use of dr.evomodel.branchratemodel.StrictClockBranchRates in project beast-mcmc by beast-dev.
the class PartitionData method createClockRateModel.
public BranchRateModel createClockRateModel() {
BranchRateModel branchRateModel = null;
if (this.clockModelIndex == 0) {
// Strict Clock
Parameter rateParameter = new Parameter.Default(1, clockParameterValues[0]);
branchRateModel = new StrictClockBranchRates(rateParameter);
} else if (this.clockModelIndex == LRC_INDEX) {
// Lognormal relaxed clock
double numberOfBranches = 2 * (createTreeModel().getTaxonCount() - 1);
Parameter rateCategoryParameter = new Parameter.Default(numberOfBranches);
Parameter mean = new Parameter.Default(LogNormalDistributionModelParser.MEAN, 1, clockParameterValues[1]);
Parameter stdev = new Parameter.Default(LogNormalDistributionModelParser.STDEV, 1, clockParameterValues[2]);
//TODO: choose between log scale / real scale
ParametricDistributionModel distributionModel = new LogNormalDistributionModel(mean, stdev, clockParameterValues[3], lrcParametersInRealSpace, lrcParametersInRealSpace);
branchRateModel = new //
DiscretizedBranchRates(//
createTreeModel(), //
rateCategoryParameter, //
distributionModel, //
1, //
false, //
Double.NaN, //randomizeRates
true, // keepRates
false, // cacheRates
false);
} else if (this.clockModelIndex == 2) {
// Exponential relaxed clock
double numberOfBranches = 2 * (createTreeModel().getTaxonCount() - 1);
Parameter rateCategoryParameter = new Parameter.Default(numberOfBranches);
Parameter mean = new Parameter.Default(DistributionModelParser.MEAN, 1, clockParameterValues[4]);
ParametricDistributionModel distributionModel = new ExponentialDistributionModel(mean, clockParameterValues[5]);
// branchRateModel = new DiscretizedBranchRates(createTreeModel(), rateCategoryParameter,
// distributionModel, 1, false, Double.NaN);
branchRateModel = new //
DiscretizedBranchRates(//
createTreeModel(), //
rateCategoryParameter, //
distributionModel, //
1, //
false, //
Double.NaN, //randomizeRates
true, // keepRates
false, // cacheRates
false);
} else if (this.clockModelIndex == 3) {
// Inverse Gaussian
double numberOfBranches = 2 * (createTreeModel().getTaxonCount() - 1);
Parameter rateCategoryParameter = new Parameter.Default(numberOfBranches);
Parameter mean = new Parameter.Default(InverseGaussianDistributionModelParser.MEAN, 1, clockParameterValues[6]);
Parameter stdev = new Parameter.Default(InverseGaussianDistributionModelParser.STDEV, 1, clockParameterValues[7]);
ParametricDistributionModel distributionModel = new InverseGaussianDistributionModel(mean, stdev, clockParameterValues[8], false);
branchRateModel = new //
DiscretizedBranchRates(//
createTreeModel(), //
rateCategoryParameter, //
distributionModel, //
1, //
false, //
Double.NaN, //randomizeRates
true, // keepRates
false, // cacheRates
false);
} else {
System.out.println("Not yet implemented");
}
return branchRateModel;
}
use of dr.evomodel.branchratemodel.StrictClockBranchRates in project beast-mcmc by beast-dev.
the class BeagleBranchLikelihood method main.
