use of dr.oldevomodel.substmodel.AsymmetricQuadraticModel in project beast-mcmc by beast-dev.
the class AsymQuadModelParser method parseXMLObject.
// AbstractXMLObjectParser implementation
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
Microsatellite microsatellite = (Microsatellite) xo.getChild(Microsatellite.class);
Parameter expanConst = processModelParameter(xo, EXPANSION_CONSTANT);
Parameter expanLin = processModelParameter(xo, EXPANSION_LIN);
Parameter expanQuad = processModelParameter(xo, EXPANSION_QUAD);
Parameter contractConst = processModelParameter(xo, CONTRACTION_CONSTANT);
Parameter contractLin = processModelParameter(xo, CONTRACTION_LIN);
Parameter contractQuad = processModelParameter(xo, CONTRACTION_QUAD);
// get FrequencyModel
FrequencyModel freqModel = null;
if (xo.hasChildNamed(FrequencyModelParser.FREQUENCIES)) {
freqModel = (FrequencyModel) xo.getElementFirstChild(FrequencyModelParser.FREQUENCIES);
}
boolean isSubmodel = xo.getAttribute(IS_SUBMODEL, false);
return new AsymmetricQuadraticModel(microsatellite, freqModel, expanConst, expanLin, expanQuad, contractConst, contractLin, contractQuad, isSubmodel);
}
use of dr.oldevomodel.substmodel.AsymmetricQuadraticModel in project beast-mcmc by beast-dev.
the class MsatSamplingTreeLikelihoodTest method setUp.
public void setUp() throws Exception {
super.setUp();
// taxa
ArrayList<Taxon> taxonList3 = new ArrayList<Taxon>();
Collections.addAll(taxonList3, new Taxon("Taxon1"), new Taxon("Taxon2"), new Taxon("Taxon3"), new Taxon("Taxon4"), new Taxon("Taxon5"), new Taxon("Taxon6"), new Taxon("Taxon7"));
Taxa taxa3 = new Taxa(taxonList3);
// msat datatype
Microsatellite msat = new Microsatellite(1, 6);
Patterns msatPatterns = new Patterns(msat, taxa3);
// pattern in the correct code form.
msatPatterns.addPattern(new int[] { 0, 1, 3, 2, 4, 5, 1 });
// create tree
NewickImporter importer = new NewickImporter("(((Taxon1:0.3,Taxon2:0.3):0.6,Taxon3:0.9):0.9,((Taxon4:0.5,Taxon5:0.5):0.3,(Taxon6:0.7,Taxon7:0.7):0.1):1.0);");
Tree tree = importer.importTree(null);
// treeModel
TreeModel treeModel = new DefaultTreeModel(tree);
// msatsubstModel
AsymmetricQuadraticModel eu1 = new AsymmetricQuadraticModel(msat, null);
// create msatSamplerTreeModel
Parameter internalVal = new Parameter.Default(new double[] { 2, 3, 4, 2, 1, 5 });
int[] externalValues = msatPatterns.getPattern(0);
HashMap<String, Integer> taxaMap = new HashMap<String, Integer>(externalValues.length);
boolean internalValuesProvided = true;
for (int i = 0; i < externalValues.length; i++) {
taxaMap.put(msatPatterns.getTaxonId(i), i);
}
MicrosatelliteSamplerTreeModel msatTreeModel = new MicrosatelliteSamplerTreeModel("JUnitTestEx", treeModel, internalVal, msatPatterns, externalValues, taxaMap, internalValuesProvided);
// create msatSamplerTreeLikelihood
BranchRateModel branchRateModel = new StrictClockBranchRates(new Parameter.Default(1.0));
eu1Likelihood = new MicrosatelliteSamplerTreeLikelihood(msatTreeModel, eu1, branchRateModel);
// eu2
TwoPhaseModel eu2 = new TwoPhaseModel(msat, null, eu1, new Parameter.Default(0.0), new Parameter.Default(0.4), null, false);
eu2Likelihood = new MicrosatelliteSamplerTreeLikelihood(msatTreeModel, eu2, branchRateModel);
// ec1
LinearBiasModel ec1 = new LinearBiasModel(msat, null, eu1, new Parameter.Default(0.48), new Parameter.Default(0.0), false, false, false);
ec1Likelihood = new MicrosatelliteSamplerTreeLikelihood(msatTreeModel, ec1, branchRateModel);
// ec2
TwoPhaseModel ec2 = new TwoPhaseModel(msat, null, ec1, new Parameter.Default(0.0), new Parameter.Default(0.4), null, false);
ec2Likelihood = new MicrosatelliteSamplerTreeLikelihood(msatTreeModel, ec2, branchRateModel);
// el1
LinearBiasModel el1 = new LinearBiasModel(msat, null, eu1, new Parameter.Default(0.2), new Parameter.Default(-0.018), true, false, false);
el1Likelihood = new MicrosatelliteSamplerTreeLikelihood(msatTreeModel, el1, branchRateModel);
AsymmetricQuadraticModel pu1 = new AsymmetricQuadraticModel(msat, null, new Parameter.Default(1.0), new Parameter.Default(0.015), new Parameter.Default(0.0), new Parameter.Default(1.0), new Parameter.Default(0.015), new Parameter.Default(0.0), false);
pu1Likelihood = new MicrosatelliteSamplerTreeLikelihood(msatTreeModel, pu1, branchRateModel);
// ec2
TwoPhaseModel pu2 = new TwoPhaseModel(msat, null, pu1, new Parameter.Default(0.0), new Parameter.Default(0.4), null, false);
pu2Likelihood = new MicrosatelliteSamplerTreeLikelihood(msatTreeModel, pu2, branchRateModel);
// ec1
LinearBiasModel pc1 = new LinearBiasModel(msat, null, pu1, new Parameter.Default(0.48), new Parameter.Default(0.0), false, false, false);
pc1Likelihood = new MicrosatelliteSamplerTreeLikelihood(msatTreeModel, pc1, branchRateModel);
}
use of dr.oldevomodel.substmodel.AsymmetricQuadraticModel in project beast-mcmc by beast-dev.
