use of gov.sandia.n2a.eqset.EquationSet.ConnectionBinding in project n2a by frothga.
the class Population method connect.
public void connect(Simulator simulator) {
InternalBackendData bed = (InternalBackendData) equations.backendData;
int count = equations.connectionBindings.size();
ArrayList<ConnectIterator> iterators = new ArrayList<ConnectIterator>(count);
boolean nothingNew = true;
boolean spatialFiltering = false;
for (int i = 0; i < count; i++) {
ConnectionBinding target = equations.connectionBindings.get(i);
ConnectIterator it = new ConnectIterator(i, target, bed, simulator);
// Nothing to connect. This should never happen.
if (it.instances == null || it.instances.size() == 0)
return;
iterators.add(it);
if (it.firstborn < it.instances.size())
nothingNew = false;
if (it.k > 0 || it.radius > 0)
spatialFiltering = true;
}
if (nothingNew)
return;
// This is a simple insertion sort ...
for (int i = 1; i < count; i++) {
for (int j = i; j > 0; j--) {
ConnectIterator A = iterators.get(j - 1);
ConnectIterator B = iterators.get(j);
if (A.firstborn >= B.firstborn)
break;
iterators.set(j - 1, B);
iterators.set(j, A);
}
}
// For spatial filtering, make the innermost iterator be the one that best defines C.$xyz
if (spatialFiltering) {
double[] xyz = new double[3];
for (int i = 0; i < count; i++) iterators.get(i).xyz = xyz;
if (// connection's own $xyz is not defined, so must get it from some $project
bed.xyz == null || bed.xyz.equations.size() == 0) {
int last = count - 1;
ConnectIterator A = iterators.get(last);
int bestIndex = last;
double bestRank = A.rank;
for (int i = 0; i < last; i++) {
A = iterators.get(i);
if (A.rank > bestRank) {
bestIndex = i;
bestRank = A.rank;
}
}
if (bestIndex != last) {
A = iterators.remove(bestIndex);
iterators.add(A);
}
}
}
for (int i = 1; i < count; i++) {
ConnectIterator A = iterators.get(i - 1);
ConnectIterator B = iterators.get(i);
A.permute = B;
B.contained = true;
if (A.k > 0 || A.radius > 0)
A.prepareNN();
}
// TODO: implement $min, or consider eliminating it from the language
// $max is easy, but $min requires one or more forms of expensive accounting to do correctly.
// Problems include:
// 1) need to prevent duplicate connections
// 2) should pick the highest probability connections
// A list of connections held by each target could solve #1.
// Such an approach may be necessary for ongoing maintenance of connections, beyond just this new-connection process.
// A temporary list of connections that were rejected, sorted by probability, could solve issue #2.
// However, this is more difficult to implement for any but the outer loop. Could implement an
// outer loop for each of the other populations, just for fulfilling $min.
ConnectIterator outer = iterators.get(0);
Part c = new Part(equations, (Part) container);
outer.setProbe(c);
while (outer.next()) {
c.resolve();
double create = c.getP(simulator);
// Yes, we need all 3 conditions. If create is 0 or 1, we do not do a random draw, since it should have no effect.
if (create <= 0 || create < 1 && create < simulator.random.nextDouble())
continue;
((Part) container).event.enqueue(c);
c.init(simulator);
c = new Part(equations, (Part) container);
outer.setProbe(c);
}
}
use of gov.sandia.n2a.eqset.EquationSet.ConnectionBinding in project n2a by frothga.
the class ChangePart method apply.
public void apply(String nameBefore, String nameAfter) {
NodePart parent = (NodePart) NodeBase.locateNode(path);
if (parent == null)
throw new CannotRedoException();
NodeBase temp = parent.child(nameBefore);
if (!(temp instanceof NodePart))
throw new CannotRedoException();
NodePart nodeBefore = (NodePart) temp;
// Update the database
// Move the subtree
MPart mparent = parent.source;
mparent.clear(nameBefore);
mparent.set(savedTree, nameAfter);
MPart oldPart = (MPart) mparent.child(nameBefore);
MPart newPart = (MPart) mparent.child(nameAfter);
// Change connection bindings to this part.
// See ChangeVariable.apply() for a similar procedure. More detailed comments appear there.
