use of com.taobao.android.dx.rop.type.TypeBearer in project atlas by alibaba.
the class RopperMachine method run.
/** {@inheritDoc} */
@Override
public void run(Frame frame, int offset, int opcode) {
/*
* This is the stack pointer after the opcode's arguments have been
* popped.
*/
int stackPointer = maxLocals + frame.getStack().size();
// The sources have to be retrieved before super.run() gets called.
RegisterSpecList sources = getSources(opcode, stackPointer);
int sourceCount = sources.size();
super.run(frame, offset, opcode);
SourcePosition pos = method.makeSourcePosistion(offset);
RegisterSpec localTarget = getLocalTarget(opcode == ByteOps.ISTORE);
int destCount = resultCount();
RegisterSpec dest;
if (destCount == 0) {
dest = null;
switch(opcode) {
case ByteOps.POP:
case ByteOps.POP2:
{
// These simply don't appear in the rop form.
return;
}
}
} else if (localTarget != null) {
dest = localTarget;
} else if (destCount == 1) {
dest = RegisterSpec.make(stackPointer, result(0));
} else {
/*
* This clause only ever applies to the stack manipulation
* ops that have results (that is, dup* and swap but not
* pop*).
*
* What we do is first move all the source registers into
* the "temporary stack" area defined for the method, and
* then move stuff back down onto the main "stack" in the
* arrangement specified by the stack op pattern.
*
* Note: This code ends up emitting a lot of what will
* turn out to be superfluous moves (e.g., moving back and
* forth to the same local when doing a dup); however,
* that makes this code a bit easier (and goodness knows
* it doesn't need any extra complexity), and all the SSA
* stuff is going to want to deal with this sort of
* superfluous assignment anyway, so it should be a wash
* in the end.
*/
int scratchAt = ropper.getFirstTempStackReg();
RegisterSpec[] scratchRegs = new RegisterSpec[sourceCount];
for (int i = 0; i < sourceCount; i++) {
RegisterSpec src = sources.get(i);
TypeBearer type = src.getTypeBearer();
RegisterSpec scratch = src.withReg(scratchAt);
insns.add(new PlainInsn(Rops.opMove(type), pos, scratch, src));
scratchRegs[i] = scratch;
scratchAt += src.getCategory();
}
for (int pattern = getAuxInt(); pattern != 0; pattern >>= 4) {
int which = (pattern & 0x0f) - 1;
RegisterSpec scratch = scratchRegs[which];
TypeBearer type = scratch.getTypeBearer();
insns.add(new PlainInsn(Rops.opMove(type), pos, scratch.withReg(stackPointer), scratch));
stackPointer += type.getType().getCategory();
}
return;
}
TypeBearer destType = (dest != null) ? dest : Type.VOID;
Constant cst = getAuxCst();
int ropOpcode;
Rop rop;
Insn insn;
if (opcode == ByteOps.MULTIANEWARRAY) {
blockCanThrow = true;
// Add the extra instructions for handling multianewarray.
extraBlockCount = 6;
/*
* Add an array constructor for the int[] containing all the
* dimensions.
*/
RegisterSpec dimsReg = RegisterSpec.make(dest.getNextReg(), Type.INT_ARRAY);
rop = Rops.opFilledNewArray(Type.INT_ARRAY, sourceCount);
insn = new ThrowingCstInsn(rop, pos, sources, catches, CstType.INT_ARRAY);
insns.add(insn);
// Add a move-result for the new-filled-array
rop = Rops.opMoveResult(Type.INT_ARRAY);
insn = new PlainInsn(rop, pos, dimsReg, RegisterSpecList.EMPTY);
insns.add(insn);
/*
* Add a const-class instruction for the specified array
* class.
*/
/*
* Remove as many dimensions from the originally specified
* class as are given in the explicit list of dimensions,
* so as to pass the right component class to the standard
* Java library array constructor.
*/
Type componentType = ((CstType) cst).getClassType();
for (int i = 0; i < sourceCount; i++) {
componentType = componentType.getComponentType();
}
RegisterSpec classReg = RegisterSpec.make(dest.getReg(), Type.CLASS);
if (componentType.isPrimitive()) {
/*
* The component type is primitive (e.g., int as opposed
* to Integer), so we have to fetch the corresponding
* TYPE class.
