use of dr.inference.operators.CoercableMCMCOperator in project beast-mcmc by beast-dev.
the class BeastCheckpointer method readStateFromFile.
private long readStateFromFile(File file, MarkovChain markovChain, double[] lnL) {
OperatorSchedule operatorSchedule = markovChain.getSchedule();
long state = -1;
ArrayList<TreeParameterModel> traitModels = new ArrayList<TreeParameterModel>();
try {
FileReader fileIn = new FileReader(file);
BufferedReader in = new BufferedReader(fileIn);
int[] rngState = null;
String line = in.readLine();
String[] fields = line.split("\t");
if (fields[0].equals("rng")) {
// if there is a random number generator state present then load it...
try {
rngState = new int[fields.length - 1];
for (int i = 0; i < rngState.length; i++) {
rngState[i] = Integer.parseInt(fields[i + 1]);
}
} catch (NumberFormatException nfe) {
throw new RuntimeException("Unable to read state number from state file");
}
line = in.readLine();
fields = line.split("\t");
}
try {
if (!fields[0].equals("state")) {
throw new RuntimeException("Unable to read state number from state file");
}
state = Long.parseLong(fields[1]);
} catch (NumberFormatException nfe) {
throw new RuntimeException("Unable to read state number from state file");
}
line = in.readLine();
fields = line.split("\t");
try {
if (!fields[0].equals("lnL")) {
throw new RuntimeException("Unable to read lnL from state file");
}
if (lnL != null) {
lnL[0] = Double.parseDouble(fields[1]);
}
} catch (NumberFormatException nfe) {
throw new RuntimeException("Unable to read lnL from state file");
}
for (Parameter parameter : Parameter.CONNECTED_PARAMETER_SET) {
line = in.readLine();
fields = line.split("\t");
//if (!fields[0].equals(parameter.getParameterName())) {
// System.err.println("Unable to match state parameter: " + fields[0] + ", expecting " + parameter.getParameterName());
//}
int dimension = Integer.parseInt(fields[2]);
if (dimension != parameter.getDimension()) {
System.err.println("Unable to match state parameter dimension: " + dimension + ", expecting " + parameter.getDimension() + " for parameter: " + parameter.getParameterName());
System.err.print("Read from file: ");
for (int i = 0; i < fields.length; i++) {
System.err.print(fields[i] + "\t");
}
System.err.println();
}
if (fields[1].equals("branchRates.categories.rootNodeNumber")) {
// System.out.println("eek");
double value = Double.parseDouble(fields[3]);
parameter.setParameterValue(0, value);
if (DEBUG) {
System.out.println("restoring " + fields[1] + " with value " + value);
}
} else {
if (DEBUG) {
System.out.print("restoring " + fields[1] + " with values ");
}
for (int dim = 0; dim < parameter.getDimension(); dim++) {
parameter.setParameterValue(dim, Double.parseDouble(fields[dim + 3]));
if (DEBUG) {
System.out.print(Double.parseDouble(fields[dim + 3]) + " ");
}
}
if (DEBUG) {
System.out.println();
}
}
}
for (int i = 0; i < operatorSchedule.getOperatorCount(); i++) {
MCMCOperator operator = operatorSchedule.getOperator(i);
line = in.readLine();
fields = line.split("\t");
if (!fields[1].equals(operator.getOperatorName())) {
throw new RuntimeException("Unable to match operator: " + fields[1]);
}
if (fields.length < 4) {
throw new RuntimeException("Operator missing values: " + fields[1]);
}
operator.setAcceptCount(Integer.parseInt(fields[2]));
operator.setRejectCount(Integer.parseInt(fields[3]));
if (operator instanceof CoercableMCMCOperator) {
if (fields.length != 5) {
throw new RuntimeException("Coercable operator missing parameter: " + fields[1]);
}
((CoercableMCMCOperator) operator).setCoercableParameter(Double.parseDouble(fields[4]));
}
}
// load the tree models last as we get the node heights from the tree (not the parameters which