// We make use of static functions in that class to do the heavy work of emitting code with name changes.
// TODO: This approach will probably fail on parts that contain references to themselves.
PanelEquations pe = PanelModel.instance.panelEquations;
List<List<String>> references = new ArrayList<List<String>>();
try {
MPart doc = pe.root.source;
EquationSet compiled = new EquationSet(doc);
List<String> keypath = new ArrayList<String>(path.subList(1, path.size()));
EquationSet eold;
EquationSet enew;
if (oldPart == null) {
EquationSet p = (EquationSet) compiled.getObject(keypath);
eold = new EquationSet(p, nameBefore);
p.parts.add(eold);
keypath.add(nameAfter);
} else {
keypath.add(nameBefore);
eold = (EquationSet) compiled.getObject(keypath);
keypath.set(keypath.size() - 1, nameAfter);
}
enew = (EquationSet) compiled.getObject(keypath);
try {
compiled.resolveConnectionBindings();
} catch (Exception e) {
}
try {
compiled.resolveLHS();
compiled.resolveRHS();
} catch (Exception e) {
}
ChangeVariable.prepareConnections(compiled);
// Collect variables that might have changed.
List<Variable> users = collectVariables(compiled, eold);
if (eold.dependentConnections != null) {
// The variable associated with such a connection binding could explicitly mention the part name.
for (ConnectionBinding cb : eold.dependentConnections) users.add(cb.variable);
}
eold.name = enew.name;
for (Variable v : users) {
List<String> ref = v.getKeyPath();
MNode n = doc.child(ref.toArray());
String oldKey = n.key();
String newKey = ChangeVariable.changeReferences(eold, n, v);
if (// Handle a change in variable name.
!newKey.equals(oldKey)) {
NodeBase nb = pe.root.locateNodeFromHere(ref);
n.parent().move(oldKey, newKey);
ref.set(ref.size() - 1, newKey);
nb.source = (MPart) doc.child(ref.toArray());
}
// Queue GUI updates for nodes other than the primary ones.
if (v.container != enew && v.container != eold)
references.add(ref);
}
} catch (Exception e) {
}
// Change pin links to this part.
// Scan peer parts (which is the only place a pin link can be declared) and check for "bind" keys that reference nameBefore.
// for updating GUI later
Map<NodePart, List<String>> rebind = new HashMap<NodePart, List<String>>();
Enumeration<?> siblings = parent.children();
while (siblings.hasMoreElements()) {
Object o = siblings.nextElement();
if (!(o instanceof NodePart))
continue;
NodePart sibling = (NodePart) o;
MNode pins;
if (// because the old source is no longer attached to document
sibling == nodeBefore)
// because the old source is no longer attached to document
pins = parent.source.child(nameAfter, "$metadata", "gui", "pin", "in");
else
pins = sibling.source.child("$metadata", "gui", "pin", "in");
if (pins == null)
continue;
List<String> bound = null;
for (MNode pin : pins) {
if (pin.get("bind").equals(nameBefore)) {
pin.set(nameAfter, "bind");
// Also set the new name in collated pin data.
sibling.pinIn.set(nameAfter, pin.key(), "bind");
if (bound == null)
bound = new ArrayList<String>();
bound.add(pin.key());
}
}
if (bound != null)
rebind.put(sibling, bound);
}
// Check parent for pin exports.
MNode pins = parent.source.child("$metadata", "gui", "pin", "out");
if (pins != null) {
List<String> bound = null;
for (MNode pin : pins) {
if (pin.get("bind").equals(nameBefore)) {
pin.set(nameAfter, "bind");
if (bound == null)
bound = new ArrayList<String>();
bound.add(pin.key());
}
}
if (bound != null)
rebind.put(parent, bound);
}
// Update GUI
boolean graphParent = parent == pe.part;
PanelEquationTree pet = graphParent ? null : parent.getTree();
FilteredTreeModel model = null;
if (pet != null)
model = (FilteredTreeModel) pet.tree.getModel();
// Only used if graphParent is true.
PanelEquationGraph peg = pe.panelEquationGraph;
// It's either a NodePart or it's null. Any other case should be blocked by GUI constraints.