the class MsatFullLikelihoodTest method setUp.
public void setUp() throws Exception {
super.setUp();
// taxa
ArrayList<Taxon> taxonList1 = new ArrayList<Taxon>();
Collections.addAll(taxonList1, new Taxon("taxon1"), new Taxon("taxon2"), new Taxon("taxon3"));
Taxa taxa1 = new Taxa(taxonList1);
// msat datatype
Microsatellite msat = new Microsatellite(1, 3);
Patterns msatPatterns = new Patterns(msat, taxa1);
// pattern in the correct code form.
msatPatterns.addPattern(new int[] { 0, 1, 2 });
// create tree
NewickImporter importer = new NewickImporter("(taxon1:7.5,(taxon2:5.3,taxon3:5.3):2.2);");
Tree tree = importer.importTree(null);
// treeModel
TreeModel treeModel = new DefaultTreeModel(tree);
// msatsubstModel
AsymmetricQuadraticModel aqm1 = new AsymmetricQuadraticModel(msat, null);
// siteModel
GammaSiteModel siteModel = new GammaSiteModel(aqm1);
// treeLikelihood
treeLikelihood1 = new TreeLikelihood(msatPatterns, treeModel, siteModel, null, null, false, false, true, false, false);
setUpExample2();
setUpExample3();
}
use of dr.oldevomodel.substmodel.AsymmetricQuadraticModel in project beast-mcmc by beast-dev.
the class MsatFullLikelihoodTest method setUpExample2.
private void setUpExample2() throws Exception {
// taxa
ArrayList<Taxon> taxonList2 = new ArrayList<Taxon>();
Collections.addAll(taxonList2, new Taxon("taxon1"), new Taxon("taxon2"), new Taxon("taxon3"), new Taxon("taxon4"), new Taxon("taxon5"));
Taxa taxa2 = new Taxa(taxonList2);
// msat datatype
Microsatellite msat = new Microsatellite(1, 3);
Patterns msatPatterns = new Patterns(msat, taxa2);
// pattern in the correct code form.
msatPatterns.addPattern(new int[] { 0, 1, 2, 1, 2 });
// create tree
NewickImporter importer = new NewickImporter("(((taxon1:1.5,taxon2:1.5):1.5,(taxon3:2.1,taxon4:2.1):0.9):0.7,taxon5:3.7);");
Tree tree = importer.importTree(null);
// treeModel
TreeModel treeModel = new DefaultTreeModel(tree);
// msatsubstModel
AsymmetricQuadraticModel aqm2 = new AsymmetricQuadraticModel(msat, null);
// siteModel
GammaSiteModel siteModel = new GammaSiteModel(aqm2);
// treeLikelihood
treeLikelihood2 = new TreeLikelihood(msatPatterns, treeModel, siteModel, null, null, false, false, true, false, false);
}
use of dr.oldevomodel.substmodel.AsymmetricQuadraticModel in project beast-mcmc by beast-dev.
the class AsymQuadTest method testAsymmetricQuadraticModel.
public void testAsymmetricQuadraticModel() {
for (Instance test : all) {
Parameter expanConst = new Parameter.Default(1, test.getExpanConst());
Parameter expanLin = new Parameter.Default(1, test.getExpanLin());
Parameter expanQuad = new Parameter.Default(1, test.getExpanQuad());
Parameter contractConst = new Parameter.Default(1, test.getContractConst());
Parameter contractLin = new Parameter.Default(1, test.getContractLin());
Parameter contractQuad = new Parameter.Default(1, test.getContractQuad());
Microsatellite microsat = test.getDataType();
AsymmetricQuadraticModel aqm = new AsymmetricQuadraticModel(microsat, null, expanConst, expanLin, expanQuad, contractConst, contractLin, contractQuad, false);
aqm.computeStationaryDistribution();
double[] statDist = aqm.getStationaryDistribution();
final double[] expectedStatDist = test.getExpectedPi();
for (int k = 0; k < statDist.length; ++k) {
assertEquals(statDist[k], expectedStatDist[k], 1e-10);
}
double[] mat = new double[4 * 4];
aqm.getTransitionProbabilities(test.getDistance(), mat);
final double[] result = test.getExpectedResult();
int k;
for (k = 0; k < mat.length; ++k) {
assertEquals(result[k], mat[k], 1e-10);
// System.out.print(" " + (mat[k] - result[k]));
}
k = 0;
for (int i = 0; i < microsat.getStateCount(); i++) {
for (int j = 0; j < microsat.getStateCount(); j++) {
assertEquals(result[k++], aqm.getOneTransitionProbabilityEntry(test.getDistance(), i, j), 1e-10);
}
}
for (int j = 0; j < microsat.getStateCount(); j++) {
double[] colTransitionProb = aqm.getColTransitionProbabilities(test.getDistance(), j);
for (int i = 0; i < microsat.getStateCount(); i++) {
assertEquals(result[i * microsat.getStateCount() + j], colTransitionProb[i], 1e-10);
}
}
for (int i = 0; i < microsat.getStateCount(); i++) {
double[] rowTransitionProb = aqm.getRowTransitionProbabilities(test.getDistance(), i);
for (int j = 0; j < microsat.getStateCount(); j++) {
assertEquals(result[i * microsat.getStateCount() + j], rowTransitionProb[j], 1e-10);
}
}
}
}
Aggregations