use of com.sri.ai.expresso.api.IntensionalSet in project aic-expresso by aic-sri-international.
the class InversionPerformanceEvaluationTest method computeSize.
private Rational computeSize(Expression functionOnIntensionalSet, Rational resultSoFar, Context context) {
IntensionalSet intensionalSet = (IntensionalSet) functionOnIntensionalSet.get(0);
IndexExpressionsSet indexExpressionsSet = intensionalSet.getIndexExpressions();
List<Expression> indices = IndexExpressions.getIndices(indexExpressionsSet);
if (indices.size() != 1) {
throw new UnsupportedOperationException("Currently only support singular indices");
}
Expression index = indices.get(0);
Context intensionalSetContext = context.extendWith(indexExpressionsSet);
Type type = GrinderUtil.getTypeOfExpression(index, intensionalSetContext);
Rational result = resultSoFar.multiply(type.cardinality().rationalValue());
Expression head = intensionalSet.getHead();
if (Expressions.isFunctionApplicationWithArguments(head) && Sets.isIntensionalSet(head.get(0))) {
result = computeSize(head, result, intensionalSetContext);
}
return result;
}
use of com.sri.ai.expresso.api.IntensionalSet in project aic-expresso by aic-sri-international.
the class AbstractIntensionalSet method replaceSymbol.
@Override
public Expression replaceSymbol(Expression symbol, Expression newSymbol, Registry registry) {
IntensionalSet result = this;
IndexExpressionsSet newIndexExpressions = getIndexExpressions().replaceSymbol(symbol, newSymbol, registry);
Expression newHead = getHead().replaceSymbol(symbol, newSymbol, registry);
Expression newCondition = getCondition().replaceSymbol(symbol, newSymbol, registry);
result = replaceIfNeeded(newIndexExpressions, newHead, newCondition);
return result;
}
use of com.sri.ai.expresso.api.IntensionalSet in project aic-expresso by aic-sri-international.
the class GrinderUtil method getTypeExpression.
/**
* Returns the type of given expression according to registry.
*/
public static Expression getTypeExpression(Expression expression, Registry registry) {
Expression result;
if (FormulaUtil.isApplicationOfBooleanConnective(expression)) {
result = makeSymbol("Boolean");
} else if (expression.getSyntacticFormType().equals(FunctionApplication.SYNTACTIC_FORM_TYPE) && list(SUM, PRODUCT, MAX).contains(expression.getFunctor().toString())) {
Expression argument = expression.get(0);
if (argument.getSyntacticFormType().equals(IntensionalSet.SYNTACTIC_FORM_TYPE)) {
IntensionalSet intensionalSetArgument = (IntensionalSet) argument;
Expression head = intensionalSetArgument.getHead();
// NOTE: Need to extend the registry as the index expressions in the quantifier may
// declare new types (i.e. function types).
Registry headRegistry = registry.extendWith(intensionalSetArgument.getIndexExpressions());
result = getTypeExpression(head, headRegistry);
} else if (argument.getSyntacticFormType().equals(ExtensionalSets.SYNTACTIC_FORM_TYPE)) {
List<Expression> arguments = ((AbstractExtensionalSet) argument).getElementsDefinitions();
result = getTypeOfCollectionOfNumericExpressionsWithDefaultInteger(arguments, registry);
} else if (expression.hasFunctor(MAX)) {
// MAX can also be applied to a bunch of numbers
result = getTypeOfCollectionOfNumericExpressionsWithDefaultInteger(expression.getArguments(), registry);
} else {
throw new Error(expression.getFunctor() + " defined for sets only but got " + expression.get(0));
}
} else if (Equality.isEquality(expression) || Disequality.isDisequality(expression)) {