NodePart nodeAfter = (NodePart) parent.child(nameAfter);
boolean addGraphNode = false;
if (// Only one node will remain when we are done.
oldPart == null) {
pe.renameFocus(nodeBefore.getKeyPath(), nameAfter);
if (// This is a simple rename, with no restructuring. Keep nodeBefore.
nodeAfter == null) {
nodeAfter = nodeBefore;
nodeAfter.source = newPart;
if (graphParent)
peg.updatePart(nodeAfter);
} else // Use existing nodeAfter, so get rid of nodeBefore.
{
if (model == null)
FilteredTreeModel.removeNodeFromParentStatic(nodeBefore);
else
model.removeNodeFromParent(nodeBefore);
if (graphParent)
peg.removePart(nodeBefore, true);
}
} else // Need two nodes
{
if (// Need a node to hold the new part.
nodeAfter == null) {
int index = parent.getIndex(nodeBefore);
nodeAfter = new NodePart(newPart);
nodeAfter.hide = graphParent;
if (model == null)
FilteredTreeModel.insertNodeIntoUnfilteredStatic(nodeAfter, parent, index);
else
model.insertNodeIntoUnfiltered(nodeAfter, parent, index);
addGraphNode = true;
}
nodeBefore.build();
nodeBefore.findConnections();
nodeBefore.rebuildPins();
nodeBefore.filter();
if (nodeBefore.visible()) {
if (// Need to update entire model under fake root.
graphParent) {
PanelEquationTree subpet = nodeBefore.getTree();
if (subpet != null) {
FilteredTreeModel submodel = (FilteredTreeModel) subpet.tree.getModel();
submodel.nodeStructureChanged(nodeBefore);
subpet.animate();
}
} else if (model != null) {
model.nodeStructureChanged(nodeBefore);
}
} else {
parent.hide(nodeBefore, model);
}
}
nodeAfter.build();
if (graphParent)
parent.findConnections();
else
nodeAfter.findConnections();
nodeAfter.rebuildPins();
nodeAfter.filter();
pe.resetBreadcrumbs();
TreeNode[] nodePath = nodeAfter.getPath();
Set<PanelEquationTree> needAnimate = new HashSet<PanelEquationTree>();
if (pet == null) {
PanelEquationTree.updateOrder(null, nodePath);
PanelEquationTree.updateVisibility(null, nodePath, -2, false);
} else {
pet.updateOrder(nodePath);
// Will include nodeStructureChanged(), if necessary.
pet.updateVisibility(nodePath);
needAnimate.add(pet);
}
for (List<String> ref : references) {
NodeVariable n = (NodeVariable) pe.root.locateNodeFromHere(ref);
if (n == null)
continue;
// Rebuild n, because equations and/or their conditions may have changed.
n.build();
n.findConnections();
n.filter();
if (// n's visibility won't change
n.visible()) {
PanelEquationTree subpet = n.getTree();
if (subpet == null)
continue;
JTree subtree = subpet.tree;
FilteredTreeModel submodel = (FilteredTreeModel) subtree.getModel();
NodeBase subparent = (NodeBase) n.getParent();
// Node will collapse if it was open. Don't worry about this.
submodel.nodeStructureChanged(n);
subparent.invalidateColumns(submodel);
needAnimate.add(subpet);
}
}
for (NodePart peer : rebind.keySet()) {
PanelEquationTree subpet = peer.getTree();
// also works for parent
NodeBase metadata = peer.child("$metadata");
for (String pinKey : rebind.get(peer)) {
// Retrieve GUI metadata node so it can be updated to match DB.
NodeBase nodeBind;
if (peer == parent)
nodeBind = (NodeAnnotation) AddAnnotation.findExact(metadata, false, "gui", "pin", "out", pinKey, "bind");
else
nodeBind = (NodeAnnotation) AddAnnotation.findExact(metadata, false, "gui", "pin", "in", pinKey, "bind");
nodeBind.setUserObject();
// Update display tree.
if (subpet != null) {
// For simplicity, look up subtree, submodel and subparent each time,
// even though they could be done just once per peer part.
