use of gdsc.smlm.function.gaussian.EllipticalGaussian2DFunction in project GDSC-SMLM by aherbert.
the class EllipticalGaussian2DFunctionTest method init.
protected void init() {
flags = GaussianFunctionFactory.FIT_SIMPLE_ELLIPTICAL;
f1 = new EllipticalGaussian2DFunction(1, maxx, maxy);
f2 = new EllipticalGaussian2DFunction(2, maxx, maxy);
}
use of gdsc.smlm.function.gaussian.EllipticalGaussian2DFunction in project GDSC-SMLM by aherbert.
the class GradientCalculatorSpeedTest method mleCalculatorComputesLogLikelihoodRatio.
@Test
public void mleCalculatorComputesLogLikelihoodRatio() {
EllipticalGaussian2DFunction func = new EllipticalGaussian2DFunction(1, blockWidth, blockWidth);
int n = blockWidth * blockWidth;
double[] a = new double[7];
rdg = new RandomDataGenerator(new Well19937c(30051977));
for (int run = 5; run-- > 0; ) {
a[0] = random(Background);
a[1] = random(Amplitude);
a[2] = random(Angle);
a[3] = random(Xpos);
a[4] = random(Ypos);
a[5] = random(Xwidth);
a[6] = random(Ywidth);
// Simulate Poisson process
func.initialise(a);
double[] x = Utils.newArray(n, 0, 1.0);
double[] u = new double[x.length];
for (int i = 0; i < n; i++) {
u[i] = func.eval(i);
if (u[i] > 0)
x[i] = rdg.nextPoisson(u[i]);
}
GradientCalculator calc = GradientCalculatorFactory.newCalculator(func.getNumberOfGradients(), true);
double[][] alpha = new double[7][7];
double[] beta = new double[7];
double llr = PoissonCalculator.logLikelihoodRatio(u, x);
double llr2 = calc.findLinearised(n, x, a, alpha, beta, func);
//System.out.printf("llr=%f, llr2=%f\n", llr, llr2);
Assert.assertEquals("Log-likelihood ratio", llr, llr2, llr * 1e-10);
}
}
use of gdsc.smlm.function.gaussian.EllipticalGaussian2DFunction in project GDSC-SMLM by aherbert.
the class GradientCalculatorSpeedTest method doubleCreateGaussianData.
/**
* Create random elliptical Gaussian data an returns the data plus an estimate of the parameters.
* Only the chosen parameters are randomised and returned for a maximum of (background, amplitude, angle, xpos,
* ypos, xwidth, ywidth }
*
* @param npeaks
* the npeaks
* @param params
* set on output
* @param randomiseParams
* Set to true to randomise the params
* @return the double[]
*/
private double[] doubleCreateGaussianData(int npeaks, double[] params, boolean randomiseParams) {
int n = blockWidth * blockWidth;
// Generate a 2D Gaussian
EllipticalGaussian2DFunction func = new EllipticalGaussian2DFunction(npeaks, blockWidth, blockWidth);
params[0] = random(Background);
for (int i = 0, j = 1; i < npeaks; i++, j += 6) {
params[j] = random(Amplitude);
params[j + 1] = random(Angle);
params[j + 2] = random(Xpos);
params[j + 3] = random(Ypos);
params[j + 4] = random(Xwidth);
params[j + 5] = random(Ywidth);
}
double[] dy_da = new double[params.length];
double[] y = new double[n];
func.initialise(params);
for (int i = 0; i < y.length; i++) {
// Add random Poisson noise
y[i] = rdg.nextPoisson(func.eval(i, dy_da));
}
if (randomiseParams) {
params[0] = random(params[0]);
for (int i = 0, j = 1; i < npeaks; i++, j += 6) {
params[j] = random(params[j]);
params[j + 1] = random(params[j + 1]);
params[j + 2] = random(params[j + 2]);
params[j + 3] = random(params[j + 3]);
params[j + 4] = random(params[j + 4]);
//params[j + 4];
params[j + 5] = random(params[j + 5]);
}
}
return y;
}
use of gdsc.smlm.function.gaussian.EllipticalGaussian2DFunction in project GDSC-SMLM by aherbert.
the class SpeedTest method doubleCreateGaussianData.
/**
* Create random elliptical Gaussian data an returns the data plus an estimate of the parameters.