result = makeSymbol("Boolean");
} else if (expression.equals(FunctorConstants.REAL_INTERVAL_CLOSED_CLOSED) || expression.equals(FunctorConstants.REAL_INTERVAL_CLOSED_OPEN) || expression.equals(FunctorConstants.REAL_INTERVAL_OPEN_CLOSED) || expression.equals(FunctorConstants.REAL_INTERVAL_OPEN_OPEN)) {
result = FunctionType.make(parse("Set"), parse("Number"), parse("Number"));
} else if (IfThenElse.isIfThenElse(expression)) {
Expression thenType = getTypeExpression(IfThenElse.thenBranch(expression), registry);
Expression elseType = getTypeExpression(IfThenElse.elseBranch(expression), registry);
if (thenType != null && elseType != null && (thenType.equals("Number") && isIntegerOrReal(elseType) || isIntegerOrReal(thenType) && elseType.equals("Number"))) {
result = makeSymbol("Number");
} else if (thenType != null && elseType != null && (thenType.equals("Integer") && elseType.equals("Real") || thenType.equals("Real") && elseType.equals("Integer"))) {
result = makeSymbol("Real");
} else if (thenType != null && (elseType == null || thenType.equals(elseType))) {
result = thenType;
} else if (elseType != null && (thenType == null || elseType.equals(thenType))) {
result = elseType;
} else if (thenType == null) {
throw new Error("Could not determine the types of then and else branches of '" + expression + "'.");
} else if (thenType.equals("Integer") && elseType.hasFunctor(INTEGER_INTERVAL)) {
// TODO: I know, I know, this treatment of integers and interval is terrible... will fix at some point
result = thenType;
} else if (thenType.hasFunctor(INTEGER_INTERVAL) && elseType.equals("Integer")) {
result = elseType;
} else if (thenType.hasFunctor(INTEGER_INTERVAL) && elseType.hasFunctor(INTEGER_INTERVAL)) {
IntegerInterval thenInterval = (IntegerInterval) thenType;
IntegerInterval elseInterval = (IntegerInterval) elseType;
Expression minimumLowerBound = LessThan.simplify(apply(LESS_THAN, thenInterval.getNonStrictLowerBound(), elseInterval.getNonStrictLowerBound()), registry).booleanValue() ? thenInterval.getNonStrictLowerBound() : elseInterval.getNonStrictLowerBound();
Expression maximumUpperBound = GreaterThan.simplify(apply(GREATER_THAN, thenInterval.getNonStrictUpperBound(), elseInterval.getNonStrictUpperBound()), registry).booleanValue() ? thenInterval.getNonStrictUpperBound() : elseInterval.getNonStrictUpperBound();
if (minimumLowerBound.equals(MINUS_INFINITY) && maximumUpperBound.equals(INFINITY)) {
result = makeSymbol("Integer");
} else {
result = apply(INTEGER_INTERVAL, minimumLowerBound, maximumUpperBound);
}
} else {
throw new Error("'" + expression + "' then and else branches have different types (" + thenType + " and " + elseType + " respectively).");
}
} else if (isCardinalityExpression(expression)) {
result = makeSymbol("Integer");
} else if (isNumericFunctionApplication(expression)) {
List<Expression> argumentTypes = mapIntoList(expression.getArguments(), e -> getTypeExpression(e, registry));
int firstNullArgumentTypeIndexIfAny = Util.getIndexOfFirstSatisfyingPredicateOrMinusOne(argumentTypes, t -> t == null);
if (firstNullArgumentTypeIndexIfAny != -1) {
throw new Error("Cannot determine type of " + expression.getArguments().get(firstNullArgumentTypeIndexIfAny) + ", which is needed for determining type of " + expression);
}
/**
* commonDomain is the co-domain shared by all argument function types, or empty tuple for arguments that are not function-typed.
* Therefore, if no argument is function-typed, it will be equal to the empty tuple.