*/
CstFieldRef typeField = CstFieldRef.forPrimitiveType(componentType);
insn = new ThrowingCstInsn(Rops.GET_STATIC_OBJECT, pos, RegisterSpecList.EMPTY, catches, typeField);
} else {
/*
* The component type is an object type, so just make a
* normal class reference.
*/
insn = new ThrowingCstInsn(Rops.CONST_OBJECT, pos, RegisterSpecList.EMPTY, catches, new CstType(componentType));
}
insns.add(insn);
// Add a move-result-pseudo for the get-static or const
rop = Rops.opMoveResultPseudo(classReg.getType());
insn = new PlainInsn(rop, pos, classReg, RegisterSpecList.EMPTY);
insns.add(insn);
/*
* Add a call to the "multianewarray method," that is,
* Array.newInstance(class, dims). Note: The result type
* of newInstance() is Object, which is why the last
* instruction in this sequence is a cast to the right
* type for the original instruction.
*/
RegisterSpec objectReg = RegisterSpec.make(dest.getReg(), Type.OBJECT);
insn = new ThrowingCstInsn(Rops.opInvokeStatic(MULTIANEWARRAY_METHOD.getPrototype()), pos, RegisterSpecList.make(classReg, dimsReg), catches, MULTIANEWARRAY_METHOD);
insns.add(insn);
// Add a move-result.
rop = Rops.opMoveResult(MULTIANEWARRAY_METHOD.getPrototype().getReturnType());
insn = new PlainInsn(rop, pos, objectReg, RegisterSpecList.EMPTY);
insns.add(insn);
/*
* And finally, set up for the remainder of this method to
* add an appropriate cast.
*/
opcode = ByteOps.CHECKCAST;
sources = RegisterSpecList.make(objectReg);
} else if (opcode == ByteOps.JSR) {
// JSR has no Rop instruction
hasJsr = true;
return;
} else if (opcode == ByteOps.RET) {
try {
returnAddress = (ReturnAddress) arg(0);
} catch (ClassCastException ex) {
throw new RuntimeException("Argument to RET was not a ReturnAddress", ex);
}
// RET has no Rop instruction.
return;
}
ropOpcode = jopToRopOpcode(opcode, cst);
rop = Rops.ropFor(ropOpcode, destType, sources, cst);
Insn moveResult = null;
if (dest != null && rop.isCallLike()) {
/*
* We're going to want to have a move-result in the next
* basic block.
*/
extraBlockCount++;
moveResult = new PlainInsn(Rops.opMoveResult(((CstMethodRef) cst).getPrototype().getReturnType()), pos, dest, RegisterSpecList.EMPTY);
dest = null;
} else if (dest != null && rop.canThrow()) {
/*
* We're going to want to have a move-result-pseudo in the
* next basic block.
*/
extraBlockCount++;
moveResult = new PlainInsn(Rops.opMoveResultPseudo(dest.getTypeBearer()), pos, dest, RegisterSpecList.EMPTY);
dest = null;
}
if (ropOpcode == RegOps.NEW_ARRAY) {
/*
* In the original bytecode, this was either a primitive
* array constructor "newarray" or an object array
* constructor "anewarray". In the former case, there is
* no explicit constant, and in the latter, the constant
* is for the element type and not the array type. The rop
* instruction form for both of these is supposed to be
* the resulting array type, so we initialize / alter
* "cst" here, accordingly. Conveniently enough, the rop
* opcode already gets constructed with the proper array
* type.
*/
cst = CstType.intern(rop.getResult());
} else if ((cst == null) && (sourceCount == 2)) {
TypeBearer firstType = sources.get(0).getTypeBearer();
TypeBearer lastType = sources.get(1).getTypeBearer();
if ((lastType.isConstant() || firstType.isConstant()) && advice.hasConstantOperation(rop, sources.get(0), sources.get(1))) {
if (lastType.isConstant()) {
/*
* The target architecture has an instruction that can
* build in the constant found in the second argument,
* so pull it out of the sources and just use it as a
* constant here.
