use of com.sri.ai.grinder.theory.compound.CompoundTheory in project aic-expresso by aic-sri-international.
the class EvaluationTest method testEvaluationOfQuantifiedExpressions.
@Test
public void testEvaluationOfQuantifiedExpressions() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new PropositionalTheory()));
Map<String, Type> variablesAndTypes = new LinkedHashMap<>(theoryTestingSupport.getVariableNamesAndTypesForTesting());
Type booleanType = variablesAndTypes.get("P");
variablesAndTypes.put("S", booleanType);
variablesAndTypes.put("T", booleanType);
variablesAndTypes.put("U", booleanType);
theoryTestingSupport.setVariableNamesAndTypesForTesting(variablesAndTypes);
Context context = theoryTestingSupport.makeContextWithTestingInformation();
String expressionString;
Expression expected;
expressionString = "for all I in 1..10 : (I != 4 or I = 4) and P";
expected = parse("P");
runTest(expressionString, expected, context);
// the following example tests that quantified expressions that are function arguments get evaluated properly, as there once was a bug preventing it
expressionString = "not(for all I in 1..10 : (I != 4 or I = 4))";
expected = parse("false");
runTest(expressionString, expected, context);
expressionString = "for all I in 1..10 : for all J in 1..2 : I != 4";
expected = parse("false");
runTest(expressionString, expected, context);
expressionString = "for all I in 1..10 : for all P in Boolean : I != 4 or I = 4 and (P or not P)";
expected = parse("true");
runTest(expressionString, expected, context);
expressionString = "there exists I in 1..10 : I != 4 and P";
expected = parse("P");
runTest(expressionString, expected, context);
expressionString = "there exists I in 1..10 : there exists J in 1..2 : I != 4 and J != 1";
expected = parse("true");
runTest(expressionString, expected, context);
expressionString = "there exists I in 1..10 : there exists P in Boolean : I != 4 and P";
expected = parse("true");
runTest(expressionString, expected, context);
}
use of com.sri.ai.grinder.theory.compound.CompoundTheory in project aic-expresso by aic-sri-international.
the class EvaluationTest method testEvaluationOfGroupOperationsOnSets.
@Test
public void testEvaluationOfGroupOperationsOnSets() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new PropositionalTheory()));
Map<String, Type> variablesAndTypes = new LinkedHashMap<>(theoryTestingSupport.getVariableNamesAndTypesForTesting());
Type booleanType = variablesAndTypes.get("P");
variablesAndTypes.put("S", booleanType);
variablesAndTypes.put("T", booleanType);
variablesAndTypes.put("U", booleanType);
theoryTestingSupport.setVariableNamesAndTypesForTesting(variablesAndTypes);
Context context = theoryTestingSupport.makeContextWithTestingInformation();
String expressionString;
Expression expected;
expressionString = "sum( {{ (on I in 1..10) 3 : I != 4 and P }} )";
expected = parse("if P then 27 else 0");
runTest(expressionString, expected, context);
expressionString = "sum( {{ (on ) 3 : I != 4 and P }} )";
expected = parse("if I != 4 then if P then 3 else 0 else 0");
runTest(expressionString, expected, context);
expressionString = "sum( {{ (on ) 3 : P and not P }} )";
expected = parse("0");
runTest(expressionString, expected, context);
expressionString = "sum( {{ (on I in 1..10, J in 1..2) 3 : I != 4 }} )";
expected = parse("54");
runTest(expressionString, expected, context);
expressionString = "sum( {{ (on I in 1..10, P in Boolean) 3 : I != 4 }} )";
expected = parse("54");
runTest(expressionString, expected, context);
expressionString = "max( {{ (on I in 1..10) 3 : I != 4 and P }} )";
expected = parse("if P then 3 else -infinity");
runTest(expressionString, expected, context);
expressionString = "max( {{ (on ) 3 : I != 4 and P }} )";
expected = parse("if I != 4 then if P then 3 else -infinity else -infinity");
runTest(expressionString, expected, context);
expressionString = "max( {{ (on ) 3 : P and not P }} )";
expected = parse("-infinity");
runTest(expressionString, expected, context);
expressionString = "max( {{ (on I in 1..10, J in 1..2) 3 : I != 4 }} )";
expected = parse("3");
runTest(expressionString, expected, context);
expressionString = "max( {{ (on I in 1..10, P in Boolean) 3 : I != 4 }} )";
expected = parse("3");
runTest(expressionString, expected, context);
}
use of com.sri.ai.grinder.theory.compound.CompoundTheory in project aic-expresso by aic-sri-international.
the class UnificationStepSolverTest method compoundTest.