*/
Expression commonDomain = getCommonDomainIncludingConversionOfNonFunctionTypesToNullaryFunctions(argumentTypes, registry);
if (commonDomain == null) {
throw new Error("Operator " + expression.getFunctor() + " applied to arguments of non-compatible types: " + expression + ", types of arguments are " + argumentTypes);
}
boolean noArgumentIsFunctionTyped = commonDomain.equals(EMPTY_TUPLE) && !thereExists(argumentTypes, t -> t.hasFunctor(FunctorConstants.FUNCTION_TYPE));
Expression resultCoDomain;
if (thereExists(argumentTypes, t -> Util.equals(getCoDomainOrItself(t), "Number"))) {
resultCoDomain = makeSymbol("Number");
} else if (thereExists(argumentTypes, t -> Util.equals(getCoDomainOrItself(t), "Real"))) {
resultCoDomain = makeSymbol("Real");
} else if (thereExists(argumentTypes, t -> isRealInterval(getCoDomainOrItself(t)))) {
resultCoDomain = makeSymbol("Real");
} else {
resultCoDomain = makeSymbol("Integer");
}
if (noArgumentIsFunctionTyped) {
result = resultCoDomain;
} else {
result = apply(FUNCTION_TYPE, commonDomain, resultCoDomain);
}
} else if (expression.hasFunctor(FunctorConstants.INTEGER_INTERVAL) || expression.hasFunctor(FunctorConstants.REAL_INTERVAL_CLOSED_CLOSED) || expression.hasFunctor(FunctorConstants.REAL_INTERVAL_OPEN_CLOSED) || expression.hasFunctor(FunctorConstants.REAL_INTERVAL_CLOSED_OPEN) || expression.hasFunctor(FunctorConstants.REAL_INTERVAL_OPEN_OPEN)) {
result = makeSymbol("Set");
} else if (isComparisonFunctionApplication(expression)) {
result = makeSymbol("Boolean");
} else if (expression.hasFunctor(FunctorConstants.FUNCTION_TYPE)) {
// very vague type for now
result = apply(FUNCTION_TYPE, makeSymbol("Set"), makeSymbol("Set"));
} else if (Sets.isIntensionalMultiSet(expression)) {
IntensionalSet set = (IntensionalSet) expression;
// NOTE: Need to extend the registry as the index expressions in the quantifier may
// declare new types (i.e. function types).
Registry headRegistry = registry.extendWith(set.getIndexExpressions());
Expression headType = getTypeExpression(set.getHead(), headRegistry);
result = new DefaultIntensionalMultiSet(list(), headType, TRUE);
} else if (Sets.isExtensionalSet(expression)) {
// very vague type for now
result = apply(FUNCTION_TYPE, makeSymbol("Set"));
} else if (expression.hasFunctor(FunctorConstants.INTERSECTION) || expression.hasFunctor(FunctorConstants.UNION) || expression.hasFunctor(FunctorConstants.INTENSIONAL_UNION)) {
// very vague type for now
result = apply(FUNCTION_TYPE, makeSymbol("Set"));
} else if (expression.getSyntacticFormType().equals(Symbol.SYNTACTIC_FORM_TYPE)) {
if (expression.getValue() instanceof Integer) {
result = makeSymbol("Integer");
} else if (expression.getValue() instanceof Double) {
result = makeSymbol("Real");
} else if (expression.getValue() instanceof Rational) {
Rational rational = (Rational) expression.getValue();
boolean isInteger = rational.isInteger();
result = makeSymbol(isInteger ? "Integer" : "Real");
} else if (expression.getValue() instanceof Number) {
result = makeSymbol("Number");
} else if (expression.getValue() instanceof String && expression.isStringLiteral()) {
result = makeSymbol("String");
} else if (expression.getValue() instanceof Boolean) {
result = makeSymbol("Boolean");
} else if (expression.equals(Expressions.INFINITY) || expression.equals(Expressions.MINUS_INFINITY)) {
result = makeSymbol("Number");
} else {
result = registry.getTypeOfRegisteredSymbol(expression);
if (result == null) {
Type type = getFirstSatisfyingPredicateOrNull(registry.getTypes(), t -> t.contains(expression));
if (type != null) {
result = parse(type.getName());
}
}
}
} else if (expression.hasFunctor(FunctorConstants.GET) && expression.numberOfArguments() == 2 && Expressions.isNumber(expression.get(1))) {
Expression argType = getTypeExpression(expression.get(0), registry);
if (TupleType.isTupleType(argType)) {
TupleType tupleType = (TupleType) GrinderUtil.fromTypeExpressionToItsIntrinsicMeaning(argType, registry);
result = parse(tupleType.getElementTypes().get(expression.get(1).intValue() - 1).toString());
} else {
throw new Error("get type from tuple for '" + expression + "' currently not supported.");
}
} else if (expression.hasFunctor(FunctorConstants.TUPLE_TYPE)) {
// Is a type expression already.