// which may not be associated with the right node
Set<String> expectedTreeModelNames = new HashSet<String>();
for (Model model : Model.CONNECTED_MODEL_SET) {
if (model instanceof TreeModel) {
if (DEBUG) {
System.out.println("model " + model.getModelName());
}
expectedTreeModelNames.add(model.getModelName());
if (DEBUG) {
for (String s : expectedTreeModelNames) {
System.out.println(s);
}
}
}
if (model instanceof TreeParameterModel) {
traitModels.add((TreeParameterModel) model);
}
}
line = in.readLine();
fields = line.split("\t");
// Read in all (possibly more than one) trees
while (fields[0].equals("tree")) {
if (DEBUG) {
System.out.println("tree: " + fields[1]);
}
for (Model model : Model.CONNECTED_MODEL_SET) {
if (model instanceof TreeModel && fields[1].equals(model.getModelName())) {
line = in.readLine();
line = in.readLine();
fields = line.split("\t");
//read number of nodes
int nodeCount = Integer.parseInt(fields[0]);
double[] nodeHeights = new double[nodeCount];
for (int i = 0; i < nodeCount; i++) {
line = in.readLine();
fields = line.split("\t");
nodeHeights[i] = Double.parseDouble(fields[1]);
}
//on to reading edge information
line = in.readLine();
line = in.readLine();
line = in.readLine();
fields = line.split("\t");
int edgeCount = Integer.parseInt(fields[0]);
//create data matrix of doubles to store information from list of TreeParameterModels
double[][] traitValues = new double[traitModels.size()][edgeCount];
//create array to store whether a node is left or right child of its parent
//can be important for certain tree transition kernels
int[] childOrder = new int[edgeCount];
for (int i = 0; i < childOrder.length; i++) {
childOrder[i] = -1;
}
int[] parents = new int[edgeCount];
for (int i = 0; i < edgeCount; i++) {
parents[i] = -1;
}
for (int i = 0; i < edgeCount; i++) {
line = in.readLine();
if (line != null) {
fields = line.split("\t");
parents[Integer.parseInt(fields[0])] = Integer.parseInt(fields[1]);
childOrder[i] = Integer.parseInt(fields[2]);
for (int j = 0; j < traitModels.size(); j++) {
traitValues[j][i] = Double.parseDouble(fields[3 + j]);
}
}
}
//perform magic with the acquired information
if (DEBUG) {
System.out.println("adopting tree structure");
}
//adopt the loaded tree structure; this does not yet copy the traits on the branches
((TreeModel) model).beginTreeEdit();
((TreeModel) model).adoptTreeStructure(parents, nodeHeights, childOrder);
((TreeModel) model).endTreeEdit();
expectedTreeModelNames.remove(model.getModelName());
}
}
line = in.readLine();
if (line != null) {
fields = line.split("\t");
}
}
if (expectedTreeModelNames.size() > 0) {
StringBuilder sb = new StringBuilder();
for (String notFoundName : expectedTreeModelNames) {
sb.append("Expecting, but unable to match state parameter:" + notFoundName + "\n");
}
throw new RuntimeException(sb.toString());
}
if (DEBUG) {
System.out.println("\nDouble checking:");
for (Parameter parameter : Parameter.CONNECTED_PARAMETER_SET) {
if (parameter.getParameterName().equals("branchRates.categories.rootNodeNumber")) {
System.out.println(parameter.getParameterName() + ": " + parameter.getParameterValue(0));
}
}
}
if (rngState != null) {
MathUtils.setRandomState(rngState);
}
in.close();
fileIn.close();
// This shouldn't be necessary and if it is then it might be hiding a bug...
// for (Likelihood likelihood : Likelihood.CONNECTED_LIKELIHOOD_SET) {
// likelihood.makeDirty();
// }
} catch (IOException ioe) {
throw new RuntimeException("Unable to read file: " + ioe.getMessage());
}
return state;
}
use of dr.inference.operators.CoercableMCMCOperator in project beast-mcmc by beast-dev.
the class BeastCheckpointer method writeStateToFile.
