use of com.sri.ai.grinder.rewriter.api.Simplifier in project aic-expresso by aic-sri-international.
the class SamplingProceduralAttachmentSingleQuantifierEliminator method makeAndRegisterProceduralAttachment.
private Symbol makeAndRegisterProceduralAttachment(int arity, Context context) {
Integer counter = context.updateInplaceGlobalObject(COUNTER_KEY, () -> 0, c -> c.intValue() + 1);
Simplifier samplerRewriter = (Simplifier) (e, c) -> {
sampler.setContext(c);
Expression result = sampler.next();
return result;
};
Symbol samplerFunctor = makeSymbol("sampler" + counter);
registerProceduralAttachment(samplerFunctor, arity, samplerRewriter, context);
return samplerFunctor;
}
use of com.sri.ai.grinder.rewriter.api.Simplifier in project aic-expresso by aic-sri-international.
the class SGDPLLTTester method runModelCountingTestForSingleVariableConstraint.
private static void runModelCountingTestForSingleVariableConstraint(Expression variable, Collection<Expression> literals, Constraint constraint, boolean testAgainstBruteForce, Theory theory, Context context) {
Expression literalsConjunction = And.make(literals);
String problemDescription = "model counting of " + literalsConjunction + " for variable " + variable;
output("Problem: " + problemDescription);
Simplifier symbolicSolver = (e, p) -> computeModelCountBySolver((SingleVariableConstraint) e, p);
SingleVariableConstraint singleVariableConstraint = (SingleVariableConstraint) constraint;
Expression symbolicSolution = symbolicSolver.apply(singleVariableConstraint, context);
if (Util.thereExists(new SubExpressionsDepthFirstIterator(symbolicSolution), e -> e instanceof QuantifiedExpression || Sets.isIntensionalSet(e))) {
throw new Error("Symbolic solution is not quantifier-free: " + symbolicSolution);
}
output("Symbolic result: " + symbolicSolution);
if (testAgainstBruteForce) {
if (singleVariableConstraint.isContradiction()) {
if (!symbolicSolution.equals(ZERO)) {
throw new Error("Constraint is contradiction, but symbolic solver does not produce 0, but instead " + symbolicSolution);
}
} else {
Expression testingVariable = singleVariableConstraint.getVariable();
Set<Expression> allVariables = getVariablesBeingReferenced(singleVariableConstraint, context);
Collection<? extends Expression> otherVariables = removeFromSetNonDestructively(allVariables, v -> v.equals(testingVariable));
BinaryFunction<BruteForceCommonInterpreter, Context, Expression> fromInterpreterAndContextWithAssignmentToOtherVariablesToBruteForceSolution = (interpreter, contextWithAssignmentToOtherVariables) -> bruteForceModelCounterForVariableGivenInterpreterAndAssignmentToOtherVariables(variable, literalsConjunction, interpreter, theory, contextWithAssignmentToOtherVariables);
testSymbolicVsBruteForceComputationForEachAssignment(theory, problemDescription, otherVariables, symbolicSolution, fromInterpreterAndContextWithAssignmentToOtherVariablesToBruteForceSolution, context);
}
} else {
output("Skipping test againt brute-force.");
}
}
use of com.sri.ai.grinder.rewriter.api.Simplifier in project aic-expresso by aic-sri-international.
the class SGDPLLTTester method runGroupProblemSolvingTestGivenConstraintAndProblem.
/**
* @param problem
* @param indices
* @param constraint
* @param body
* @param testAgainstBruteForce
* @param theoryTestingSupport
* @param context
* @throws Error
*/
public static void runGroupProblemSolvingTestGivenConstraintAndProblem(Expression problem, Collection<Expression> indices, Constraint constraint, Expression body, boolean testAgainstBruteForce, TheoryTestingSupport theoryTestingSupport, Context context) throws Error {
Theory theory = theoryTestingSupport.getTheory();
Collection<? extends Expression> freeVariables = getFreeVariableMinusIndices(indices, constraint, body, context);
String problemDescription = problem.toString();
output(problemDescription);
Simplifier symbolicInterpreter = (e, c) -> theory.evaluate(e, c);
long start = System.currentTimeMillis();
Expression symbolicSolution = symbolicInterpreter.apply(problem, context);
long time = System.currentTimeMillis() - start;
output("Symbolic solution: " + symbolicSolution);
output("Computed in " + time + " ms");
if (Util.thereExists(new SubExpressionsDepthFirstIterator(symbolicSolution), e -> e instanceof QuantifiedExpression || Sets.isIntensionalSet(e))) {
throw new Error("Symbolic solution is not quantifier-free: " + symbolicSolution);
}
if (testAgainstBruteForce) {
BinaryFunction<BruteForceCommonInterpreter, Context, Expression> bruteForceSolutionGivenInterpreterAndContextWithAssignmentToOtherVariables = (i, c) -> i.apply(problem, c);
testSymbolicVsBruteForceComputationForEachAssignment(theory, problemDescription, freeVariables, symbolicSolution, bruteForceSolutionGivenInterpreterAndContextWithAssignmentToOtherVariables, context);
// A more elegant approach would be to create a "for all free variables : symbolic = problem" expression
// and solve it by brute force instead of using testSymbolicVsBruteForceComputation
// which replicates the brute force interpreter to some extent.