// END: LikelihoodColumn class
// ////////////
// ---TEST---//
// ////////////
public static void main(String[] args) {
try {
MathUtils.setSeed(666);
int sequenceLength = 1000;
ArrayList<Partition> partitionsList = new ArrayList<Partition>();
// create tree
NewickImporter importer = new NewickImporter("((SimSeq1:22.0,SimSeq2:22.0):12.0,(SimSeq3:23.1,SimSeq4:23.1):10.899999999999999);");
Tree tree = importer.importTree(null);
TreeModel treeModel = new TreeModel(tree);
// create Frequency Model
Parameter freqs = new Parameter.Default(new double[] { 0.25, 0.25, 0.25, 0.25 });
FrequencyModel freqModel = new FrequencyModel(Nucleotides.INSTANCE, freqs);
// create branch model
Parameter kappa1 = new Parameter.Default(1, 1);
HKY hky1 = new HKY(kappa1, freqModel);
BranchModel homogeneousBranchModel = new HomogeneousBranchModel(hky1);
List<SubstitutionModel> substitutionModels = new ArrayList<SubstitutionModel>();
substitutionModels.add(hky1);
List<FrequencyModel> freqModels = new ArrayList<FrequencyModel>();
freqModels.add(freqModel);
// create branch rate model
Parameter rate = new Parameter.Default(1, 1.000);
BranchRateModel branchRateModel = new StrictClockBranchRates(rate);
// create site model
GammaSiteRateModel siteRateModel = new GammaSiteRateModel("siteModel");
// create partition
Partition partition1 = new //
Partition(//
treeModel, //
homogeneousBranchModel, //
siteRateModel, //
branchRateModel, //
freqModel, // from
0, // to
sequenceLength - 1, // every
1);
partitionsList.add(partition1);
// feed to sequence simulator and generate data
BeagleSequenceSimulator simulator = new BeagleSequenceSimulator(partitionsList);
Alignment alignment = simulator.simulate(false, false);
System.out.println(alignment);
BeagleTreeLikelihood btl = new BeagleTreeLikelihood(alignment, treeModel, homogeneousBranchModel, siteRateModel, branchRateModel, null, false, PartialsRescalingScheme.DEFAULT, true);
System.out.println("BTL(homogeneous) = " + btl.getLogLikelihood());
BeagleBranchLikelihood bbl = new BeagleBranchLikelihood(alignment, treeModel, homogeneousBranchModel, siteRateModel, freqModel, branchRateModel);
int branchIndex = 4;
System.out.println(bbl.getBranchLogLikelihood(branchIndex));
bbl.finalizeBeagle();
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
} catch (Throwable e) {
e.printStackTrace();
System.exit(-1);
}
// END: try-catch block
}
use of dr.evomodel.branchratemodel.StrictClockBranchRates in project beast-mcmc by beast-dev.
the class StrictClockBranchRatesParser method parseXMLObject.
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
Parameter rateParameter = (Parameter) xo.getElementFirstChild(RATE);
Logger.getLogger("dr.evomodel").info("\nUsing strict molecular clock model.");
return new StrictClockBranchRates(rateParameter);
}
use of dr.evomodel.branchratemodel.StrictClockBranchRates in project beast-mcmc by beast-dev.
the class PMDTestProblem method testPMD.
public void testPMD() throws Exception {
Parameter popSize = new Parameter.Default(ConstantPopulationModelParser.POPULATION_SIZE, 496432.69917113904, 0, Double.POSITIVE_INFINITY);
ConstantPopulationModel constantModel = createRandomInitialTree(popSize);
CoalescentLikelihood coalescent = new CoalescentLikelihood(treeModel, null, new ArrayList<TaxonList>(), constantModel);
coalescent.setId("coalescent");
// clock model
Parameter rateParameter = new Parameter.Default(StrictClockBranchRates.RATE, 4.0E-7, 0, 100.0);
StrictClockBranchRates branchRateModel = new StrictClockBranchRates(rateParameter);
// Sub model
