use of de.lmu.ifi.dbs.elki.data.DoubleVector in project elki by elki-project.
the class ALOCITest method testALOCI.
@Test
public void testALOCI() {
Database db = makeSimpleDatabase(UNITTEST + "3clusters-and-noise-2d.csv", 330);
OutlierResult result = //
new ELKIBuilder<ALOCI<DoubleVector>>(ALOCI.class).with(ALOCI.Parameterizer.SEED_ID, //
2).with(ALOCI.Parameterizer.GRIDS_ID, //
3).build().run(db);
testAUC(db, "Noise", result, 0.7622222);
testSingleScore(result, 146, 1.1305337);
}
use of de.lmu.ifi.dbs.elki.data.DoubleVector in project elki by elki-project.
the class OnlineLOFTest method testOnlineLOF.
/**
* First, run the {@link LOF} algorithm on the database. Second, run the
* {@link OnlineLOF} algorithm on the database, insert new objects and
* afterwards delete them. Then, compare the two results for equality.
*/
@SuppressWarnings("unchecked")
@Test
public void testOnlineLOF() {
UpdatableDatabase db = getDatabase();
// 1. Run LOF
FlexibleLOF<DoubleVector> lof = new FlexibleLOF<>(k, k, neighborhoodDistanceFunction, reachabilityDistanceFunction);
DoubleRelation scores1 = lof.run(db).getScores();
// 2. Run OnlineLOF (with insertions and removals) on database
DoubleRelation scores2 = runOnlineLOF(db).getScores();
// 3. Compare results
for (DBIDIter id = scores1.getDBIDs().iter(); id.valid(); id.advance()) {
double lof1 = scores1.doubleValue(id);
double lof2 = scores2.doubleValue(id);
assertEquals("lof(" + DBIDUtil.toString(id) + ") != lof(" + DBIDUtil.toString(id) + "): " + lof1 + " != " + lof2, lof1, lof2, 1e-10);
}
}
use of de.lmu.ifi.dbs.elki.data.DoubleVector in project elki by elki-project.
the class LDFTest method testLDF.
@Test
public void testLDF() {
Database db = makeSimpleDatabase(UNITTEST + "outlier-axis-subspaces-6d.ascii", 1345);
OutlierResult result = //
new ELKIBuilder<LDF<DoubleVector>>(LDF.class).with(LDF.Parameterizer.K_ID, //
10).with(LDF.Parameterizer.H_ID, //
1).build().run(db);
testSingleScore(result, 1293, 3.158819);
testAUC(db, "Noise", result, 0.9127619);
}
use of de.lmu.ifi.dbs.elki.data.DoubleVector in project elki by elki-project.
the class GreedyEnsembleExperiment method run.
@Override
public void run() {
// Note: the database contains the *result vectors*, not the original data.
final Database database = inputstep.getDatabase();
Relation<NumberVector> relation = database.getRelation(TypeUtil.NUMBER_VECTOR_FIELD);
final Relation<String> labels = DatabaseUtil.guessLabelRepresentation(database);
final DBID firstid = DBIDUtil.deref(labels.iterDBIDs());
final String firstlabel = labels.get(firstid);
if (!firstlabel.matches("bylabel")) {
throw new AbortException("No 'by label' reference outlier found, which is needed for weighting!");
}
relation = applyPrescaling(prescaling, relation, firstid);
final int numcand = relation.size() - 1;
// Dimensionality and reference vector
final int dim = RelationUtil.dimensionality(relation);
final NumberVector refvec = relation.get(firstid);
// Build the positive index set for ROC AUC.
VectorNonZero positive = new VectorNonZero(refvec);
final int desired_outliers = (int) (rate * dim);
int union_outliers = 0;
final int[] outliers_seen = new int[dim];
// Merge the top-k for each ensemble member, until we have enough
// candidates.