result = expression;
} else if (expression.getSyntacticFormType().equals(FunctionApplication.SYNTACTIC_FORM_TYPE)) {
Expression functionType = getTypeExpression(expression.getFunctor(), registry);
if (functionType == null) {
throw new Error("Type of '" + expression.getFunctor() + "' required, but unknown to registry.");
}
Expression coDomain = FunctionType.getCodomain(functionType);
List<Expression> argumentsTypesList = FunctionType.getArgumentList(functionType);
if (expression.getArguments().size() != argumentsTypesList.size()) {
throw new Error("Function " + expression.getFunctor() + " is of type " + functionType + " but has incorrect number of arguments = " + expression.getArguments());
}
for (int idx = 0; idx < expression.getArguments().size(); idx++) {
Expression arg = expression.get(idx);
Expression argExprType = argumentsTypesList.get(idx);
Type argType = registry.getType(argExprType);
if (!isSubtypeOf(arg, argType, registry)) {
throw new Error("Function " + expression.getFunctor() + " is of type " + functionType + " but has arguments that are not legal subtypes [#" + idx + "] = " + expression.getArguments());
}
}
result = coDomain;
} else if (Tuple.isTuple(expression)) {
List<Expression> elementTypes = expression.getArguments().stream().map(element -> getTypeExpression(element, registry)).collect(Collectors.toList());
result = TupleType.make(elementTypes);
} else if (expression instanceof QuantifiedExpressionWithABody) {
QuantifiedExpressionWithABody quantifiedExpressionWithABody = (QuantifiedExpressionWithABody) expression;
// NOTE: Need to extend the registry as the index expressions in the quantifier may
// declare new types (i.e. function types).
Registry quantifiedExpressionWithABodyRegistry = registry.extendWith(quantifiedExpressionWithABody.getIndexExpressions());
result = getTypeExpression(quantifiedExpressionWithABody.getBody(), quantifiedExpressionWithABodyRegistry);
} else if (expression instanceof LambdaExpression) {
LambdaExpression lambdaExpression = (LambdaExpression) expression;
Collection<Expression> domain = IndexExpressions.getIndexDomainsOfQuantifiedExpression(lambdaExpression);
IndexExpressionsSet indexExpressions = lambdaExpression.getIndexExpressions();
Registry lambdaExpressionWithABodyRegistry = registry.extendWith(indexExpressions);
Expression coDomain = getTypeExpression(lambdaExpression.getBody(), lambdaExpressionWithABodyRegistry);
result = Expressions.apply(FUNCTION_TYPE, domain, coDomain);
} else if (expression instanceof AbstractExpressionWrapper) {
Expression innerExpression = ((AbstractExpressionWrapper) expression).getInnerExpression();
result = getTypeExpression(innerExpression, registry);
} else {
throw new Error("GrinderUtil.getType does not yet know how to determine the type of this sort of expression: " + expression);
}
return result;
}
use of com.sri.ai.expresso.api.IntensionalSet in project aic-expresso by aic-sri-international.
the class IntersectionIntensionalSetsSimplifier method simplify.
public static Expression simplify(Expression expression, Context context) {
Expression result = expression;
if (expression.hasFunctor(FunctorConstants.INTERSECTION)) {
List<Expression> intensionalMultiSetArgs = new ArrayList<>();
List<Expression> nonIntensionalMultiSetArgs = new ArrayList<>();
for (Expression arg : expression.getArguments()) {
if (Sets.isIntensionalMultiSet(arg)) {
intensionalMultiSetArgs.add(arg);
} else {
nonIntensionalMultiSetArgs.add(arg);
}
}
if (intensionalMultiSetArgs.size() > 1) {
boolean resultIsEmptySet = false;
IntensionalSet intersectedMultiSet = (IntensionalSet) intensionalMultiSetArgs.get(0);
for (int i = 1; i < intensionalMultiSetArgs.size() && !resultIsEmptySet; i++) {
IntensionalSet otherMultiSet = standardizeApartIntensionalSets((IntensionalSet) intensionalMultiSetArgs.get(i), intersectedMultiSet, context);
// {{ (on I1) H1 : C1 }} intersection {{ (on I2) H2 : C2 }}
// ---->
// {{ (on I1) H1 : C1 and evaluate(there exists I2 : C2 and H2 = H1) }}
IndexExpressionsSet i1 = intersectedMultiSet.getIndexExpressions();
IndexExpressionsSet i2 = otherMultiSet.getIndexExpressions();
Expression h1 = intersectedMultiSet.getHead();
Expression h2 = otherMultiSet.getHead();
Expression c1 = intersectedMultiSet.getCondition();
Expression c2 = otherMultiSet.getCondition();
Expression thereExists = ThereExists.make(i2, And.make(c2, Equality.make(h2, h1)));
Context i1ExtendedContext = context.extendWith(i1);
Expression thereExistsEvaluated = context.getTheory().evaluate(thereExists, i1ExtendedContext);
if (thereExistsEvaluated.equals(false)) {
// They don't intersect, which means you have an empty
// set in the intersection, which means the whole thing
// results in the empty set.
