use of com.sri.ai.grinder.theory.compound.CompoundTheory in project aic-expresso by aic-sri-international.
the class ExhaustiveTest method runTest.
private void runTest(Rewriter rewriter, Expression initial, Expression expected, Map<Expression, Expression> symbolsAndTypes) {
CompoundTheory theory = new CompoundTheory(new PropositionalTheory(), new DifferenceArithmeticTheory(false, true));
Context context = new TrueContext(theory);
context = context.makeCloneWithAdditionalRegisteredSymbolsAndTypes(symbolsAndTypes);
Rewriter exhaustive = new Exhaustive(rewriter);
Expression solution = exhaustive.apply(initial, context);
System.out.println("Solution: " + solution);
assertEquals(expected, solution);
}
use of com.sri.ai.grinder.theory.compound.CompoundTheory in project aic-expresso by aic-sri-international.
the class EvaluationTest method testEvaluationOfQuantifiersOverFunctions.
@Test
public void testEvaluationOfQuantifiersOverFunctions() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new PropositionalTheory(), new BruteForceFunctionTheory()));
Map<String, Type> variablesAndTypes = new LinkedHashMap<>(theoryTestingSupport.getVariableNamesAndTypesForTesting());
Type booleanType = variablesAndTypes.get("P");
variablesAndTypes.put("S", booleanType);
variablesAndTypes.put("T", booleanType);
variablesAndTypes.put("U", booleanType);
theoryTestingSupport.setVariableNamesAndTypesForTesting(variablesAndTypes);
Context context = theoryTestingSupport.makeContextWithTestingInformation();
String expressionString;
Expression expected;
expressionString = "sum( {{ (on f in 0..2 -> Boolean) if f(0) and f(1) then 2 else 3 : f(2) }} )";
// 2+3+3+3
expected = parse("11");
runTest(expressionString, expected, context);
expressionString = "sum({{ (on f in 1..2 -> Boolean, g in 1..2 -> Boolean) if f(1) and g(2) then 2 else 3 : f(2) }} )";
expected = parse("22");
runTest(expressionString, expected, context);
expressionString = "sum({{ (on f in 1..2 -> Boolean, g in 1..2 -> Boolean) if f(1) and g(2) then 2 else 3 }} )";
expected = parse("44");
runTest(expressionString, expected, context);
expressionString = "sum({{ (on f in 1..2 -> Boolean, g in 1..2 -> Boolean) if f(1) then 2 else 3 }} )";
expected = parse("40");
runTest(expressionString, expected, context);
expressionString = "sum({{ (on f in 1..2 -> Boolean) if f(1) then 2 else 3 }} )";
expected = parse("10");
runTest(expressionString, expected, context);
expressionString = "sum({{ (on f in 1..2 -> 1..2) if f(1) = 1 then 2 else 3 }} )";
expected = parse("10");
runTest(expressionString, expected, context);
expressionString = "sum({{ (on f in 1..2 -> 1..2) f(1) }} )";
expected = parse("6");
runTest(expressionString, expected, context);
expressionString = "sum({{ (on f in '->'(1..2)) f() }} )";
expected = parse("3");
runTest(expressionString, expected, context);
expressionString = "sum({{ (on f in '->'(1..2)) f }} )";
expected = parse("(lambda : 1) + (lambda : 2)");
runTest(expressionString, expected, context);
expressionString = "product( {{ (on f in 0..2 -> Boolean) if f(0) and f(1) then 2 else 3 : f(2) }} )";
// 2*3*3*3
expected = parse("54");
runTest(expressionString, expected, context);
expressionString = "max( {{ (on f in 0..2 -> Boolean) if f(0) and f(1) then 2 else 3 : f(2) }} )";
expected = parse("3");
runTest(expressionString, expected, context);
expressionString = "| f in 0..2 -> Boolean : f(0) |";
expected = parse("4");
runTest(expressionString, expected, context);
expressionString = "| f in 0..2 -> Boolean : f(0) |";
expected = parse("4");
runTest(expressionString, expected, context);
expressionString = "| f in 0..2 -> Boolean : f(0) |";
expected = parse("4");
runTest(expressionString, expected, context);
expressionString = "| f in x(0..2, 0..2) -> Boolean : f(0, 0) |";
expected = parse("256");
runTest(expressionString, expected, context);
expressionString = "| f in 0..2 x 0..2 -> Boolean : f(0, 0) |";
expected = parse("256");
runTest(expressionString, expected, context);
expressionString = "for all f in 0..2 -> Boolean : f(0)";
expected = parse("false");
runTest(expressionString, expected, context);
expressionString = "for all f in x(0..2) -> Boolean : (f(0) or not f(0)) and P";
expected = parse("P");
runTest(expressionString, expected, context);
expressionString = "there exists f in '->'(x(0..2), Boolean) : f(0)";
expected = parse("true");
runTest(expressionString, expected, context);
}
use of com.sri.ai.grinder.theory.compound.CompoundTheory in project aic-expresso by aic-sri-international.
the class EvaluationTest method testEvaluationOfFunctionApplications.