* Only the chosen parameters are randomised and returned for a maximum of (background, amplitude, angle, xpos,
* ypos, xwidth, ywidth }
*
* @param params
* set on output
* @return
*/
private double[] doubleCreateGaussianData(int npeaks, double[] params) {
int n = blockWidth * blockWidth;
// Generate a 2D Gaussian
EllipticalGaussian2DFunction func = new EllipticalGaussian2DFunction(npeaks, blockWidth, blockWidth);
params[0] = Background + rand.nextFloat() * 5f;
for (int i = 0, j = 1; i < npeaks; i++, j += 6) {
params[j] = Amplitude + rand.nextFloat() * 5f;
//(double) (Math.PI / 4.0); // Angle
params[j + 1] = 0f;
params[j + 2] = Xpos + rand.nextFloat() * 2f;
params[j + 3] = Ypos + rand.nextFloat() * 2f;
params[j + 4] = Xwidth + rand.nextFloat() * 2f;
params[j + 5] = params[j + 4];
}
double[] dy_da = new double[params.length];
double[] y = new double[n];
func.initialise(params);
for (int i = 0; i < y.length; i++) {
// Add random noise
y[i] = func.eval(i, dy_da) + ((rand.nextFloat() < 0.5f) ? -rand.nextFloat() * 5f : rand.nextFloat() * 5f);
}
// Randomise only the necessary parameters (i.e. not angle and X & Y widths should be the same)
params[0] += ((rand.nextFloat() < 0.5f) ? -rand.nextFloat() : rand.nextFloat());
for (int i = 0, j = 1; i < npeaks; i++, j += 6) {
params[j + 1] += ((rand.nextFloat() < 0.5f) ? -rand.nextFloat() : rand.nextFloat());
params[j + 3] += ((rand.nextFloat() < 0.5f) ? -rand.nextFloat() : rand.nextFloat());
params[j + 4] += ((rand.nextFloat() < 0.5f) ? -rand.nextFloat() : rand.nextFloat());
params[j + 5] = params[j + 4];
}
return y;
}
use of gdsc.smlm.function.gaussian.EllipticalGaussian2DFunction in project GDSC-SMLM by aherbert.
the class GaussianFit method runFinal.
/**
* Perform fitting using the chosen maxima. Update the overlay if successful.
*
* @param ip
* The input image
*/
private void runFinal(ImageProcessor ip) {
ip.reset();
Rectangle bounds = ip.getRoi();
// Crop to the ROI
float[] data = ImageConverter.getData(ip);
int width = bounds.width;
int height = bounds.height;
// Sort the maxima
float[] smoothData = data;
if (getSmooth() > 0) {
// Smoothing destructively modifies the data so create a copy
smoothData = Arrays.copyOf(data, width * height);
AverageFilter filter = new AverageFilter();
//filter.blockAverage(smoothData, width, height, smooth);
if (smooth <= border)
filter.stripedBlockAverageInternal(smoothData, width, height, (float) smooth);
else
filter.stripedBlockAverage(smoothData, width, height, (float) smooth);
}
Sort.sort(maxIndices, smoothData);
// Show the candidate peaks
if (maxIndices.length > 0) {
String message = String.format("Identified %d peaks", maxIndices.length);
if (isLogProgress()) {
IJ.log(message);
for (int index : maxIndices) {
IJ.log(String.format(" %.2f @ [%d,%d]", data[index], bounds.x + index % width, bounds.y + index / width));
}
}
// Check whether to run if the number of peaks is large
if (maxIndices.length > 10) {
GenericDialog gd = new GenericDialog("Warning");
gd.addMessage(message + "\nDo you want to fit?");
gd.showDialog();
if (gd.wasCanceled())
return;
}
} else {
IJ.log("No maxima identified");
return;
}
results = new IJTablePeakResults(showDeviations, imp.getTitle() + " [" + imp.getCurrentSlice() + "]");
results.begin();
// Perform the Gaussian fit
long ellapsed = 0;
if (!singleFit) {
if (isLogProgress())
IJ.log("Combined fit");
// Estimate height from smoothed data
double[] estimatedHeights = new double[maxIndices.length];
for (int i = 0; i < estimatedHeights.length; i++) estimatedHeights[i] = smoothData[maxIndices[i]];
FitConfiguration config = new FitConfiguration();
setupPeakFiltering(config);
long time = System.nanoTime();
double[] params = fitMultiple(data, width, height, maxIndices, estimatedHeights);
