use of com.tdunning.plume.local.lazy.op.ParallelDo in project Plume by tdunning.
the class Optimizer method removeUnnecessaryOps.
/**
* Removes unnecesary operations that are not removed by the Optimizer. It goes top-down (receives an Input).
* Returns true if passed node doesn't lead to an output.
*/
boolean removeUnnecessaryOps(PCollection arg, List<PCollection> outputs) {
LazyCollection<?> input = (LazyCollection) arg;
if (input.getDownOps() == null || input.getDownOps().size() == 0) {
// Leaf node
return !outputs.contains(input);
}
// create new list of deferredops that are 'usefull'
List<DeferredOp> finalDOps = new ArrayList<DeferredOp>();
for (DeferredOp op : input.getDownOps()) {
boolean remove = false;
if (op instanceof OneToOneOp) {
remove = removeUnnecessaryOps(((OneToOneOp<?, ?>) op).getDest(), outputs);
} else if (op instanceof ParallelDo) {
remove = removeUnnecessaryOps(((ParallelDo<?, ?>) op).getDest(), outputs);
} else if (op instanceof Flatten) {
remove = removeUnnecessaryOps(((Flatten<?>) op).getDest(), outputs);
} else if (op instanceof MultipleParallelDo) {
MultipleParallelDo<?> mPDo = (MultipleParallelDo<?>) op;
// begin with 1 because we will apply an AND gate with the childs
remove = true;
for (Object entry : mPDo.getDests().entrySet()) {
PCollection<?> pCol = (PCollection<?>) ((Map.Entry) entry).getKey();
remove = remove & removeUnnecessaryOps(pCol, outputs);
}
}
if (!remove) {
finalDOps.add(op);
}
}
input.downOps = finalDOps;
// if true this node can also be removed
return finalDOps.size() == 0;
}
use of com.tdunning.plume.local.lazy.op.ParallelDo in project Plume by tdunning.
the class Optimizer method sinkFlattens.
/**
* Sink flattens pushing them down to create opportunities for ParallelDo fusion
* @param arg The collection that may contain flatten operations that we need to sink.
*/
@SuppressWarnings({ "unchecked", "rawtypes" })
<T> void sinkFlattens(PCollection<T> arg) {
LazyCollection<T> output = (LazyCollection<T>) arg;
if (output.isMaterialized()) {
// stop condition for recursive algorithm
return;
}
DeferredOp dOp = output.getDeferredOp();
if (!(dOp instanceof Flatten)) {
if (dOp instanceof OneToOneOp) {
// Recursively apply this function to parent
sinkFlattens(((OneToOneOp) dOp).getOrigin());
return;
} else if (dOp instanceof ParallelDo) {
// Recursively apply this function to parent
sinkFlattens(((ParallelDo) dOp).getOrigin());
return;
}
}
if (output.getDownOps() == null || output.getDownOps().size() != 1) {
// Recursively apply this function to parent
for (Object col : ((Flatten) dOp).getOrigins()) {
sinkFlattens((PCollection) col);
}
return;
}
DeferredOp downOp = output.getDownOps().get(0);
if (!(downOp instanceof ParallelDo)) {
return;
}
// PDo below current node
ParallelDo<T, ?> op = (ParallelDo<T, ?>) downOp;
// Flatten above current node
Flatten<T> flatten = (Flatten<T>) dOp;
List<PCollection<?>> newOrigins = new ArrayList<PCollection<?>>();
// Iterate over all Flatten inputs
for (PCollection<T> col : flatten.getOrigins()) {
// Recursively apply this function to this flatten's origin
LazyCollection<T> fInput = (LazyCollection<T>) col;
sinkFlattens(fInput);
// Sink
LazyCollection<?> newInput = new LazyCollection();
newInput.deferredOp = new ParallelDo(op.getFunction(), fInput, newInput);
newInput.type = ((LazyCollection) flatten.getDest()).getType();
fInput.downOps.remove(0);
fInput.addDownOp(newInput.deferredOp);
newOrigins.add(newInput);
}
Flatten<?> newFlatten = new Flatten(newOrigins, op.getDest());
((LazyCollection<?>) op.getDest()).deferredOp = newFlatten;
for (PCollection<?> newOp : newOrigins) {
((LazyCollection<?>) newOp).addDownOp(newFlatten);
}
}
use of com.tdunning.plume.local.lazy.op.ParallelDo in project Plume by tdunning.
the class OptimizerTools method getMSCRBlocks.