@Test
public void testEvaluationOfFunctionApplications() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new PropositionalTheory()));
Map<String, Type> variablesAndTypes = new LinkedHashMap<>(theoryTestingSupport.getVariableNamesAndTypesForTesting());
Type booleanType = variablesAndTypes.get("P");
variablesAndTypes.put("S", booleanType);
variablesAndTypes.put("T", booleanType);
variablesAndTypes.put("U", booleanType);
theoryTestingSupport.setVariableNamesAndTypesForTesting(variablesAndTypes);
Context context = theoryTestingSupport.makeContextWithTestingInformation();
String expressionString;
Expression expected;
expressionString = "0";
expected = parse("0");
runTest(expressionString, expected, context);
expressionString = "I > J";
expected = parse("I > J");
runTest(expressionString, expected, context);
expressionString = "I > J and I < J";
expected = parse("false");
runTest(expressionString, expected, context);
expressionString = "(if I > J then 1 else 2) + (if I <= J then 30 else 40)";
expected = parse("if I > J then 41 else 32");
runTest(expressionString, expected, context);
expressionString = "(if I > J then 1 else 2) + (if I <= J then 3 else 4)";
expected = parse("5");
runTest(expressionString, expected, context);
expressionString = "(if I > J then if P or Q then 1 else 2 else 5) + (if I <= J then 3 else if not Q then 4 else -3)";
expected = parse("if I > J then if P then if not Q then 5 else -2 else if Q then -2 else 6 else 8");
runTest(expressionString, expected, context);
expressionString = "(if I > J then if P or X = a or Y != b then 1 else 2 else 5) + (if I <= J then 3 else if not (X != a or Y = c and Q) then 4 else -3)";
expected = parse("if I > J then if P then if X != a then -2 else if Y = c then if Q then -2 else 5 else 5 else if X = a then if Y = c then if Q then -2 else 5 else 5 else if Y != b then -2 else -1 else 8");
runTest(expressionString, expected, context);
expressionString = "if P and Q and R then 1 else 0";
expected = parse("if P then if Q then if R then 1 else 0 else 0 else 0");
runTest(expressionString, expected, context);
expressionString = "if P and Q and R and S and T and U then 1 else 0";
expected = parse("if P then if Q then if R then if S then if T then if U then 1 else 0 else 0 else 0 else 0 else 0 else 0");
runTest(expressionString, expected, context);
}
use of com.sri.ai.grinder.theory.compound.CompoundTheory in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method advancedCompositeTest.
@Ignore("TODO - context implementation currently does not support these more advanced/indirect comparisons")
@Test
public void advancedCompositeTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new LinearRealArithmeticTheory(false, true), new PropositionalTheory()));
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("P", BOOLEAN_TYPE, "Q", BOOLEAN_TYPE, "R", BOOLEAN_TYPE, "unary_prop/1", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE), "binary_prop/2", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE, BOOLEAN_TYPE), "S", TESTING_CATEGORICAL_TYPE, "T", TESTING_CATEGORICAL_TYPE, "U", TESTING_CATEGORICAL_TYPE, "unary_eq/1", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "binary_eq/2", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "I", TESTING_INTEGER_INTERVAL_TYPE, "J", TESTING_INTEGER_INTERVAL_TYPE, "K", TESTING_INTEGER_INTERVAL_TYPE, "unary_dar/1", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "binary_dar/2", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "X", TESTING_REAL_INTERVAL_TYPE, "Y", TESTING_REAL_INTERVAL_TYPE, "Z", TESTING_REAL_INTERVAL_TYPE, "unary_lra/1", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE), "binary_lra/2", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("binary_prop(P, unary_prop(P))"), parse("binary_prop(unary_prop(Q), Q)"));
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P and Q and not unary_prop(Q) and unary_prop(P)"), rootContext);
StepSolver.Step<Boolean> step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P and Q and not unary_prop(Q) and unary_prop(P)"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
}
use of com.sri.ai.grinder.theory.compound.CompoundTheory in project aic-expresso by aic-sri-international.
the class BasicTest method debug.
public void debug(Expression problem, Expression expectedSolution) {
CompoundTheory theory = new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, false), new LinearRealArithmeticTheory(false, false), new TupleTheory(), new PropositionalTheory(), new BruteForceFunctionTheory());
Context context = new TrueContext(theory);
context = context.makeNewContextWithAddedType(BOOLEAN_TYPE);
context = context.makeCloneWithAdditionalRegisteredSymbolsAndTypes(map(makeSymbol("P"), makeSymbol("Boolean")));
Expression symbolicSolution = theory.evaluate(problem, context);
println(symbolicSolution);
Assert.assertEquals(expectedSolution, symbolicSolution);
}
Aggregations