*/
cst = (Constant) lastType;
sources = sources.withoutLast();
// For subtraction, change to addition and invert constant
if (rop.getOpcode() == RegOps.SUB) {
ropOpcode = RegOps.ADD;
CstInteger cstInt = (CstInteger) lastType;
cst = CstInteger.make(-cstInt.getValue());
}
} else {
/*
* The target architecture has an instruction that can
* build in the constant found in the first argument,
* so pull it out of the sources and just use it as a
* constant here.
*/
cst = (Constant) firstType;
sources = sources.withoutFirst();
}
rop = Rops.ropFor(ropOpcode, destType, sources, cst);
}
}
SwitchList cases = getAuxCases();
ArrayList<Constant> initValues = getInitValues();
boolean canThrow = rop.canThrow();
blockCanThrow |= canThrow;
if (cases != null) {
if (cases.size() == 0) {
// It's a default-only switch statement. It can happen!
insn = new PlainInsn(Rops.GOTO, pos, null, RegisterSpecList.EMPTY);
primarySuccessorIndex = 0;
} else {
IntList values = cases.getValues();
insn = new SwitchInsn(rop, pos, dest, sources, values);
primarySuccessorIndex = values.size();
}
} else if (ropOpcode == RegOps.RETURN) {
/*
* Returns get turned into the combination of a move (if
* non-void and if the return doesn't already mention
* register 0) and a goto (to the return block).
*/
if (sources.size() != 0) {
RegisterSpec source = sources.get(0);
TypeBearer type = source.getTypeBearer();
if (source.getReg() != 0) {
insns.add(new PlainInsn(Rops.opMove(type), pos, RegisterSpec.make(0, type), source));
}
}
insn = new PlainInsn(Rops.GOTO, pos, null, RegisterSpecList.EMPTY);
primarySuccessorIndex = 0;
updateReturnOp(rop, pos);
returns = true;
} else if (cst != null) {
if (canThrow) {
insn = new ThrowingCstInsn(rop, pos, sources, catches, cst);
catchesUsed = true;
primarySuccessorIndex = catches.size();
} else {
insn = new PlainCstInsn(rop, pos, dest, sources, cst);
}
} else if (canThrow) {
insn = new ThrowingInsn(rop, pos, sources, catches);
catchesUsed = true;
if (opcode == ByteOps.ATHROW) {
/*
* The op athrow is the only one where it's possible
* to have non-empty successors and yet not have a
* primary successor.
*/
primarySuccessorIndex = -1;
} else {
primarySuccessorIndex = catches.size();
}
} else {
insn = new PlainInsn(rop, pos, dest, sources);
}
insns.add(insn);
if (moveResult != null) {
insns.add(moveResult);
}
/*
* If initValues is non-null, it means that the parser has
* seen a group of compatible constant initialization
* bytecodes that are applied to the current newarray. The
* action we take here is to convert these initialization
* bytecodes into a single fill-array-data ROP which lays out
* all the constant values in a table.
*/
if (initValues != null) {
extraBlockCount++;
insn = new FillArrayDataInsn(Rops.FILL_ARRAY_DATA, pos, RegisterSpecList.make(moveResult.getResult()), initValues, cst);
insns.add(insn);
}
}
use of com.taobao.android.dx.rop.type.TypeBearer in project atlas by alibaba.
the class ExecutionStack method pop.
/**
* Pops the top element off of the stack.
*
* @return {@code non-null;} the type formerly on the top of the stack
* @throws SimException thrown if the stack is empty
*/
public TypeBearer pop() {
throwIfImmutable();
TypeBearer result = peek(0);
stack[stackPtr - 1] = null;
local[stackPtr - 1] = false;
stackPtr -= result.getType().getCategory();
return result;
}
use of com.taobao.android.dx.rop.type.TypeBearer in project atlas by alibaba.
the class Merger method mergeStack.
/**
* Merges two stacks. If the merged result is the same as the first
* argument, then return the first argument (not a copy).