/**
* This utility returns all the different MSCR blocks that can be created from this plan
*
* (pere) As of Oct/2010, I think this code can be simplified to be more like addRemainingTrivialMSCRs(), so a possible TODO would be
* to refactor it and make it more understandable. An opened question is whether there is an easy way of coding finding all possible
* MSCRs (including trivial, not related to GroupByKey operations ones) in a single and elegant loop.
*/
@SuppressWarnings({ "rawtypes", "unchecked" })
static Set<MSCR> getMSCRBlocks(List<PCollection> outputs) {
// Get all GroupByKeys from the tree
List<DeferredOp> groupBys = OptimizerTools.getAll(outputs, GroupByKey.class);
int mscrId = 1;
Set<MSCR> mscrs = new HashSet<MSCR>();
// For all found GroupByKey blocks
for (DeferredOp gBK : groupBys) {
GroupByKey groupBy = (GroupByKey<?, ?>) gBK;
// Gather all information needed for MSCR from this GBK
Set<PCollection<?>> inputs = new HashSet<PCollection<?>>();
Set<GroupByKey<?, ?>> outputChannels = new HashSet<GroupByKey<?, ?>>();
Set<Flatten<?>> unGroupedOutputChannels = new HashSet<Flatten<?>>();
Set<PCollection<?>> bypassChannels = new HashSet<PCollection<?>>();
Stack<LazyCollection<?>> toVisit = new Stack<LazyCollection<?>>();
Set<LazyCollection<?>> visited = new HashSet<LazyCollection<?>>();
LazyCollection<?> origin = (LazyCollection<?>) groupBy.getOrigin();
toVisit.push(origin);
outputChannels.add(groupBy);
while (!toVisit.isEmpty()) {
LazyCollection<?> current = toVisit.pop();
visited.add(current);
if (current.isMaterialized()) {
// condition for being a materialized input. This may change.
inputs.add(current);
continue;
}
DeferredOp op = current.getDeferredOp();
if (op instanceof MultipleParallelDo) {
// second condition for being an input
MultipleParallelDo<?> mPDo = (MultipleParallelDo) current.getDeferredOp();
if (((LazyCollection<?>) mPDo.getOrigin()).isMaterialized()) {
// will be done in Mapper
inputs.add(mPDo.getOrigin());
} else if (op instanceof ParallelDo) {
// will be done in Reducer
inputs.add(current);
} else {
// will be done in Mapper
inputs.add(mPDo.getOrigin());
}
// Check for bypass channels & output channels with no group-by
for (Map.Entry entry : mPDo.getDests().entrySet()) {
LazyCollection coll = (LazyCollection) entry.getKey();
if (coll.getDownOps() == null || coll.getDownOps().size() == 0) {
// leaf node
bypassChannels.add(coll);
} else if (coll.getDownOps().get(0) instanceof MultipleParallelDo) {
bypassChannels.add(coll);
/*
* Case of an output channel that Flattens with no Group By
*/
} else if (coll.getDownOps().get(0) instanceof Flatten) {
Flatten<?> thisFlatten = (Flatten<?>) coll.getDownOps().get(0);
LazyCollection ldest = (LazyCollection) thisFlatten.getDest();
if (ldest.getDownOps() == null || ldest.getDownOps().size() == 0 || ldest.getDownOps().get(0) instanceof MultipleParallelDo) {
unGroupedOutputChannels.add(thisFlatten);
// Add the rest of this flatten's origins to the stack in order to possibly discover more output channels
for (PCollection<?> col : thisFlatten.getOrigins()) {