resultIsEmptySet = true;
} else if (!thereExistsEvaluated.equals(true)) {
// If we have a condition, other than false and true
// we will want to extend the current result by the condition
Expression extendedCondition = And.make(c1, thereExistsEvaluated);
intersectedMultiSet = (IntensionalSet) IntensionalSet.intensionalMultiSet(i1, h1, extendedCondition);
// Ensure we don't have a false condition.
Expression simplifiedIntersectedMultiSet = context.getTheory().evaluate(intersectedMultiSet, context);
if (Sets.isEmptySet(simplifiedIntersectedMultiSet)) {
resultIsEmptySet = true;
}
}
}
if (resultIsEmptySet) {
result = Sets.EMPTY_SET;
} else if (nonIntensionalMultiSetArgs.size() > 0) {
List<Expression> intersectedArgs = new ArrayList<>();
intersectedArgs.add(intersectedMultiSet);
intersectedArgs.addAll(nonIntensionalMultiSetArgs);
result = Sets.makeIntersection(intersectedArgs.toArray(new Expression[intersectedArgs.size()]));
} else {
result = intersectedMultiSet;
}
}
}
return result;
}
use of com.sri.ai.expresso.api.IntensionalSet in project aic-expresso by aic-sri-international.
the class IntensionalUnionIntersectionEqualToEmptySetSimplifier method simplify.
public static Expression simplify(Expression expression, Context context) {
Expression result = expression;
if (Equality.isEquality(expression) && expression.numberOfArguments() == 2) {
Expression intersection = null;
Expression emptySet = null;
for (Expression arg : expression.getArguments()) {
if (Expressions.hasFunctor(arg, FunctorConstants.INTERSECTION)) {
intersection = arg;
} else if (Sets.isEmptySet(arg)) {
emptySet = arg;
}
}
if (intersection != null && emptySet != null) {
// (∪<sub>i ∈ D:C</sub>Φ) ∩ (∪<sub>i' ∈ D':C'</sub>Φ') = ∅
if (intersection.getArguments().stream().allMatch(Sets::isIntensionalUnion)) {
List<Expression> forAlls = new ArrayList<>();
List<Expression> phis = new ArrayList<>();
// ∀ i ∈ D : C ⇒ ∀ i' ∈ D' : C' ⇒ (Φ ∩ Φ' = ∅)
for (Expression intensionalUnion : intersection.getArguments()) {
IntensionalSet intensionalSet = (IntensionalSet) intensionalUnion.get(0);
Expression[] forAllAndPhi = intensionalSetToForAllAndPhi(intensionalSet, forAlls, context);
Expression forAll = forAllAndPhi[0];
Expression phi = forAllAndPhi[1];
handleNestedForAlls(forAll, forAlls);
phis.add(phi);
}
result = Equality.make(Expressions.apply(FunctorConstants.INTERSECTION, phis), emptySet);
for (int i = forAlls.size() - 1; i >= 0; i--) {
Expression forAll = forAlls.get(i);
Expression body = Implication.make(ForAll.getBody(forAll), result);
result = ForAll.make(ForAll.getIndexExpression(forAll), body);
}
}
}
}
return result;
}
Aggregations