{
int k = 0;
ArrayList<DecreasingVectorIter> iters = new ArrayList<>(numcand);
if (minvote >= numcand) {
minvote = Math.max(1, numcand - 1);
}
for (DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
// Skip "by label", obviously
if (DBIDUtil.equal(firstid, iditer)) {
continue;
}
iters.add(new DecreasingVectorIter(relation.get(iditer)));
}
loop: while (union_outliers < desired_outliers) {
for (DecreasingVectorIter iter : iters) {
if (!iter.valid()) {
LOG.warning("Union_outliers=" + union_outliers + " < desired_outliers=" + desired_outliers + " minvote=" + minvote);
break loop;
}
int cur = iter.dim();
outliers_seen[cur] += 1;
if (outliers_seen[cur] == minvote) {
union_outliers += 1;
}
iter.advance();
}
k++;
}
LOG.verbose("Merged top " + k + " outliers to: " + union_outliers + " outliers (desired: at least " + desired_outliers + ")");
}
// Build the final weight vector.
final double[] estimated_weights = new double[dim];
final double[] estimated_truth = new double[dim];
updateEstimations(outliers_seen, union_outliers, estimated_weights, estimated_truth);
DoubleVector estimated_truth_vec = DoubleVector.wrap(estimated_truth);
PrimitiveDistanceFunction<NumberVector> wdist = getDistanceFunction(estimated_weights);
PrimitiveDistanceFunction<NumberVector> tdist = wdist;
// Build the naive ensemble:
final double[] naiveensemble = new double[dim];
{
double[] buf = new double[numcand];
for (int d = 0; d < dim; d++) {
int i = 0;
for (DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
if (DBIDUtil.equal(firstid, iditer)) {
continue;
}
final NumberVector vec = relation.get(iditer);
buf[i] = vec.doubleValue(d);
i++;
}
naiveensemble[d] = voting.combine(buf, i);
if (Double.isNaN(naiveensemble[d])) {
LOG.warning("NaN after combining: " + FormatUtil.format(buf) + " i=" + i + " " + voting.toString());
}
}
}
DoubleVector naivevec = DoubleVector.wrap(naiveensemble);
// Compute single AUC scores and estimations.
// Remember the method most similar to the estimation
double bestauc = 0.0;
String bestaucstr = "";
double bestcost = Double.POSITIVE_INFINITY;
String bestcoststr = "";
DBID bestid = null;
double bestest = Double.POSITIVE_INFINITY;
{
final double[] greedyensemble = new double[dim];
// Compute individual scores
for (DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
if (DBIDUtil.equal(firstid, iditer)) {
continue;
}
// fout.append(labels.get(id));
final NumberVector vec = relation.get(iditer);
singleEnsemble(greedyensemble, vec);
double auc = ROCEvaluation.computeROCAUC(positive, new DecreasingVectorIter(DoubleVector.wrap(greedyensemble)));
double estimated = wdist.distance(DoubleVector.wrap(greedyensemble), estimated_truth_vec);
double cost = tdist.distance(DoubleVector.wrap(greedyensemble), refvec);
LOG.verbose("ROC AUC: " + auc + " estimated " + estimated + " cost " + cost + " " + labels.get(iditer));
if (auc > bestauc) {
bestauc = auc;
bestaucstr = labels.get(iditer);
}
if (cost < bestcost) {
bestcost = cost;
bestcoststr = labels.get(iditer);
}
if (estimated < bestest || bestid == null) {
bestest = estimated;
bestid = DBIDUtil.deref(iditer);
}
}
}
// Initialize ensemble with "best" method
if (prescaling != null) {
LOG.verbose("Input prescaling: " + prescaling);
}
LOG.verbose("Distance function: " + wdist);
LOG.verbose("Ensemble voting: " + voting);
if (scaling != null) {
LOG.verbose("Ensemble rescaling: " + scaling);
}
LOG.verbose("Initial estimation of outliers: " + union_outliers);
LOG.verbose("Initializing ensemble with: " + labels.get(bestid));
ModifiableDBIDs ensemble = DBIDUtil.newArray(bestid);
ModifiableDBIDs enscands = DBIDUtil.newHashSet(relation.getDBIDs());
ModifiableDBIDs dropped = DBIDUtil.newHashSet(relation.size());
dropped.add(firstid);
enscands.remove(bestid);
enscands.remove(firstid);
final double[] greedyensemble = new double[dim];
singleEnsemble(greedyensemble, relation.get(bestid));
// Greedily grow the ensemble
final double[] testensemble = new double[dim];
while (enscands.size() > 0) {
NumberVector greedyvec = DoubleVector.wrap(greedyensemble);
final double oldd = wdist.distance(estimated_truth_vec, greedyvec);
final int heapsize = enscands.size();
ModifiableDoubleDBIDList heap = DBIDUtil.newDistanceDBIDList(heapsize);
double[] tmp = new double[dim];
for (DBIDIter iter = enscands.iter(); iter.valid(); iter.advance()) {
final NumberVector vec = relation.get(iter);
singleEnsemble(tmp, vec);
double diversity = wdist.distance(DoubleVector.wrap(greedyensemble), greedyvec);
heap.add(diversity, iter);
}
heap.sort();
for (DoubleDBIDListMIter it = heap.iter(); heap.size() > 0; it.remove()) {
// Last
it.seek(heap.size() - 1);
enscands.remove(it);
final NumberVector vec = relation.get(it);
// Build combined ensemble.
