor.freeRef();
}
return CudaTensorList.wrap(passbackTensor, length, inputSize, precision);
}, delta);
inputResult.accumulate(buffer, data);
} else {
delta.freeRef();
}
}) {
@Override
public final void accumulate(DeltaSet<Layer> buffer, TensorList delta) {
getAccumulator().accept(buffer, delta);
}
@Override
protected void _free() {
inputData.freeRef();
outPtr.freeRef();
inputResult.freeRef();
}
@Override
public boolean isAlive() {
return inputResult.isAlive() || !isFrozen();
}
};
} catch (@Nonnull final Throwable e) {
throw new ComponentException("Error apply image res " + Arrays.toString(inputSize), e);
}
}
Aggregations