private boolean writeStateToFile(File file, long state, double lnL, MarkovChain markovChain) {
OperatorSchedule operatorSchedule = markovChain.getSchedule();
OutputStream fileOut = null;
try {
fileOut = new FileOutputStream(file);
PrintStream out = new PrintStream(fileOut);
ArrayList<TreeParameterModel> traitModels = new ArrayList<TreeParameterModel>();
int[] rngState = MathUtils.getRandomState();
out.print("rng");
for (int i = 0; i < rngState.length; i++) {
out.print("\t");
out.print(rngState[i]);
}
out.println();
out.print("state\t");
out.println(state);
out.print("lnL\t");
out.println(lnL);
for (Parameter parameter : Parameter.CONNECTED_PARAMETER_SET) {
out.print("parameter");
out.print("\t");
out.print(parameter.getParameterName());
out.print("\t");
out.print(parameter.getDimension());
for (int dim = 0; dim < parameter.getDimension(); dim++) {
out.print("\t");
out.print(parameter.getParameterValue(dim));
}
out.println();
}
for (int i = 0; i < operatorSchedule.getOperatorCount(); i++) {
MCMCOperator operator = operatorSchedule.getOperator(i);
out.print("operator");
out.print("\t");
out.print(operator.getOperatorName());
out.print("\t");
out.print(operator.getAcceptCount());
out.print("\t");
out.print(operator.getRejectCount());
if (operator instanceof CoercableMCMCOperator) {
out.print("\t");
out.print(((CoercableMCMCOperator) operator).getCoercableParameter());
}
out.println();
}
//check up front if there are any TreeParameterModel objects
for (Model model : Model.CONNECTED_MODEL_SET) {
if (model instanceof TreeParameterModel) {
//System.out.println("\nDetected TreeParameterModel: " + ((TreeParameterModel) model).toString());
traitModels.add((TreeParameterModel) model);
}
}
for (Model model : Model.CONNECTED_MODEL_SET) {
if (model instanceof TreeModel) {
out.print("tree");
out.print("\t");
out.println(model.getModelName());
//replace Newick format by printing general graph structure
//out.println(((TreeModel) model).getNewick());
out.println("#node height taxon");
int nodeCount = ((TreeModel) model).getNodeCount();
out.println(nodeCount);
for (int i = 0; i < nodeCount; i++) {
out.print(((TreeModel) model).getNode(i).getNumber());
out.print("\t");
out.print(((TreeModel) model).getNodeHeight(((TreeModel) model).getNode(i)));
if (((TreeModel) model).isExternal(((TreeModel) model).getNode(i))) {
out.print("\t");
out.print(((TreeModel) model).getNodeTaxon(((TreeModel) model).getNode(i)).getId());
}
out.println();
}
out.println("#edges");
out.println("#child-node parent-node L/R-child traits");
out.println(nodeCount);
for (int i = 0; i < nodeCount; i++) {
NodeRef parent = ((TreeModel) model).getParent(((TreeModel) model).getNode(i));
if (parent != null) {
out.print(((TreeModel) model).getNode(i).getNumber());
out.print("\t");
out.print(((TreeModel) model).getParent(((TreeModel) model).getNode(i)).getNumber());
out.print("\t");
if ((((TreeModel) model).getChild(parent, 0) == ((TreeModel) model).getNode(i))) {
//left child
out.print(0);
} else if ((((TreeModel) model).getChild(parent, 1) == ((TreeModel) model).getNode(i))) {
//right child
out.print(1);
} else {
throw new RuntimeException("Operation currently only supported for nodes with 2 children.");
}
for (TreeParameterModel tpm : traitModels) {
out.print("\t");
out.print(tpm.getNodeValue((TreeModel) model, ((TreeModel) model).getNode(i)));
}
out.println();
}
}
}
}
out.close();
fileOut.close();
} catch (IOException ioe) {
System.err.println("Unable to write file: " + ioe.getMessage());
return false;
}
if (DEBUG) {
for (Likelihood likelihood : Likelihood.CONNECTED_LIKELIHOOD_SET) {
System.err.println(likelihood.getId() + ": " + likelihood.getLogLikelihood());
}
}
return true;
}
use of dr.inference.operators.CoercableMCMCOperator in project beast-mcmc by beast-dev.
the class MCMCMC method finish.
/**
* cleans up when the chain finishes (possibly early).