{
double[] buf = new double[ensemble.size() + 1];
for (int i = 0; i < dim; i++) {
int j = 0;
for (DBIDIter iter = ensemble.iter(); iter.valid(); iter.advance()) {
buf[j] = relation.get(iter).doubleValue(i);
j++;
}
buf[j] = vec.doubleValue(i);
testensemble[i] = voting.combine(buf, j + 1);
}
}
applyScaling(testensemble, scaling);
NumberVector testvec = DoubleVector.wrap(testensemble);
double newd = wdist.distance(estimated_truth_vec, testvec);
// labels.get(bestadd));
if (newd < oldd) {
System.arraycopy(testensemble, 0, greedyensemble, 0, dim);
ensemble.add(it);
// Recompute heap
break;
} else {
dropped.add(it);
// logger.verbose("Discarding: " + labels.get(bestadd));
if (refine_truth) {
// Update target vectors and weights
ArrayList<DecreasingVectorIter> iters = new ArrayList<>(numcand);
for (DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
// Skip "by label", obviously
if (DBIDUtil.equal(firstid, iditer) || dropped.contains(iditer)) {
continue;
}
iters.add(new DecreasingVectorIter(relation.get(iditer)));
}
if (minvote >= iters.size()) {
minvote = iters.size() - 1;
}
union_outliers = 0;
Arrays.fill(outliers_seen, 0);
while (union_outliers < desired_outliers) {
for (DecreasingVectorIter iter : iters) {
if (!iter.valid()) {
break;
}
int cur = iter.dim();
if (outliers_seen[cur] == 0) {
outliers_seen[cur] = 1;
} else {
outliers_seen[cur] += 1;
}
if (outliers_seen[cur] == minvote) {
union_outliers += 1;
}
iter.advance();
}
}
LOG.warning("New num outliers: " + union_outliers);
updateEstimations(outliers_seen, union_outliers, estimated_weights, estimated_truth);
estimated_truth_vec = DoubleVector.wrap(estimated_truth);
}
}
}
}
// Build the improved ensemble:
StringBuilder greedylbl = new StringBuilder();
{
for (DBIDIter iter = ensemble.iter(); iter.valid(); iter.advance()) {
if (greedylbl.length() > 0) {
greedylbl.append(' ');
}
greedylbl.append(labels.get(iter));
}
}
DoubleVector greedyvec = DoubleVector.wrap(greedyensemble);
if (refine_truth) {
LOG.verbose("Estimated outliers remaining: " + union_outliers);
}
LOG.verbose("Greedy ensemble (" + ensemble.size() + "): " + greedylbl.toString());
LOG.verbose("Best single ROC AUC: " + bestauc + " (" + bestaucstr + ")");
LOG.verbose("Best single cost: " + bestcost + " (" + bestcoststr + ")");
// Evaluate the naive ensemble and the "shrunk" ensemble
double naiveauc, naivecost;
{
naiveauc = ROCEvaluation.computeROCAUC(positive, new DecreasingVectorIter(naivevec));
naivecost = tdist.distance(naivevec, refvec);
LOG.verbose("Naive ensemble AUC: " + naiveauc + " cost: " + naivecost);
LOG.verbose("Naive ensemble Gain: " + gain(naiveauc, bestauc, 1) + " cost gain: " + gain(naivecost, bestcost, 0));
}
double greedyauc, greedycost;
{
greedyauc = ROCEvaluation.computeROCAUC(positive, new DecreasingVectorIter(greedyvec));
greedycost = tdist.distance(greedyvec, refvec);
LOG.verbose("Greedy ensemble AUC: " + greedyauc + " cost: " + greedycost);
LOG.verbose("Greedy ensemble Gain to best: " + gain(greedyauc, bestauc, 1) + " cost gain: " + gain(greedycost, bestcost, 0));
LOG.verbose("Greedy ensemble Gain to naive: " + gain(greedyauc, naiveauc, 1) + " cost gain: " + gain(greedycost, naivecost, 0));
}
{
MeanVariance meanauc = new MeanVariance();