JTree subtree = subpet.tree;
FilteredTreeModel submodel = (FilteredTreeModel) subtree.getModel();
NodeBase subparent = (NodeBase) nodeBind.getParent();
submodel.nodeChanged(nodeBind);
subparent.invalidateColumns(submodel);
needAnimate.add(subpet);
}
}
}
for (PanelEquationTree ap : needAnimate) ap.animate();
if (graphParent) {
if (addGraphNode) {
// builds tree
peg.addPart(nodeAfter);
} else {
PanelEquationTree subpet = nodeAfter.getTree();
if (subpet != null) {
FilteredTreeModel submodel = (FilteredTreeModel) subpet.tree.getModel();
submodel.nodeStructureChanged(nodeAfter);
FocusCacheEntry fce = pe.createFocus(nodeAfter);
if (fce.sp != null)
fce.sp.restore(subpet.tree, false);
subpet.animate();
}
}
nodeAfter.hide = false;
nodeAfter.graph.takeFocusOnTitle();
peg.updatePins();
peg.reconnect();
peg.repaint();
}
}
use of gov.sandia.n2a.eqset.EquationSet.ConnectionBinding in project n2a by frothga.
the class JobC method generateDefinitionsLocal.
public void generateDefinitionsLocal(RendererC context) throws Exception {
EquationSet s = context.part;
BackendDataC bed = context.bed;
StringBuilder result = context.result;
context.global = false;
String ns = prefix(s) + "::";
// Unit ctor
if (bed.needLocalCtor) {
result.append(ns + prefix(s) + " ()\n");
result.append("{\n");
if (bed.needLocalDerivative) {
result.append(" stackDerivative = 0;\n");
}
if (bed.needLocalPreserve) {
result.append(" preserve = 0;\n");
}
for (EquationSet p : s.parts) {
result.append(" " + mangle(p.name) + ".container = this;\n");
BackendDataC pbed = (BackendDataC) p.backendData;
if (pbed.singleton) {
result.append(" " + mangle(p.name) + ".instance.container = this;\n");
}
}
if (s.accountableConnections != null) {
for (EquationSet.AccountableConnection ac : s.accountableConnections) {
result.append(" int " + prefix(ac.connection) + "_" + mangle(ac.alias) + "_count = 0;\n");
}
}
if (bed.refcount) {
result.append(" refcount = 0;\n");
}
if (bed.index != null) {
// -1 indicates that an index needs to be assigned. This should only be done once.
result.append(" __24index = -1;\n");
}
if (bed.localMembers.size() > 0) {
result.append(" clear ();\n");
}
result.append("}\n");
result.append("\n");
}
// Unit dtor
if (bed.needLocalDtor) {
result.append(ns + "~" + prefix(s) + " ()\n");
result.append("{\n");
if (bed.needLocalDerivative) {
result.append(" while (stackDerivative)\n");
result.append(" {\n");
result.append(" Derivative * temp = stackDerivative;\n");
result.append(" stackDerivative = stackDerivative->next;\n");
result.append(" delete temp;\n");
result.append(" }\n");
}
if (bed.needLocalPreserve) {
result.append(" if (preserve) delete preserve;\n");
}
result.append("}\n");
result.append("\n");
}
// Unit clear
if (bed.localMembers.size() > 0) {
result.append("void " + ns + "clear ()\n");
result.append("{\n");
for (Variable v : bed.localMembers) {
result.append(" " + zero(mangle(v), v) + ";\n");
}
result.append("}\n");
result.append("\n");
}
// Unit setPeriod
if (// instance of top-level population, so set period on wrapper whenever our period changes
s.container == null) {
result.append("void " + ns + "setPeriod (" + T + " dt)\n");
result.append("{\n");
result.append(" PartTime<" + T + ">::setPeriod (dt);\n");
result.append(" if (container->visitor->event != visitor->event) container->setPeriod (dt);\n");
result.append("}\n");
result.append("\n");
}
// Unit die
if (bed.needLocalDie) {
result.append("void " + ns + "die ()\n");
result.append("{\n");
if (s.metadata.getFlag("backend", "all", "fastExit")) {
result.append(" Simulator<" + T + ">::instance.stop = true;\n");
} else {
// tag part as dead
if (// $live is stored in this part
bed.liveFlag >= 0) {
result.append(" flags &= ~((" + bed.localFlagType + ") 0x1 << " + bed.liveFlag + ");\n");
}
// instance counting
if (bed.n != null && !bed.singleton)
result.append(" container->" + mangle(s.name) + ".n--;\n");
for (String alias : bed.accountableEndpoints) {
result.append(" " + mangle(alias) + "->" + prefix(s) + "_" + mangle(alias) + "_count--;\n");
}
// release event monitors
for (EventTarget et : bed.eventTargets) {
for (EventSource es : et.sources) {
String part = "";
if (es.reference != null)
part = resolveContainer(es.reference, context, "");
String eventMonitor = "eventMonitor_" + prefix(s);
if (es.monitorIndex > 0)
eventMonitor += "_" + es.monitorIndex;
result.append(" removeMonitor (" + part + eventMonitor + ", this);\n");
}
}
}
result.append("}\n");
result.append("\n");
}
// Unit enterSimulation
if (bed.localReference.size() > 0) {