*/
private void finish() {
NumberFormatter formatter = new NumberFormatter(8);
MCLogger[] loggers = mcLoggers[coldChain];
for (MCLogger logger : loggers) {
logger.log(currentState);
logger.stopLogging();
}
System.out.println();
System.out.println("Time taken: " + timer.toString());
if (showOperatorAnalysis) {
System.out.println();
System.out.println("Operator analysis");
System.out.println(formatter.formatToFieldWidth("Operator", 30) + formatter.formatToFieldWidth("", 8) + formatter.formatToFieldWidth("Pr(accept)", 11) + " Performance suggestion");
for (int i = 0; i < schedules[coldChain].getOperatorCount(); i++) {
MCMCOperator op = schedules[coldChain].getOperator(i);
double acceptanceProb = MCMCOperator.Utils.getAcceptanceProbability(op);
String message = "good";
if (acceptanceProb < op.getMinimumGoodAcceptanceLevel()) {
if (acceptanceProb < (op.getMinimumAcceptanceLevel() / 10.0)) {
message = "very low";
} else if (acceptanceProb < op.getMinimumAcceptanceLevel()) {
message = "low";
} else
message = "slightly low";
} else if (acceptanceProb > op.getMaximumGoodAcceptanceLevel()) {
double reallyHigh = 1.0 - ((1.0 - op.getMaximumAcceptanceLevel()) / 10.0);
if (acceptanceProb > reallyHigh) {
message = "very high";
} else if (acceptanceProb > op.getMaximumAcceptanceLevel()) {
message = "high";
} else
message = "slightly high";
}
String suggestion = op.getPerformanceSuggestion();
String pString = " ";
if (op instanceof CoercableMCMCOperator) {
pString = formatter.formatToFieldWidth(formatter.formatDecimal(((CoercableMCMCOperator) op).getRawParameter(), 3), 8);
}
System.out.println(formatter.formatToFieldWidth(op.getOperatorName(), 30) + pString + formatter.formatToFieldWidth(formatter.formatDecimal(acceptanceProb, 4), 11) + " " + message + "\t" + suggestion);
}
System.out.println();
}
}
use of dr.inference.operators.CoercableMCMCOperator in project beast-mcmc by beast-dev.
the class MCMCMC method swapChainTemperatures.
private int swapChainTemperatures() {
if (DEBUG) {
System.out.print("Current scores: ");
for (int i = 0; i < chains.length; i++) {
System.out.print("\t");
if (i == coldChain) {
System.out.print("[");
}
System.out.print(chains[i].getCurrentScore());
if (i == coldChain) {
System.out.print("]");
}
}
System.out.println();
}
int newColdChain = coldChain;
int index1 = MathUtils.nextInt(chains.length);
int index2 = MathUtils.nextInt(chains.length);
while (index1 == index2) {
index2 = MathUtils.nextInt(chains.length);
}
double score1 = chains[index1].getCurrentScore();
MCMCCriterion acceptor1 = ((MCMCCriterion) chains[index1].getAcceptor());
double temperature1 = acceptor1.getTemperature();
double score2 = chains[index2].getCurrentScore();
MCMCCriterion acceptor2 = ((MCMCCriterion) chains[index2].getAcceptor());
double temperature2 = acceptor2.getTemperature();
double logRatio = ((score2 - score1) * temperature1) + ((score1 - score2) * temperature2);
boolean swap = (Math.log(MathUtils.nextDouble()) < logRatio);
if (swap) {
if (DEBUG) {
System.out.println("Swapping chain " + index1 + " and chain " + index2);
}
acceptor1.setTemperature(temperature2);
acceptor2.setTemperature(temperature1);
OperatorSchedule schedule1 = schedules[index1];
OperatorSchedule schedule2 = schedules[index2];
for (int i = 0; i < schedule1.getOperatorCount(); i++) {
MCMCOperator operator1 = schedule1.getOperator(i);
MCMCOperator operator2 = schedule2.getOperator(i);
long tmp = operator1.getAcceptCount();
operator1.setAcceptCount(operator2.getAcceptCount());
operator2.setAcceptCount(tmp);
tmp = operator1.getRejectCount();
operator1.setRejectCount(operator2.getRejectCount());
operator2.setRejectCount(tmp);
double tmp2 = operator1.getSumDeviation();
operator1.setSumDeviation(operator2.getSumDeviation());
operator2.setSumDeviation(tmp2);
if (operator1 instanceof CoercableMCMCOperator) {
tmp2 = ((CoercableMCMCOperator) operator1).getCoercableParameter();
((CoercableMCMCOperator) operator1).setCoercableParameter(((CoercableMCMCOperator) operator2).getCoercableParameter());
((CoercableMCMCOperator) operator2).setCoercableParameter(tmp2);
}
}
if (index1 == coldChain) {
newColdChain = index2;
} else if (index2 == coldChain) {
newColdChain = index1;
}
}
return newColdChain;
}
use of dr.inference.operators.CoercableMCMCOperator in project beast-mcmc by beast-dev.
