use of de.lmu.ifi.dbs.elki.utilities.exceptions.AbortException in project elki by elki-project.
the class KMLOutputHandler method processNewResult.
@Override
public void processNewResult(ResultHierarchy hier, Result newResult) {
ArrayList<OutlierResult> ors = ResultUtil.filterResults(hier, newResult, OutlierResult.class);
ArrayList<Clustering<?>> crs = ResultUtil.filterResults(hier, newResult, Clustering.class);
if (ors.size() + crs.size() > 1) {
throw new AbortException("More than one visualizable result found. The KML writer only supports a single result!");
}
Database database = ResultUtil.findDatabase(hier);
for (OutlierResult outlierResult : ors) {
try {
XMLOutputFactory factory = XMLOutputFactory.newInstance();
ZipOutputStream out = new ZipOutputStream(new FileOutputStream(filename));
out.putNextEntry(new ZipEntry("doc.kml"));
final XMLStreamWriter xmlw = factory.createXMLStreamWriter(out);
writeOutlierResult(xmlw, outlierResult, database);
xmlw.flush();
xmlw.close();
out.closeEntry();
out.flush();
out.close();
if (autoopen) {
Desktop.getDesktop().open(filename);
}
} catch (XMLStreamException e) {
LOG.exception(e);
throw new AbortException("XML error in KML output.", e);
} catch (IOException e) {
LOG.exception(e);
throw new AbortException("IO error in KML output.", e);
}
}
for (Clustering<?> clusteringResult : crs) {
try {
XMLOutputFactory factory = XMLOutputFactory.newInstance();
ZipOutputStream out = new ZipOutputStream(new FileOutputStream(filename));
out.putNextEntry(new ZipEntry("doc.kml"));
final XMLStreamWriter xmlw = factory.createXMLStreamWriter(out);
@SuppressWarnings("unchecked") Clustering<Model> cres = (Clustering<Model>) clusteringResult;
writeClusteringResult(xmlw, cres, database);
xmlw.flush();
xmlw.close();
out.closeEntry();
out.flush();
out.close();
if (autoopen) {
Desktop.getDesktop().open(filename);
}
} catch (XMLStreamException e) {
LOG.exception(e);
throw new AbortException("XML error in KML output.", e);
} catch (IOException e) {
LOG.exception(e);
throw new AbortException("IO error in KML output.", e);
}
}
}
use of de.lmu.ifi.dbs.elki.utilities.exceptions.AbortException in project elki by elki-project.
the class GreedyEnsembleExperiment method run.
@Override
public void run() {
// Note: the database contains the *result vectors*, not the original data.
final Database database = inputstep.getDatabase();
Relation<NumberVector> relation = database.getRelation(TypeUtil.NUMBER_VECTOR_FIELD);
final Relation<String> labels = DatabaseUtil.guessLabelRepresentation(database);
final DBID firstid = DBIDUtil.deref(labels.iterDBIDs());
final String firstlabel = labels.get(firstid);
if (!firstlabel.matches("bylabel")) {
throw new AbortException("No 'by label' reference outlier found, which is needed for weighting!");
}
relation = applyPrescaling(prescaling, relation, firstid);
final int numcand = relation.size() - 1;
// Dimensionality and reference vector
final int dim = RelationUtil.dimensionality(relation);
final NumberVector refvec = relation.get(firstid);
// Build the positive index set for ROC AUC.
VectorNonZero positive = new VectorNonZero(refvec);
final int desired_outliers = (int) (rate * dim);
int union_outliers = 0;
final int[] outliers_seen = new int[dim];
// Merge the top-k for each ensemble member, until we have enough
// candidates.
{
int k = 0;
ArrayList<DecreasingVectorIter> iters = new ArrayList<>(numcand);
if (minvote >= numcand) {
minvote = Math.max(1, numcand - 1);
}
for (DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
// Skip "by label", obviously
if (DBIDUtil.equal(firstid, iditer)) {
continue;
}
iters.add(new DecreasingVectorIter(relation.get(iditer)));
}
loop: while (union_outliers < desired_outliers) {
for (DecreasingVectorIter iter : iters) {
if (!iter.valid()) {
LOG.warning("Union_outliers=" + union_outliers + " < desired_outliers=" + desired_outliers + " minvote=" + minvote);
break loop;
}
int cur = iter.dim();
outliers_seen[cur] += 1;
if (outliers_seen[cur] == minvote) {
union_outliers += 1;
}
iter.advance();
}
k++;
}
LOG.verbose("Merged top " + k + " outliers to: " + union_outliers + " outliers (desired: at least " + desired_outliers + ")");
}
// Build the final weight vector.