if (!visited.contains(col)) {
toVisit.push((LazyCollection<?>) col);
}
}
}
}
}
continue;
}
if (op instanceof GroupByKey) {
// third condition for being an input - rare case when one GBK follows another
inputs.add(current);
continue;
}
if (op instanceof Flatten) {
Flatten<?> flatten = (Flatten<?>) op;
for (PCollection<?> input : flatten.getOrigins()) {
LazyCollection<?> in = (LazyCollection<?>) input;
if (!visited.contains(in)) {
toVisit.push(in);
}
}
continue;
}
if (op instanceof OneToOneOp) {
LazyCollection<?> input = (LazyCollection<?>) ((OneToOneOp<?, ?>) op).getOrigin();
if (!visited.contains(input)) {
toVisit.push(input);
}
continue;
}
}
MSCR mscrToAdd = null;
// Check if there is already one MSCR with at least one of this inputs
for (MSCR mscr : mscrs) {
for (PCollection<?> input : inputs) {
if (mscr.hasInput(input)) {
mscrToAdd = mscr;
break;
}
}
}
if (mscrToAdd == null) {
// otherwise create new MSCR
mscrToAdd = new MSCR(mscrId);
mscrId++;
}
// Add all missing input channels to current MSCR
for (PCollection<?> input : inputs) {
if (!mscrToAdd.hasInput(input)) {
mscrToAdd.addInput(input);
}
}
// Add all missing bypass outputs to current MSCR
for (PCollection<?> col : bypassChannels) {
if (!mscrToAdd.hasOutputChannel(col)) {
// Create new by-pass channel
MSCR.OutputChannel oC = new MSCR.OutputChannel(col);
mscrToAdd.addOutputChannel(oC);
}
}
// Add all missing flatten-with-no-groupby outputs to current MSCR
for (Flatten flatten : unGroupedOutputChannels) {
if (!mscrToAdd.hasOutputChannel(flatten.getDest())) {
// Create new channel with flatten and nothing else
MSCR.OutputChannel oC = new MSCR.OutputChannel(flatten.getDest());
oC.output = flatten.getDest();
oC.flatten = flatten;
mscrToAdd.addOutputChannel(oC);
}
}
// Add all missing output channels to current MSCR
for (GroupByKey groupByKey : outputChannels) {
if (!mscrToAdd.hasOutputChannel(groupByKey.getOrigin())) {
// Create new channel with group by key. It might have combiner and reducer as well.
MSCR.OutputChannel oC = new MSCR.OutputChannel(groupByKey);
oC.output = groupByKey.getDest();
if (groupByKey.getOrigin().getDeferredOp() instanceof Flatten) {
oC.flatten = (Flatten) groupByKey.getOrigin().getDeferredOp();
}
if (groupByKey.getDest().getDownOps() != null && groupByKey.getDest().getDownOps().size() == 1) {
DeferredOp op = (DeferredOp) groupByKey.getDest().getDownOps().get(0);
if (op instanceof CombineValues) {
oC.combiner = (CombineValues) op;
oC.output = oC.combiner.getDest();
LazyCollection dest = (LazyCollection) oC.combiner.getDest();
if (dest.getDownOps() != null && dest.getDownOps().size() == 1) {
op = (DeferredOp) dest.getDownOps().get(0);
}
}
if (op instanceof ParallelDo) {
oC.reducer = (ParallelDo) op;
oC.output = oC.reducer.getDest();
}
}
mscrToAdd.addOutputChannel(oC);
}
}
// Add if needed
mscrs.add(mscrToAdd);
}
return addRemainingTrivialMSCRs(outputs, mscrId, mscrs);
}
use of com.tdunning.plume.local.lazy.op.ParallelDo in project Plume by tdunning.
the class OptimizerTools method addRemainingTrivialMSCRs.