the class CheckPointModifier method readStateFromFile.
private long readStateFromFile(File file, MarkovChain markovChain, double[] lnL) {
OperatorSchedule operatorSchedule = markovChain.getSchedule();
long state = -1;
this.traitModels = new ArrayList<TreeParameterModel>();
try {
FileReader fileIn = new FileReader(file);
BufferedReader in = new BufferedReader(fileIn);
int[] rngState = null;
String line = in.readLine();
String[] fields = line.split("\t");
if (fields[0].equals("rng")) {
// if there is a random number generator state present then load it...
try {
rngState = new int[fields.length - 1];
for (int i = 0; i < rngState.length; i++) {
rngState[i] = Integer.parseInt(fields[i + 1]);
}
} catch (NumberFormatException nfe) {
throw new RuntimeException("Unable to read state number from state file");
}
line = in.readLine();
fields = line.split("\t");
}
try {
if (!fields[0].equals("state")) {
throw new RuntimeException("Unable to read state number from state file");
}
state = Long.parseLong(fields[1]);
} catch (NumberFormatException nfe) {
throw new RuntimeException("Unable to read state number from state file");
}
line = in.readLine();
fields = line.split("\t");
try {
if (!fields[0].equals("lnL")) {
throw new RuntimeException("Unable to read lnL from state file");
}
if (lnL != null) {
lnL[0] = Double.parseDouble(fields[1]);
}
} catch (NumberFormatException nfe) {
throw new RuntimeException("Unable to read lnL from state file");
}
line = in.readLine();
//System.out.println(line);
fields = line.split("\t");
//Tree nodes have numbers as parameter ids
for (Parameter parameter : Parameter.CONNECTED_PARAMETER_SET) {
//numbers should be positive but can include zero
if (isTreeNode(parameter.getId()) && isTreeNode(fields[1]) || parameter.getId().equals(fields[1])) {
int dimension = Integer.parseInt(fields[2]);
if (dimension != parameter.getDimension() && !fields[1].equals("branchRates.categories")) {
System.err.println("Unable to match state parameter dimension: " + dimension + ", expecting " + parameter.getDimension() + " for parameter: " + parameter.getParameterName());
System.err.print("Read from file: ");
for (int i = 0; i < fields.length; i++) {
System.err.print(fields[i] + "\t");
}
System.err.println();
}
if (fields[1].equals("branchRates.categories.rootNodeNumber")) {
// System.out.println("eek");
double value = Double.parseDouble(fields[3]);
parameter.setParameterValue(0, value);
if (DEBUG) {
System.out.println("restoring " + fields[1] + " with value " + value);
}
} else {
if (DEBUG) {
System.out.print("restoring " + fields[1] + " with values ");
}
if (fields[1].equals("branchRates.categories")) {
for (int dim = 0; dim < (fields.length - 3); dim++) {
//System.out.println("dim " + dim);
parameter.setParameterValue(dim, Double.parseDouble(fields[dim + 3]));
if (DEBUG) {
System.out.print(Double.parseDouble(fields[dim + 3]) + " ");
}
}
} else {
for (int dim = 0; dim < parameter.getDimension(); dim++) {
parameter.setParameterValue(dim, Double.parseDouble(fields[dim + 3]));
if (DEBUG) {
System.out.print(Double.parseDouble(fields[dim + 3]) + " ");
}
}
}
if (DEBUG) {
System.out.println();
}
}
line = in.readLine();
//System.out.println(line);
fields = line.split("\t");
} else {
//there will be more parameters in the connected set than there are lines in the checkpoint file
//do nothing and just keep iterating over the parameters in the connected set
}
}
//No changes needed for loading in operators
for (int i = 0; i < operatorSchedule.getOperatorCount(); i++) {
MCMCOperator operator = operatorSchedule.getOperator(i);
if (!fields[1].equals(operator.getOperatorName())) {
throw new RuntimeException("Unable to match operator: " + fields[1]);
}
if (fields.length < 4) {
throw new RuntimeException("Operator missing values: " + fields[1]);
}
operator.setAcceptCount(Integer.parseInt(fields[2]));
operator.setRejectCount(Integer.parseInt(fields[3]));
if (operator instanceof CoercableMCMCOperator) {
if (fields.length != 5) {
throw new RuntimeException("Coercable operator missing parameter: " + fields[1]);
}
((CoercableMCMCOperator) operator).setCoercableParameter(Double.parseDouble(fields[4]));
}
line = in.readLine();
fields = line.split("\t");
}
// load the tree models last as we get the node heights from the tree (not the parameters which
// which may not be associated with the right node
Set<String> expectedTreeModelNames = new HashSet<String>();
for (Model model : Model.CONNECTED_MODEL_SET) {
if (model instanceof TreeModel) {
expectedTreeModelNames.add(model.getModelName());
}
if (model instanceof TreeParameterModel) {
this.traitModels.add((TreeParameterModel) model);
}
if (model instanceof BranchRates) {
this.rateModel = (BranchRates) model;
}
}
while (fields[0].equals("tree")) {
for (Model model : Model.CONNECTED_MODEL_SET) {
if (model instanceof TreeModel && fields[1].equals(model.getModelName())) {
//AR: Can we not just add them to a Flexible tree and then make a new TreeModel
//taking that in the constructor?