Parameter freqs = new Parameter.Default(new double[] { 0.25, 0.25, 0.25, 0.25 });
Parameter kappa = new Parameter.Default(HKYParser.KAPPA, 1.0, 1.0E-8, Double.POSITIVE_INFINITY);
FrequencyModel f = new FrequencyModel(Nucleotides.INSTANCE, freqs);
HKY hky = new HKY(kappa, f);
//siteModel
GammaSiteModel siteModel = new GammaSiteModel(hky);
Parameter mu = new Parameter.Default(GammaSiteModelParser.MUTATION_RATE, 1.0, 0, Double.POSITIVE_INFINITY);
siteModel.setMutationRateParameter(mu);
// SequenceErrorModel
Parameter ageRelatedRateParameter = new Parameter.Default(SequenceErrorModelParser.AGE_RELATED_RATE, 4.0E-7, 0, 100.0);
TipStatesModel aDNADamageModel = new SequenceErrorModel(null, null, SequenceErrorModel.ErrorType.TRANSITIONS_ONLY, null, ageRelatedRateParameter, null);
//treeLikelihood
SitePatterns patterns = new SitePatterns(alignment, null, 0, -1, 1, true);
TreeLikelihood treeLikelihood = new TreeLikelihood(patterns, treeModel, siteModel, branchRateModel, aDNADamageModel, false, false, true, false, false);
treeLikelihood.setId(TreeLikelihoodParser.TREE_LIKELIHOOD);
// Operators
OperatorSchedule schedule = new SimpleOperatorSchedule();
MCMCOperator operator = new ScaleOperator(kappa, 0.75);
operator.setWeight(1.0);
schedule.addOperator(operator);
operator = new ScaleOperator(rateParameter, 0.75);
operator.setWeight(3.0);
schedule.addOperator(operator);
Parameter allInternalHeights = treeModel.createNodeHeightsParameter(true, true, false);
operator = new UpDownOperator(new Scalable[] { new Scalable.Default(rateParameter) }, new Scalable[] { new Scalable.Default(allInternalHeights) }, 0.75, 3.0, CoercionMode.COERCION_ON);
schedule.addOperator(operator);
operator = new ScaleOperator(popSize, 0.75);
operator.setWeight(3.0);
schedule.addOperator(operator);
operator = new ScaleOperator(ageRelatedRateParameter, 0.75);
operator.setWeight(3.0);
schedule.addOperator(operator);
Parameter rootHeight = treeModel.getRootHeightParameter();
rootHeight.setId(TREE_HEIGHT);
operator = new ScaleOperator(rootHeight, 0.75);
operator.setWeight(3.0);
schedule.addOperator(operator);
Parameter internalHeights = treeModel.createNodeHeightsParameter(false, true, false);
operator = new UniformOperator(internalHeights, 30.0);
schedule.addOperator(operator);
operator = new SubtreeSlideOperator(treeModel, 15.0, 49643.2699171139, true, false, false, false, CoercionMode.COERCION_ON);
schedule.addOperator(operator);
operator = new ExchangeOperator(ExchangeOperator.NARROW, treeModel, 15.0);
// operator.doOperation();
schedule.addOperator(operator);
operator = new ExchangeOperator(ExchangeOperator.WIDE, treeModel, 3.0);
// operator.doOperation();
schedule.addOperator(operator);
operator = new WilsonBalding(treeModel, 3.0);
// operator.doOperation();
schedule.addOperator(operator);
// ??? correct?
operator = new DeltaExchangeOperator(freqs, new int[] { 1, 1, 1, 1 }, 0.01, 1.0, false, CoercionMode.COERCION_ON);
schedule.addOperator(operator);
//CompoundLikelihood
OneOnXPrior likelihood1 = new OneOnXPrior();
likelihood1.addData(popSize);
OneOnXPrior likelihood2 = new OneOnXPrior();
likelihood2.addData(kappa);
List<Likelihood> likelihoods = new ArrayList<Likelihood>();
likelihoods.add(likelihood1);
likelihoods.add(likelihood2);
likelihoods.add(coalescent);
Likelihood prior = new CompoundLikelihood(0, likelihoods);
prior.setId(CompoundLikelihoodParser.PRIOR);
likelihoods.clear();
likelihoods.add(treeLikelihood);
Likelihood likelihood = new CompoundLikelihood(-1, likelihoods);
likelihoods.clear();
likelihoods.add(prior);
likelihoods.add(likelihood);