result.append("void " + ns + "enterSimulation ()\n");
result.append("{\n");
// String rather than EquationSet, because we may have references to several different instances of the same EquationSet, and all must be accounted
TreeSet<String> touched = new TreeSet<String>();
for (VariableReference r : bed.localReference) {
String container = resolveContainer(r, context, "");
if (touched.add(container))
result.append(" " + container + "refcount++;\n");
}
result.append("}\n");
result.append("\n");
}
// Unit leaveSimulation
{
result.append("void " + ns + "leaveSimulation ()\n");
result.append("{\n");
if (!bed.singleton) {
result.append(" " + containerOf(s, false, "") + mangle(s.name) + ".remove (this);\n");
}
TreeSet<String> touched = new TreeSet<String>();
for (VariableReference r : bed.localReference) {
String container = resolveContainer(r, context, "");
if (touched.add(container))
result.append(" " + container + "refcount--;\n");
}
result.append("}\n");
result.append("\n");
}
// Unit isFree
if (bed.refcount) {
result.append("bool " + ns + "isFree ()\n");
result.append("{\n");
result.append(" return refcount == 0;\n");
result.append("}\n");
result.append("\n");
}
// Unit init
if (bed.needLocalInit) {
result.append("void " + ns + "init ()\n");
result.append("{\n");
s.setInit(1);
for (Variable v : bed.localBufferedExternal) {
// Clear both buffered and regular values, so we can use a proper combiner during init.
result.append(" " + clearAccumulator(mangle("next_", v), v, context) + ";\n");
result.append(" " + clearAccumulator(mangle(v), v, context) + ";\n");
}
for (EventTarget et : bed.eventTargets) {
if (et.timeIndex >= 0) {
// Normal values are modulo 1 second. This initial value guarantees no match.
result.append(" eventTime" + et.timeIndex + " = 10;\n");
}
// Auxiliary variables get initialized as part of the regular list below.
}
if (!bed.localFlagType.isEmpty()) {
if (bed.liveFlag >= 0) {
if (bed.newborn >= 0) {
result.append(" flags |= (" + bed.localFlagType + ") 0x1 << " + bed.liveFlag + ";\n");
} else {
result.append(" flags = (" + bed.localFlagType + ") 0x1 << " + bed.liveFlag + ";\n");
}
} else {
if (bed.newborn < 0) {
result.append(" flags = 0;\n");
}
// else flags has already been initialized by Population::add()
}
}
// Initialize static objects
for (// non-optimized list, so hopefully all variables are covered
Variable v : // non-optimized list, so hopefully all variables are covered
bed.localInit) {
for (EquationEntry e : v.equations) {
prepareStaticObjects(e.expression, context, " ");
if (e.condition != null)
prepareStaticObjects(e.condition, context, " ");
}
}
// Compute variables
if (bed.lastT) {
result.append(" lastT = Simulator<" + T + ">::instance.currentEvent->t;\n");
}
s.simplify("$init", bed.localInit);
if (T.equals("int"))
EquationSet.determineExponentsSimplified(bed.localInit);
EquationSet.determineOrderInit(bed.localInit);
if (bed.localInit.contains(bed.dt)) {
result.append(" EventStep<" + T + "> * event = getEvent ();\n");
context.hasEvent = true;
result.append(" " + type(bed.dt) + " " + mangle(bed.dt) + ";\n");
}
for (// optimized list: only variables with equations that actually fire during init
Variable v : // optimized list: only variables with equations that actually fire during init
bed.localInit) {
multiconditional(v, context, " ");
}
// TODO: may need to deal with REPLACE for buffered variables. See internal.Part
if (bed.localInit.contains(bed.dt)) {
result.append(" if (" + mangle(bed.dt) + " != event->dt) setPeriod (" + mangle(bed.dt) + ");\n");
} else if (// implies that bed.dt exists and is constant
bed.setDt) {
result.append(" setPeriod (" + resolve(bed.dt.reference, context, false) + ");\n");
}
// instance counting
if (bed.trackN)
result.append(" " + containerOf(s, false, "") + mangle(s.name) + ".n++;\n");
for (String alias : bed.accountableEndpoints) {
result.append(" " + mangle(alias) + "->" + prefix(s) + "_" + mangle(alias) + "_count++;\n");
}
// Request event monitors
for (EventTarget et : bed.eventTargets) {
for (EventSource es : et.sources) {
String part = "";
if (es.reference != null)
part = resolveContainer(es.reference, context, "");
String eventMonitor = "eventMonitor_" + prefix(s);
if (es.monitorIndex > 0)
eventMonitor += "_" + es.monitorIndex;
result.append(" " + part + eventMonitor + ".push_back (this);\n");
}
}
// contained populations
if (s.parts.size() > 0) {
// If there are parts at all, then orderedParts must be filled in correctly. Otherwise it may be null.