//internally, we have a tree with all the taxa
//externally, i.e. in the checkpoint file, we have a tree representation comprising
//a subset of the full taxa set
//write method that adjusts the internal representation, i.e. the one in the connected
//set, according to the checkpoint file and a distance-based approach to position
//the additional taxa
//first read in all the data from the checkpoint file
line = in.readLine();
line = in.readLine();
fields = line.split("\t");
//read number of nodes
int nodeCount = Integer.parseInt(fields[0]);
double[] nodeHeights = new double[nodeCount];
String[] taxaNames = new String[(nodeCount + 1) / 2];
for (int i = 0; i < nodeCount; i++) {
line = in.readLine();
fields = line.split("\t");
nodeHeights[i] = Double.parseDouble(fields[1]);
if (i < taxaNames.length) {
taxaNames[i] = fields[2];
}
}
//on to reading edge information
line = in.readLine();
line = in.readLine();
line = in.readLine();
fields = line.split("\t");
int edgeCount = Integer.parseInt(fields[0]);
//create data matrix of doubles to store information from list of TreeParameterModels
double[][] traitValues = new double[traitModels.size()][edgeCount];
//create array to store whether a node is left or right child of its parent
//can be important for certain tree transition kernels
int[] childOrder = new int[edgeCount];
for (int i = 0; i < childOrder.length; i++) {
childOrder[i] = -1;
}
int[] parents = new int[edgeCount];
for (int i = 0; i < edgeCount; i++) {
parents[i] = -1;
}
for (int i = 0; i < edgeCount; i++) {
line = in.readLine();
if (line != null) {
fields = line.split("\t");
parents[Integer.parseInt(fields[0])] = Integer.parseInt(fields[1]);
childOrder[i] = Integer.parseInt(fields[2]);
for (int j = 0; j < traitModels.size(); j++) {
traitValues[j][i] = Double.parseDouble(fields[3 + j]);
}
}
}
//perform magic with the acquired information
//CheckPointTreeModifier modifyTree = new CheckPointTreeModifier((TreeModel) model);
this.modifyTree = new CheckPointTreeModifier((TreeModel) model);
modifyTree.adoptTreeStructure(parents, nodeHeights, childOrder, taxaNames);
if (traitModels.size() > 0) {
modifyTree.adoptTraitData(parents, this.traitModels, traitValues);
}
//adopt the loaded tree structure; this does not yet copy the traits on the branches
//((TreeModel) model).beginTreeEdit();
//((TreeModel) model).adoptTreeStructure(parents, nodeHeights, childOrder);
//((TreeModel) model).endTreeEdit();
expectedTreeModelNames.remove(model.getModelName());
}
}
line = in.readLine();
if (line != null) {
fields = line.split("\t");
}
}
if (expectedTreeModelNames.size() > 0) {
StringBuilder sb = new StringBuilder();
for (String notFoundName : expectedTreeModelNames) {
sb.append("Expecting, but unable to match state parameter:" + notFoundName + "\n");
}
throw new RuntimeException(sb.toString());
}
in.close();
fileIn.close();
} catch (IOException ioe) {
throw new RuntimeException("Unable to read file: " + ioe.getMessage());
}
return state;
}
Aggregations