/**
* This utility returns all the MSCRs that are not related to a GroupByKey -
* the remaining trivial cases as described in FlumeJava paper
*
* These cases will be either:
* - Flattens that are followed by either a)MultipleParallelDo or b)nothing
*
* (These ones can have correlated inputs and be parallelized just like the ones with GroupByKey)
*
* - The trivial Input->ParalleDo|MultipleParalleDo->Output case
*
* @param outputs
* @return
*/
@SuppressWarnings({ "unchecked", "rawtypes" })
static Set<MSCR> addRemainingTrivialMSCRs(List<PCollection> outputs, int currentMscrId, Set<MSCR> currentMSCRs) {
// Get all Flatten from the tree
List<DeferredOp> flattens = OptimizerTools.getAll(outputs, Flatten.class);
List<MSCR> trivialMSCRS = new LinkedList<MSCR>();
Iterator<DeferredOp> it = flattens.iterator();
mainLoop: while (it.hasNext()) {
Flatten<?> flatten = (Flatten<?>) it.next();
// Process only remaining flattens that are not in any other MSCR
for (MSCR mscr : currentMSCRs) {
for (Map.Entry<PCollection<?>, MSCR.OutputChannel<?, ?, ?>> entry : mscr.getOutputChannels().entrySet()) {
if (entry.getValue().flatten != null && entry.getValue().flatten == flatten) {
// skip this flatten
continue mainLoop;
}
}
}
// Create new trivial MSCR
MSCR mscr = new MSCR(currentMscrId);
currentMscrId++;
// add single output channel
MSCR.OutputChannel oC = new MSCR.OutputChannel(flatten.getDest());
oC.output = flatten.getDest();
oC.flatten = flatten;
mscr.addOutputChannel(oC);
// add inputs
for (PCollection coll : flatten.getOrigins()) {
LazyCollection lCol = (LazyCollection) coll;
if (lCol.isMaterialized()) {
mscr.addInput(coll);
} else if (lCol.deferredOp instanceof ParallelDo) {
ParallelDo pDo = (ParallelDo) lCol.deferredOp;
if (((LazyCollection) pDo.getOrigin()).isMaterialized()) {
mscr.addInput(pDo.getOrigin());
} else if (pDo instanceof MultipleParallelDo) {
mscr.addInput(pDo.getOrigin());
} else {
mscr.addInput(coll);
}
} else {
mscr.addInput(coll);
}
}
Iterator<MSCR> tIt = trivialMSCRS.iterator();
// Now we'll see if this trivial MSCR can be fused to another previous trivial MSCR
boolean canBeFused = false;
while (tIt.hasNext() && !canBeFused) {
MSCR trivialMSCR = tIt.next();
for (PCollection input : trivialMSCR.getInputs()) {
if (mscr.getInputs().contains(input)) {
canBeFused = true;
break;
}
}
if (canBeFused) {
// add current output channel
trivialMSCR.addOutputChannel(oC);
for (PCollection input : mscr.getInputs()) {
if (!trivialMSCR.getInputs().contains(input)) {
// add each input that is not already contained
trivialMSCR.addInput(input);
}
}
}
}
// We have a new trivial MSCR only if it could not be fused with previous ones
if (!canBeFused) {
trivialMSCRS.add(mscr);
}
}
currentMSCRs.addAll(trivialMSCRS);
return currentMSCRs;
}
use of com.tdunning.plume.local.lazy.op.ParallelDo in project Plume by tdunning.
the class BasicOptimizerTest method testSinkFlattens.
/**
* This test has two inputs, one flatten and then one ParallelDo.
* After sinking flattens, the tree should be as: two inputs, one ParallelDo after each input and one final Flatten.
*/
@Test
public void testSinkFlattens() {
// Get Plume runtime
LazyPlume plume = new LazyPlume();
// Create simple data
PCollection<Integer> input1 = plume.fromJava(Lists.newArrayList(1, 2, 3));
PCollection<Integer> input2 = plume.fromJava(Lists.newArrayList(4, 5, 6));
PCollection<Integer> output = plume.flatten(input1, input2).map(plusOne, null);
LazyCollection<Integer> lOutput = (LazyCollection<Integer>) output;
assertTrue(lOutput.getDeferredOp() instanceof ParallelDo);
// Execute and assert the result before optimizing
executeAndAssert((LazyCollection<Integer>) output, new Integer[] { 2, 3, 4, 5, 6, 7 });
// Get an Optimizer
Optimizer optimizer = new Optimizer();
optimizer.sinkFlattens(output);
// Execute and assert the result after optimizing
executeAndAssert((LazyCollection<Integer>) output, new Integer[] { 2, 3, 4, 5, 6, 7 });
// Check that optimizer did what it's supposed to do
assertTrue(lOutput.getDeferredOp() instanceof Flatten);
Flatten flatten = (Flatten) lOutput.getDeferredOp();
assertEquals(flatten.getOrigins().size(), 2);
for (int i = 0; i < 2; i++) {
LazyCollection<Integer> origin = (LazyCollection<Integer>) flatten.getOrigins().get(i);
ParallelDo newPDo = (ParallelDo) origin.getDeferredOp();
assertEquals(newPDo.getFunction(), plusOne);
assertTrue(newPDo.getOrigin() == input1 || newPDo.getOrigin() == input2);
}
}
Aggregations