Likelihood posterior = new CompoundLikelihood(0, likelihoods);
posterior.setId(CompoundLikelihoodParser.POSTERIOR);
// Log
ArrayLogFormatter formatter = new ArrayLogFormatter(false);
MCLogger[] loggers = new MCLogger[2];
loggers[0] = new MCLogger(formatter, 1000, false);
loggers[0].add(posterior);
loggers[0].add(treeLikelihood);
loggers[0].add(rootHeight);
loggers[0].add(rateParameter);
loggers[0].add(ageRelatedRateParameter);
loggers[0].add(popSize);
loggers[0].add(kappa);
loggers[0].add(coalescent);
loggers[1] = new MCLogger(new TabDelimitedFormatter(System.out), 10000, false);
loggers[1].add(posterior);
loggers[1].add(treeLikelihood);
loggers[1].add(rootHeight);
loggers[1].add(rateParameter);
// MCMC
MCMC mcmc = new MCMC("mcmc1");
MCMCOptions options = new MCMCOptions(1000000);
mcmc.setShowOperatorAnalysis(true);
mcmc.init(options, posterior, schedule, loggers);
mcmc.run();
// time
System.out.println(mcmc.getTimer().toString());
// Tracer
List<Trace> traces = formatter.getTraces();
ArrayTraceList traceList = new ArrayTraceList("PMDTest", traces, 0);
for (int i = 1; i < traces.size(); i++) {
traceList.analyseTrace(i);
}
// <expectation name="clock.rate" value="1.5E-7"/>
// <expectation name="errorModel.ageRate" value="0.7E-7"/>
// <expectation name="hky.kappa" value="10"/>
TraceCorrelation kappaStats = traceList.getCorrelationStatistics(traceList.getTraceIndex(HKYParser.KAPPA));
assertExpectation(HKYParser.KAPPA, kappaStats, 10);
TraceCorrelation rateStats = traceList.getCorrelationStatistics(traceList.getTraceIndex(StrictClockBranchRates.RATE));
assertExpectation(StrictClockBranchRates.RATE, rateStats, 1.5E-7);
TraceCorrelation ageRateStats = traceList.getCorrelationStatistics(traceList.getTraceIndex(SequenceErrorModelParser.AGE_RELATED_RATE));
assertExpectation(SequenceErrorModelParser.AGE_RELATED_RATE, ageRateStats, 0.7E-7);
}
use of dr.evomodel.branchratemodel.StrictClockBranchRates in project beast-mcmc by beast-dev.
the class AncestralStateTreeLikelihoodTest method testJointLikelihood.
public void testJointLikelihood() {
TreeModel treeModel = new TreeModel("treeModel", tree);
Sequence[] sequence = new Sequence[3];
sequence[0] = new Sequence(new Taxon("0"), "A");
sequence[1] = new Sequence(new Taxon("1"), "C");
sequence[2] = new Sequence(new Taxon("2"), "C");
Taxa taxa = new Taxa();
for (Sequence s : sequence) {
taxa.addTaxon(s.getTaxon());
}
SimpleAlignment alignment = new SimpleAlignment();
for (Sequence s : sequence) {
alignment.addSequence(s);
}
Parameter mu = new Parameter.Default(1, 1.0);
Parameter kappa = new Parameter.Default(1, 1.0);
double[] pi = { 0.25, 0.25, 0.25, 0.25 };
Parameter freqs = new Parameter.Default(pi);
FrequencyModel f = new FrequencyModel(Nucleotides.INSTANCE, freqs);
HKY hky = new HKY(kappa, f);
AncestralStateTreeLikelihood treeLikelihood = new AncestralStateTreeLikelihood(alignment, treeModel, new GammaSiteModel(hky), new StrictClockBranchRates(mu), false, true, Nucleotides.INSTANCE, "state", false, // useMap = true
true, false);
double logLike = treeLikelihood.getLogLikelihood();
StringBuffer buffer = new StringBuffer();
TreeUtils.newick(treeModel, treeModel.getRoot(), false, TreeUtils.BranchLengthType.LENGTHS_AS_TIME, null, null, new TreeTraitProvider[] { treeLikelihood }, null, buffer);
System.out.println(buffer);
System.out.println("t_CA(2) = " + t(false, 2.0));
System.out.println("t_CC(1) = " + t(true, 1.0));
double trueValue = 0.25 * t(false, 2.0) * Math.pow(t(true, 1.0), 3.0);
assertEquals(logLike, Math.log(trueValue), 1e-6);
}
Aggregations