final double[] estimated_weights = new double[dim];
final double[] estimated_truth = new double[dim];
updateEstimations(outliers_seen, union_outliers, estimated_weights, estimated_truth);
DoubleVector estimated_truth_vec = DoubleVector.wrap(estimated_truth);
PrimitiveDistanceFunction<NumberVector> wdist = getDistanceFunction(estimated_weights);
PrimitiveDistanceFunction<NumberVector> tdist = wdist;
// Build the naive ensemble:
final double[] naiveensemble = new double[dim];
{
double[] buf = new double[numcand];
for (int d = 0; d < dim; d++) {
int i = 0;
for (DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
if (DBIDUtil.equal(firstid, iditer)) {
continue;
}
final NumberVector vec = relation.get(iditer);
buf[i] = vec.doubleValue(d);
i++;
}
naiveensemble[d] = voting.combine(buf, i);
if (Double.isNaN(naiveensemble[d])) {
LOG.warning("NaN after combining: " + FormatUtil.format(buf) + " i=" + i + " " + voting.toString());
}
}
}
DoubleVector naivevec = DoubleVector.wrap(naiveensemble);
// Compute single AUC scores and estimations.
// Remember the method most similar to the estimation
double bestauc = 0.0;
String bestaucstr = "";
double bestcost = Double.POSITIVE_INFINITY;
String bestcoststr = "";
DBID bestid = null;
double bestest = Double.POSITIVE_INFINITY;
{
final double[] greedyensemble = new double[dim];
// Compute individual scores
for (DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
if (DBIDUtil.equal(firstid, iditer)) {
continue;
}
// fout.append(labels.get(id));
final NumberVector vec = relation.get(iditer);
singleEnsemble(greedyensemble, vec);
double auc = ROCEvaluation.computeROCAUC(positive, new DecreasingVectorIter(DoubleVector.wrap(greedyensemble)));
double estimated = wdist.distance(DoubleVector.wrap(greedyensemble), estimated_truth_vec);
double cost = tdist.distance(DoubleVector.wrap(greedyensemble), refvec);
LOG.verbose("ROC AUC: " + auc + " estimated " + estimated + " cost " + cost + " " + labels.get(iditer));
if (auc > bestauc) {
bestauc = auc;
bestaucstr = labels.get(iditer);
}
if (cost < bestcost) {
bestcost = cost;
bestcoststr = labels.get(iditer);
}
if (estimated < bestest || bestid == null) {
bestest = estimated;
bestid = DBIDUtil.deref(iditer);
}
}
}
// Initialize ensemble with "best" method
if (prescaling != null) {
LOG.verbose("Input prescaling: " + prescaling);
}
LOG.verbose("Distance function: " + wdist);
LOG.verbose("Ensemble voting: " + voting);
if (scaling != null) {
LOG.verbose("Ensemble rescaling: " + scaling);
}
LOG.verbose("Initial estimation of outliers: " + union_outliers);
LOG.verbose("Initializing ensemble with: " + labels.get(bestid));
ModifiableDBIDs ensemble = DBIDUtil.newArray(bestid);
ModifiableDBIDs enscands = DBIDUtil.newHashSet(relation.getDBIDs());
ModifiableDBIDs dropped = DBIDUtil.newHashSet(relation.size());
dropped.add(firstid);
enscands.remove(bestid);
enscands.remove(firstid);
final double[] greedyensemble = new double[dim];
singleEnsemble(greedyensemble, relation.get(bestid));
// Greedily grow the ensemble
final double[] testensemble = new double[dim];
while (enscands.size() > 0) {
NumberVector greedyvec = DoubleVector.wrap(greedyensemble);
final double oldd = wdist.distance(estimated_truth_vec, greedyvec);
final int heapsize = enscands.size();
ModifiableDoubleDBIDList heap = DBIDUtil.newDistanceDBIDList(heapsize);
double[] tmp = new double[dim];
for (DBIDIter iter = enscands.iter(); iter.valid(); iter.advance()) {
final NumberVector vec = relation.get(iter);
singleEnsemble(tmp, vec);
double diversity = wdist.distance(DoubleVector.wrap(greedyensemble), greedyvec);
heap.add(diversity, iter);
}
heap.sort();
for (DoubleDBIDListMIter it = heap.iter(); heap.size() > 0; it.remove()) {
// Last
it.seek(heap.size() - 1);
enscands.remove(it);
final NumberVector vec = relation.get(it);
// Build combined ensemble.