*
* @param stack1 {@code non-null;} a stack
* @param stack2 {@code non-null;} another stack
* @return {@code non-null;} the result of merging the two stacks
*/
public static ExecutionStack mergeStack(ExecutionStack stack1, ExecutionStack stack2) {
if (stack1 == stack2) {
// Easy out.
return stack1;
}
int sz = stack1.size();
ExecutionStack result = null;
if (stack2.size() != sz) {
throw new SimException("mismatched stack depths");
}
for (int i = 0; i < sz; i++) {
TypeBearer tb1 = stack1.peek(i);
TypeBearer tb2 = stack2.peek(i);
TypeBearer resultType = mergeType(tb1, tb2);
if (resultType != tb1) {
/*
* We only need to do anything when the result differs
* from what is in the first stack, since that's what the
* result gets initialized to.
*/
if (result == null) {
result = stack1.copy();
}
try {
if (resultType == null) {
throw new SimException("incompatible: " + tb1 + ", " + tb2);
} else {
result.change(i, resultType);
}
} catch (SimException ex) {
ex.addContext("...while merging stack[" + Hex.u2(i) + "]");
throw ex;
}
}
}
if (result == null) {
return stack1;
}
result.setImmutable();
return result;
}
use of com.taobao.android.dx.rop.type.TypeBearer in project atlas by alibaba.
the class OneLocalsArray method set.
/** @inheritDoc */
public void set(int idx, TypeBearer type) {
throwIfImmutable();
try {
type = type.getFrameType();
} catch (NullPointerException ex) {
// Elucidate the exception
throw new NullPointerException("type == null");
}
if (idx < 0) {
throw new IndexOutOfBoundsException("idx < 0");
}
// Make highest possible out-of-bounds check happen first.
if (type.getType().isCategory2()) {
locals[idx + 1] = null;
}
locals[idx] = type;
if (idx != 0) {
TypeBearer prev = locals[idx - 1];
if ((prev != null) && prev.getType().isCategory2()) {
locals[idx - 1] = null;
}
}
}
use of com.taobao.android.dx.rop.type.TypeBearer in project atlas by alibaba.
the class RegisterSpec method intersect.
/**
* Returns an instance that is the intersection between this instance
* and the given one, if any. The intersection is defined as follows:
*
* <ul>
* <li>If {@code other} is {@code null}, then the result
* is {@code null}.
* <li>If the register numbers don't match, then the intersection
* is {@code null}. Otherwise, the register number of the
* intersection is the same as the one in the two instances.</li>
* <li>If the types returned by {@code getType()} are not
* {@code equals()}, then the intersection is null.</li>
* <li>If the type bearers returned by {@code getTypeBearer()}
* are {@code equals()}, then the intersection's type bearer
* is the one from this instance. Otherwise, the intersection's
* type bearer is the {@code getType()} of this instance.</li>
* <li>If the locals are {@code equals()}, then the local info
* of the intersection is the local info of this instance. Otherwise,
* the local info of the intersection is {@code null}.</li>
* </ul>
*
* @param other {@code null-ok;} instance to intersect with (or {@code null})
* @param localPrimary whether local variables are primary to the
* intersection; if {@code true}, then the only non-null
* results occur when registers being intersected have equal local
* infos (or both have {@code null} local infos)
* @return {@code null-ok;} the intersection
*/
public RegisterSpec intersect(RegisterSpec other, boolean localPrimary) {
if (this == other) {
// Easy out.
return this;
}
if ((other == null) || (reg != other.getReg())) {
return null;
}
if (this.equals(other.reg, other.type, other.local)) {
return this;
}
LocalItem resultLocal = ((local == null) || !local.equals(other.getLocalItem())) ? null : local;
boolean sameName = (resultLocal == local);
if (localPrimary && !sameName) {
return null;
}
Type thisType = getType();
Type otherType = other.getType();
// Note: Types are always interned.
if (thisType != otherType) {
return null;
}
TypeBearer resultTypeBearer = type.equals(other.getTypeBearer()) ? type : thisType;
if ((resultTypeBearer == type) && sameName) {
// It turns out that the intersection is "this" after all.
return this;
}
return (resultLocal == null) ? make(reg, resultTypeBearer) : make(reg, resultTypeBearer, resultLocal);
}
Aggregations