@Test
public void compoundTest() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(seededRandom, new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new LinearRealArithmeticTheory(false, true), new PropositionalTheory()));
// NOTE: passing explicit FunctionTypes will prevent the general variables' argument types being randomly changed.
theoryTestingSupport.setVariableNamesAndTypesForTesting(map("P", BOOLEAN_TYPE, "Q", BOOLEAN_TYPE, "R", BOOLEAN_TYPE, "unary_prop", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE), "binary_prop", new FunctionType(BOOLEAN_TYPE, BOOLEAN_TYPE, BOOLEAN_TYPE), "S", TESTING_CATEGORICAL_TYPE, "T", TESTING_CATEGORICAL_TYPE, "U", TESTING_CATEGORICAL_TYPE, "unary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "binary_eq", new FunctionType(TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE, TESTING_CATEGORICAL_TYPE), "I", TESTING_INTEGER_INTERVAL_TYPE, "J", TESTING_INTEGER_INTERVAL_TYPE, "K", TESTING_INTEGER_INTERVAL_TYPE, "unary_dar", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "binary_dar", new FunctionType(TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE, TESTING_INTEGER_INTERVAL_TYPE), "X", TESTING_REAL_INTERVAL_TYPE, "Y", TESTING_REAL_INTERVAL_TYPE, "Z", TESTING_REAL_INTERVAL_TYPE, "unary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE), "binary_lra", new FunctionType(TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE, TESTING_REAL_INTERVAL_TYPE)));
Context rootContext = theoryTestingSupport.makeContextWithTestingInformation();
UnificationStepSolver unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(P)"));
StepSolver.Step<Boolean> step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(Q)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("P = Q"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
Context localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P and not Q"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_prop(P)"), parse("unary_prop(true)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("P"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("not P"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
//
//
unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(S)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(T)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("S = T"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = a and T = b"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_eq(S)"), parse("unary_eq(a)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = a"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("S = b"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
//
//
unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(I)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(J)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("I = J"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 0 and J = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_dar(I)"), parse("unary_dar(0)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 0"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("I = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
//
//
unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(X)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(Y)"));
step = unificationStepSolver.step(rootContext);
Assert.assertEquals(true, step.itDepends());
Assert.assertEquals(Expressions.parse("X = Y"), step.getSplitter());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).itDepends());
Assert.assertEquals(true, step.getStepSolverForWhenSplitterIsTrue().step(rootContext).getValue());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).itDepends());
Assert.assertEquals(false, step.getStepSolverForWhenSplitterIsFalse().step(rootContext).getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0 and Y = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
unificationStepSolver = new UnificationStepSolver(parse("unary_lra(X)"), parse("unary_lra(0)"));
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 0"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(true, step.getValue());
localTestContext = rootContext.conjoinWithConjunctiveClause(parse("X = 1"), rootContext);
step = unificationStepSolver.step(localTestContext);
Assert.assertEquals(false, step.itDepends());
Assert.assertEquals(false, step.getValue());
}
use of com.sri.ai.grinder.theory.compound.CompoundTheory in project aic-expresso by aic-sri-international.
the class CompoundTheoryWithDifferenceArithmeticTest method basicTests.
@Test
public void basicTests() {
TheoryTestingSupport theoryTestingSupport = TheoryTestingSupport.make(makeRandom(), new CompoundTheory(new EqualityTheory(false, true), new DifferenceArithmeticTheory(false, true), new PropositionalTheory()));
Expression condition = parse("X = Y and Y = X and P and not Q and P and X = a and X != b");
Context context = theoryTestingSupport.makeContextWithTestingInformation();
Constraint constraint = new CompleteMultiVariableContext(theoryTestingSupport.getTheory(), context);
constraint = constraint.conjoin(condition, context);
Expression expected = parse("(Y = a) and not Q and P and (X = Y)");
assertEquals(expected, constraint);
// nested indices
Expression expression = parse("sum({{(on I in 1..2, J in 2..3) sum({{ (on I in 1..10, J in 1..2) I + J : I != J }}) }})");
context = new TrueContext(theoryTestingSupport.getTheory());
expected = parse("536");
Expression actual = theoryTestingSupport.getTheory().evaluate(expression, context);
println(actual);
assertEquals(expected, actual);
}
use of com.sri.ai.grinder.theory.compound.CompoundTheory in project aic-expresso by aic-sri-international.
the class TupleRewriterTest method testTupleValuedFreeVariablesSimplifier.
@Test
public void testTupleValuedFreeVariablesSimplifier() {
Context tupleTheoryContext = new TrueContext(new CompoundTheory(new DifferenceArithmeticTheory(false, false), new TupleTheory()));
TupleType nTupleType = new TupleType(new IntegerInterval(1, 10), new IntegerInterval(1, 10));
tupleTheoryContext = (Context) GrinderUtil.extendRegistryWith(map("N", nTupleType.toString()), Arrays.asList(nTupleType), tupleTheoryContext);
TupleValuedFreeVariablesSimplifier simplifier = new TupleValuedFreeVariablesSimplifier();
Expression expression = parse("sum( {{ (on X in 1..10) if N = (2, X) then 2 else 3 }} )");
Expression simplified = simplifier.apply(expression, tupleTheoryContext);
Assert.assertEquals(parse("if get(N, 1) = 2 then 29 else 30"), simplified);
}
Aggregations