ellapsed = System.nanoTime() - time;
if (params != null) {
// Copy all the valid parameters into a new array
double[] validParams = new double[params.length];
int c = 0;
int validPeaks = 0;
validParams[c++] = params[0];
double[] initialParams = convertParameters(fitResult.getInitialParameters());
double[] paramsDev = convertParameters(fitResult.getParameterStdDev());
Rectangle regionBounds = new Rectangle();
int[] xpoints = new int[maxIndices.length];
int[] ypoints = new int[maxIndices.length];
int nMaxima = 0;
for (int i = 1, n = 0; i < params.length; i += 6, n++) {
int y = maxIndices[n] / width;
int x = maxIndices[n] % width;
// Check the peak is a good fit
if (filterResults && config.validatePeak(n, initialParams, params) != FitStatus.OK)
continue;
if (showFit) {
// Copy the valid parameters
validPeaks++;
for (int ii = i, j = 0; j < 6; ii++, j++) validParams[c++] = params[ii];
}
double[] peakParams = extractParams(params, i);
double[] peakParamsDev = extractParams(paramsDev, i);
addResult(bounds, regionBounds, data, peakParams, peakParamsDev, nMaxima, x, y, data[maxIndices[n]]);
// Add fit result to the overlay - Coords are updated with the region offsets in addResult
double xf = peakParams[3];
double yf = peakParams[4];
xpoints[nMaxima] = (int) (xf + 0.5);
ypoints[nMaxima] = (int) (yf + 0.5);
nMaxima++;
}
setOverlay(nMaxima, xpoints, ypoints);
// Draw the fit
if (showFit && validPeaks != 0) {
double[] pixels = new double[data.length];
EllipticalGaussian2DFunction f = new EllipticalGaussian2DFunction(validPeaks, width, height);
invertParameters(validParams);
f.initialise(validParams);
for (int x = 0; x < pixels.length; x++) pixels[x] = f.eval(x);
FloatProcessor fp = new FloatProcessor(width, height, pixels);
// Insert into a full size image
FloatProcessor fp2 = new FloatProcessor(ip.getWidth(), ip.getHeight());
fp2.insert(fp, bounds.x, bounds.y);
Utils.display(TITLE, fp2);
}
} else {
if (isLogProgress()) {
IJ.log("Failed to fit " + Utils.pleural(maxIndices.length, "peak") + getReason(fitResult));
}
imp.setOverlay(null);
}
} else {
if (isLogProgress())
IJ.log("Individual fit");
int nMaxima = 0;
int[] xpoints = new int[maxIndices.length];
int[] ypoints = new int[maxIndices.length];
// Extract each peak and fit individually
ImageExtractor ie = new ImageExtractor(data, width, height);
float[] region = null;
Gaussian2DFitter gf = createGaussianFitter(filterResults);
for (int n = 0; n < maxIndices.length; n++) {
int y = maxIndices[n] / width;
int x = maxIndices[n] % width;
long time = System.nanoTime();
Rectangle regionBounds = ie.getBoxRegionBounds(x, y, singleRegionSize);
region = ie.crop(regionBounds, region);
int newIndex = (y - regionBounds.y) * regionBounds.width + x - regionBounds.x;
if (isLogProgress()) {
IJ.log("Fitting peak " + (n + 1));
}
double[] peakParams = fitSingle(gf, region, regionBounds.width, regionBounds.height, newIndex, smoothData[maxIndices[n]]);
ellapsed += System.nanoTime() - time;
// Output fit result
if (peakParams != null) {
double[] peakParamsDev = null;
if (showDeviations) {
peakParamsDev = convertParameters(fitResult.getParameterStdDev());
}
addResult(bounds, regionBounds, data, peakParams, peakParamsDev, n, x, y, data[maxIndices[n]]);
// Add fit result to the overlay - Coords are updated with the region offsets in addResult
double xf = peakParams[3];
double yf = peakParams[4];
xpoints[nMaxima] = (int) (xf + 0.5);
ypoints[nMaxima] = (int) (yf + 0.5);
nMaxima++;
} else {
if (isLogProgress()) {
IJ.log("Failed to fit peak " + (n + 1) + getReason(fitResult));
}
}
}
// Update the overlay
if (nMaxima > 0)
setOverlay(nMaxima, xpoints, ypoints);
else
imp.setOverlay(null);
}
results.end();
if (isLogProgress())
IJ.log("Time = " + (ellapsed / 1000000.0) + "ms");
}
Aggregations