MeanVariance meancost = new MeanVariance();
HashSetModifiableDBIDs candidates = DBIDUtil.newHashSet(relation.getDBIDs());
candidates.remove(firstid);
for (int i = 0; i < 1000; i++) {
// Build the improved ensemble:
final double[] randomensemble = new double[dim];
{
DBIDs random = DBIDUtil.randomSample(candidates, ensemble.size(), (long) i);
double[] buf = new double[random.size()];
for (int d = 0; d < dim; d++) {
int j = 0;
for (DBIDIter iter = random.iter(); iter.valid(); iter.advance()) {
assert (!DBIDUtil.equal(firstid, iter));
final NumberVector vec = relation.get(iter);
buf[j] = vec.doubleValue(d);
j++;
}
randomensemble[d] = voting.combine(buf, j);
}
}
applyScaling(randomensemble, scaling);
NumberVector randomvec = DoubleVector.wrap(randomensemble);
double auc = ROCEvaluation.computeROCAUC(positive, new DecreasingVectorIter(randomvec));
meanauc.put(auc);
double cost = tdist.distance(randomvec, refvec);
meancost.put(cost);
}
LOG.verbose("Random ensemble AUC: " + meanauc.getMean() + " + stddev: " + meanauc.getSampleStddev() + " = " + (meanauc.getMean() + meanauc.getSampleStddev()));
LOG.verbose("Random ensemble Gain: " + gain(meanauc.getMean(), bestauc, 1));
LOG.verbose("Greedy improvement: " + (greedyauc - meanauc.getMean()) / meanauc.getSampleStddev() + " standard deviations.");
LOG.verbose("Random ensemble Cost: " + meancost.getMean() + " + stddev: " + meancost.getSampleStddev() + " = " + (meancost.getMean() + meanauc.getSampleStddev()));
LOG.verbose("Random ensemble Gain: " + gain(meancost.getMean(), bestcost, 0));
LOG.verbose("Greedy improvement: " + (meancost.getMean() - greedycost) / meancost.getSampleStddev() + " standard deviations.");
LOG.verbose("Naive ensemble Gain to random: " + gain(naiveauc, meanauc.getMean(), 1) + " cost gain: " + gain(naivecost, meancost.getMean(), 0));
LOG.verbose("Random ensemble Gain to naive: " + gain(meanauc.getMean(), naiveauc, 1) + " cost gain: " + gain(meancost.getMean(), naivecost, 0));
LOG.verbose("Greedy ensemble Gain to random: " + gain(greedyauc, meanauc.getMean(), 1) + " cost gain: " + gain(greedycost, meancost.getMean(), 0));
}
}
use of de.lmu.ifi.dbs.elki.data.DoubleVector in project elki by elki-project.
the class SNE method run.
public Relation<DoubleVector> run(Relation<O> relation) {
AffinityMatrix pij = affinity.computeAffinityMatrix(relation, 1.);
// Create initial solution.
final int size = pij.size();
double[][] sol = randomInitialSolution(size, dim, random.getSingleThreadedRandom());
projectedDistances.setLong(0L);
optimizeSNE(pij, sol);
LOG.statistics(projectedDistances);
// Remove the original (unprojected) data unless configured otherwise.
removePreviousRelation(relation);
// Transform into output data format.
DBIDs ids = relation.getDBIDs();
WritableDataStore<DoubleVector> proj = DataStoreFactory.FACTORY.makeStorage(ids, DataStoreFactory.HINT_DB | DataStoreFactory.HINT_SORTED, DoubleVector.class);
VectorFieldTypeInformation<DoubleVector> otype = new VectorFieldTypeInformation<>(DoubleVector.FACTORY, dim);
for (DBIDArrayIter it = pij.iterDBIDs(); it.valid(); it.advance()) {
proj.put(it, DoubleVector.wrap(sol[it.getOffset()]));
}
return new MaterializedRelation<>("SNE", "SNE", otype, proj, ids);
}
Aggregations