{
double[] buf = new double[ensemble.size() + 1];
for (int i = 0; i < dim; i++) {
int j = 0;
for (DBIDIter iter = ensemble.iter(); iter.valid(); iter.advance()) {
buf[j] = relation.get(iter).doubleValue(i);
j++;
}
buf[j] = vec.doubleValue(i);
testensemble[i] = voting.combine(buf, j + 1);
}
}
applyScaling(testensemble, scaling);
NumberVector testvec = DoubleVector.wrap(testensemble);
double newd = wdist.distance(estimated_truth_vec, testvec);
// labels.get(bestadd));
if (newd < oldd) {
System.arraycopy(testensemble, 0, greedyensemble, 0, dim);
ensemble.add(it);
// Recompute heap
break;
} else {
dropped.add(it);
// logger.verbose("Discarding: " + labels.get(bestadd));
if (refine_truth) {
// Update target vectors and weights
ArrayList<DecreasingVectorIter> iters = new ArrayList<>(numcand);
for (DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
// Skip "by label", obviously
if (DBIDUtil.equal(firstid, iditer) || dropped.contains(iditer)) {
continue;
}
iters.add(new DecreasingVectorIter(relation.get(iditer)));
}
if (minvote >= iters.size()) {
minvote = iters.size() - 1;
}
union_outliers = 0;
Arrays.fill(outliers_seen, 0);
while (union_outliers < desired_outliers) {
for (DecreasingVectorIter iter : iters) {
if (!iter.valid()) {
break;
}
int cur = iter.dim();
if (outliers_seen[cur] == 0) {
outliers_seen[cur] = 1;
} else {
outliers_seen[cur] += 1;
}
if (outliers_seen[cur] == minvote) {
union_outliers += 1;
}
iter.advance();
}
}
LOG.warning("New num outliers: " + union_outliers);
updateEstimations(outliers_seen, union_outliers, estimated_weights, estimated_truth);
estimated_truth_vec = DoubleVector.wrap(estimated_truth);
}
}
}
}
// Build the improved ensemble:
StringBuilder greedylbl = new StringBuilder();
{
for (DBIDIter iter = ensemble.iter(); iter.valid(); iter.advance()) {
if (greedylbl.length() > 0) {
greedylbl.append(' ');
}
greedylbl.append(labels.get(iter));
}
}
DoubleVector greedyvec = DoubleVector.wrap(greedyensemble);
if (refine_truth) {
LOG.verbose("Estimated outliers remaining: " + union_outliers);
}
LOG.verbose("Greedy ensemble (" + ensemble.size() + "): " + greedylbl.toString());
LOG.verbose("Best single ROC AUC: " + bestauc + " (" + bestaucstr + ")");
LOG.verbose("Best single cost: " + bestcost + " (" + bestcoststr + ")");
// Evaluate the naive ensemble and the "shrunk" ensemble
double naiveauc, naivecost;
{
naiveauc = ROCEvaluation.computeROCAUC(positive, new DecreasingVectorIter(naivevec));
naivecost = tdist.distance(naivevec, refvec);
LOG.verbose("Naive ensemble AUC: " + naiveauc + " cost: " + naivecost);
LOG.verbose("Naive ensemble Gain: " + gain(naiveauc, bestauc, 1) + " cost gain: " + gain(naivecost, bestcost, 0));
}
double greedyauc, greedycost;
{
greedyauc = ROCEvaluation.computeROCAUC(positive, new DecreasingVectorIter(greedyvec));
greedycost = tdist.distance(greedyvec, refvec);
LOG.verbose("Greedy ensemble AUC: " + greedyauc + " cost: " + greedycost);
LOG.verbose("Greedy ensemble Gain to best: " + gain(greedyauc, bestauc, 1) + " cost gain: " + gain(greedycost, bestcost, 0));
LOG.verbose("Greedy ensemble Gain to naive: " + gain(greedyauc, naiveauc, 1) + " cost gain: " + gain(greedycost, naivecost, 0));
}
{
MeanVariance meanauc = new MeanVariance();
MeanVariance meancost = new MeanVariance();
HashSetModifiableDBIDs candidates = DBIDUtil.newHashSet(relation.getDBIDs());
candidates.remove(firstid);
for (int i = 0; i < 1000; i++) {
// Build the improved ensemble:
final double[] randomensemble = new double[dim];
{
DBIDs random = DBIDUtil.randomSample(candidates, ensemble.size(), (long) i);
double[] buf = new double[random.size()];
for (int d = 0; d < dim; d++) {