// The reason we do not do this is simply due to the fact that the brute force interpreter would return "false"
// in case of failure, without indicating which assignment failed, which is very useful for debugging.
// If interpreters, and in fact the whole framework, provided proofs of its calculations,
// then we could simply use the more elegant approach.
} else {
output("Skipping test againt brute-force.");
}
}
use of com.sri.ai.grinder.rewriter.api.Simplifier in project aic-expresso by aic-sri-international.
the class TupleRewriterTest method testTupleDisEqualitySimplification.
@Test
public void testTupleDisEqualitySimplification() {
Simplifier tupleDisequalitySimplifier = new TupleDisequalitySimplifier();
Assert.assertEquals(parse("A1 != B1 or A2 != B2 or A3 != B3"), tupleDisequalitySimplifier.apply(parse("(A1, A2, A3) != (B1, B2, B3)"), context));
Expression expr = parse("(A1, A2) != (B1, B2, B3)");
Assert.assertTrue(expr == tupleDisequalitySimplifier.apply(expr, context));
expr = parse("A1 != B1");
Assert.assertTrue(expr == tupleDisequalitySimplifier.apply(expr, context));
}
use of com.sri.ai.grinder.rewriter.api.Simplifier in project aic-expresso by aic-sri-international.
the class TupleRewriterTest method testTupleQuantifierSimplification.
@Test
public void testTupleQuantifierSimplification() {
Simplifier tupleQuantifierSimplifier = new TupleQuantifierSimplifier();
Assert.assertEquals(parse("for all X_1 in Boolean : for all X_2 in Integer : (X_1, X_2) = (true, 1)"), tupleQuantifierSimplifier.apply(parse("for all X in (Boolean x Integer) : X = (true, 1)"), context));
Assert.assertEquals(parse("there exists X_1 in Boolean : there exists X_2 in Integer : (X_1, X_2) = (true, 1)"), tupleQuantifierSimplifier.apply(parse("there exists X in (Boolean x Integer) : X = (true, 1)"), context));
Assert.assertEquals(parse("| X_1 in Boolean, X_2 in Integer : (X_1, X_2) = (true, 1) |"), tupleQuantifierSimplifier.apply(parse("| X in (Boolean x Integer) : X = (true, 1) |"), context));
Assert.assertEquals(parse("lambda X_1 in Boolean, X_2 in Integer : (X_1, X_2) = (true, 1)"), tupleQuantifierSimplifier.apply(parse("lambda X in (Boolean x Integer) : X = (true, 1)"), context));
Assert.assertEquals(parse("{ (on X_1 in Boolean, X_2 in Integer) (X_1, X_2) }"), tupleQuantifierSimplifier.apply(parse("{ (on X in (Boolean x Integer)) X }"), context));
Assert.assertEquals(parse("{ (on X_1 in Boolean, X_2 in Integer) (X_1, X_2) : (X_1, X_2) != (true, 1) }"), tupleQuantifierSimplifier.apply(parse("{ (on X in (Boolean x Integer)) X : X != (true, 1) }"), context));
Assert.assertEquals(parse("{{ (on X_1 in Boolean, X_2 in Integer) (X_1, X_2) }}"), tupleQuantifierSimplifier.apply(parse("{{ (on X in (Boolean x Integer)) X }}"), context));
Assert.assertEquals(parse("{{ (on X_1 in Boolean, X_2 in Integer) (X_1, X_2) : (X_1, X_2) != (true, 1) }}"), tupleQuantifierSimplifier.apply(parse("{{ (on X in (Boolean x Integer)) X : X != (true, 1) }}"), context));
//
// Ensure Introduced Variables are Unique
Assert.assertEquals(parse("lambda X_1' in Boolean, X_2' in Integer, X_1 in Boolean, X_2 in Boolean : (X_1', X_2') = (true, 1) and X_1 = X_2"), tupleQuantifierSimplifier.apply(parse("lambda X in (Boolean x Integer), X_1 in Boolean, X_2 in Boolean : X = (true, 1) and X_1 = X_2"), context));
//
// Ensure we don't introduce undeclared types
Assert.assertEquals(parse("lambda X_1 in Boolean, X_2 in Integer, Y, Z : (X_1, X_2) = (true, 1) and Y = Z"), tupleQuantifierSimplifier.apply(parse("lambda X in (Boolean x Integer), Y, Z : X = (true, 1) and Y = Z"), context));
}
Aggregations