int j = 0;
for (DBIDIter iter = random.iter(); iter.valid(); iter.advance()) {
assert (!DBIDUtil.equal(firstid, iter));
final NumberVector vec = relation.get(iter);
buf[j] = vec.doubleValue(d);
j++;
}
randomensemble[d] = voting.combine(buf, j);
}
}
applyScaling(randomensemble, scaling);
NumberVector randomvec = DoubleVector.wrap(randomensemble);
double auc = ROCEvaluation.computeROCAUC(positive, new DecreasingVectorIter(randomvec));
meanauc.put(auc);
double cost = tdist.distance(randomvec, refvec);
meancost.put(cost);
}
LOG.verbose("Random ensemble AUC: " + meanauc.getMean() + " + stddev: " + meanauc.getSampleStddev() + " = " + (meanauc.getMean() + meanauc.getSampleStddev()));
LOG.verbose("Random ensemble Gain: " + gain(meanauc.getMean(), bestauc, 1));
LOG.verbose("Greedy improvement: " + (greedyauc - meanauc.getMean()) / meanauc.getSampleStddev() + " standard deviations.");
LOG.verbose("Random ensemble Cost: " + meancost.getMean() + " + stddev: " + meancost.getSampleStddev() + " = " + (meancost.getMean() + meanauc.getSampleStddev()));
LOG.verbose("Random ensemble Gain: " + gain(meancost.getMean(), bestcost, 0));
LOG.verbose("Greedy improvement: " + (meancost.getMean() - greedycost) / meancost.getSampleStddev() + " standard deviations.");
LOG.verbose("Naive ensemble Gain to random: " + gain(naiveauc, meanauc.getMean(), 1) + " cost gain: " + gain(naivecost, meancost.getMean(), 0));
LOG.verbose("Random ensemble Gain to naive: " + gain(meanauc.getMean(), naiveauc, 1) + " cost gain: " + gain(meancost.getMean(), naivecost, 0));
LOG.verbose("Greedy ensemble Gain to random: " + gain(greedyauc, meanauc.getMean(), 1) + " cost gain: " + gain(greedycost, meancost.getMean(), 0));
}
}
use of de.lmu.ifi.dbs.elki.utilities.exceptions.AbortException in project elki by elki-project.
the class DistanceQuantileSampler method run.
/**
* Run the distance quantile sampler.
*
* @param database
* @param rel
* @return Distances sample
*/
public CollectionResult<double[]> run(Database database, Relation<O> rel) {
DistanceQuery<O> dq = rel.getDistanceQuery(getDistanceFunction());
int size = rel.size();
long pairs = (size * (long) size) >> 1;
final long ssize = sampling <= 1 ? (long) Math.ceil(sampling * pairs) : (long) sampling;
if (ssize > Integer.MAX_VALUE) {
throw new AbortException("Sampling size too large.");
}
final int qsize = quantile <= 0 ? 1 : (int) Math.ceil(quantile * ssize);
DoubleMaxHeap heap = new DoubleMaxHeap(qsize);
ArrayDBIDs ids = DBIDUtil.ensureArray(rel.getDBIDs());
DBIDArrayIter i1 = ids.iter(), i2 = ids.iter();
Random r = rand.getSingleThreadedRandom();
FiniteProgress prog = LOG.isVerbose() ? new FiniteProgress("Sampling", (int) ssize, LOG) : null;
for (long i = 0; i < ssize; i++) {
int x = r.nextInt(size - 1) + 1, y = r.nextInt(x);
double dist = dq.distance(i1.seek(x), i2.seek(y));
// Skip NaN, and/or zeros.
if (dist != dist || (nozeros && dist < Double.MIN_NORMAL)) {
continue;
}
heap.add(dist, qsize);
LOG.incrementProcessed(prog);
}
LOG.statistics(new DoubleStatistic(PREFIX + ".quantile", quantile));
LOG.statistics(new LongStatistic(PREFIX + ".samplesize", ssize));
LOG.statistics(new DoubleStatistic(PREFIX + ".distance", heap.peek()));
LOG.ensureCompleted(prog);
Collection<String> header = Arrays.asList(new String[] { "Distance" });
Collection<double[]> data = Arrays.asList(new double[][] { new double[] { heap.peek() } });
return new CollectionResult<double[]>("Distances sample", "distance-sample", data, header);
}
use of de.lmu.ifi.dbs.elki.utilities.exceptions.AbortException in project elki by elki-project.
the class HashmapDatabase method insert.
@Override
public DBIDs insert(ObjectBundle objpackages) {
if (objpackages.dataLength() == 0) {
return DBIDUtil.EMPTYDBIDS;
}
// insert into db
ArrayModifiableDBIDs newids = DBIDUtil.newArray(objpackages.dataLength());
Relation<?>[] targets = alignColumns(objpackages);
DBIDVar var = DBIDUtil.newVar();
for (int j = 0; j < objpackages.dataLength(); j++) {
// insert object
if (!objpackages.assignDBID(j, var)) {
var.set(DBIDUtil.generateSingleDBID());
}
if (ids.contains(var)) {
throw new AbortException("Duplicate DBID conflict.");
}
ids.add(var);
for (int i = 0; i < targets.length; i++) {
if (!(targets[i] instanceof ModifiableRelation)) {
throw new AbortException("Non-modifiable relations have been added to the database.");
}
@SuppressWarnings("unchecked") final ModifiableRelation<Object> relation = (ModifiableRelation<Object>) targets[i];
relation.insert(var, objpackages.data(j, i));
}
newids.add(var);
}
// fire insertion event
eventManager.fireObjectsInserted(newids);
return newids;
}
use of de.lmu.ifi.dbs.elki.utilities.exceptions.AbortException in project elki by elki-project.
the class LoOP method run.
/**
* Performs the LoOP algorithm on the given database.
*
* @param database Database to process
* @param relation Relation to process
* @return Outlier result
*/
public OutlierResult run(Database database, Relation<O> relation) {
StepProgress stepprog = LOG.isVerbose() ? new StepProgress(5) : null;
Pair<KNNQuery<O>, KNNQuery<O>> pair = getKNNQueries(database, relation, stepprog);
KNNQuery<O> knnComp = pair.getFirst();
KNNQuery<O> knnReach = pair.getSecond();
// Assert we got something
if (knnComp == null) {
throw new AbortException("No kNN queries supported by database for comparison distance function.");
}
if (knnReach == null) {
throw new AbortException("No kNN queries supported by database for density estimation distance function.");
}
// FIXME: tie handling!
// Probabilistic distances
WritableDoubleDataStore pdists = DataStoreUtil.makeDoubleStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_DB);
LOG.beginStep(stepprog, 3, "Computing pdists");
computePDists(relation, knnReach, pdists);
// Compute PLOF values.
WritableDoubleDataStore plofs = DataStoreUtil.makeDoubleStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP);
LOG.beginStep(stepprog, 4, "Computing PLOF");
double nplof = computePLOFs(relation, knnComp, pdists, plofs);
// Normalize the outlier scores.
DoubleMinMax mm = new DoubleMinMax();
{
// compute LOOP_SCORE of each db object
LOG.beginStep(stepprog, 5, "Computing LoOP scores");
FiniteProgress progressLOOPs = LOG.isVerbose() ? new FiniteProgress("LoOP for objects", relation.size(), LOG) : null;
final double norm = 1. / (nplof * MathUtil.SQRT2);
for (DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
double loop = NormalDistribution.erf((plofs.doubleValue(iditer) - 1.) * norm);
plofs.putDouble(iditer, loop);
mm.put(loop);
LOG.incrementProcessed(progressLOOPs);
}
LOG.ensureCompleted(progressLOOPs);
}
LOG.setCompleted(stepprog);
// Build result representation.
DoubleRelation scoreResult = new MaterializedDoubleRelation("Local Outlier Probabilities", "loop-outlier", plofs, relation.getDBIDs());
OutlierScoreMeta scoreMeta = new ProbabilisticOutlierScore(mm.getMin(), mm.getMax(), 0.);
return new OutlierResult(scoreMeta, scoreResult);
}
Aggregations