for (EquationSet e : s.orderedParts) {
if (((BackendDataC) e.backendData).needGlobalInit) {
result.append(" " + mangle(e.name) + ".init ();\n");
}
}
}
s.setInit(0);
context.hasEvent = false;
result.append("}\n");
result.append("\n");
}
// Unit integrate
if (bed.needLocalIntegrate) {
result.append("void " + ns + "integrate ()\n");
result.append("{\n");
push_region(result, ns + "integrate()");
if (bed.localIntegrated.size() > 0) {
if (bed.lastT) {
result.append(" " + T + " dt = Simulator<" + T + ">::instance.currentEvent->t - lastT;\n");
} else {
result.append(" EventStep<" + T + "> * event = getEvent ();\n");
context.hasEvent = true;
result.append(" " + T + " dt = event->dt;\n");
}
// Note the resolve() call on the left-hand-side below has lvalue==false.
// Integration always takes place in the primary storage of a variable.
String pad = "";
if (bed.needLocalPreserve) {
pad = " ";
result.append(" if (preserve)\n");
result.append(" {\n");
for (Variable v : bed.localIntegrated) {
result.append(" " + resolve(v.reference, context, false) + " = preserve->" + mangle(v) + " + ");
int shift = v.derivative.exponent + bed.dt.exponent - Operator.MSB - v.exponent;
if (shift != 0 && T.equals("int")) {
result.append("(int) ((int64_t) " + resolve(v.derivative.reference, context, false) + " * dt" + context.printShift(shift) + ");\n");
} else {
result.append(resolve(v.derivative.reference, context, false) + " * dt;\n");
}
}
result.append(" }\n");
result.append(" else\n");
result.append(" {\n");
}
for (Variable v : bed.localIntegrated) {
result.append(pad + " " + resolve(v.reference, context, false) + " += ");
int shift = v.derivative.exponent + bed.dt.exponent - Operator.MSB - v.exponent;
if (shift != 0 && T.equals("int")) {
result.append("(int) ((int64_t) " + resolve(v.derivative.reference, context, false) + " * dt" + context.printShift(shift) + ");\n");
} else {
result.append(resolve(v.derivative.reference, context, false) + " * dt;\n");
}
}
if (bed.needLocalPreserve)
result.append(" }\n");
}
// contained populations
for (EquationSet e : s.parts) {
if (((BackendDataC) e.backendData).needGlobalIntegrate) {
result.append(" " + mangle(e.name) + ".integrate ();\n");
}
}
context.hasEvent = false;
pop_region(result);
result.append("}\n");
result.append("\n");
}
// Unit update
if (bed.needLocalUpdate) {
result.append("void " + ns + "update ()\n");
result.append("{\n");
push_region(result, ns + "update()");
for (Variable v : bed.localBufferedInternalUpdate) {
result.append(" " + type(v) + " " + mangle("next_", v) + ";\n");
}
s.simplify("$live", bed.localUpdate);
if (T.equals("int"))
EquationSet.determineExponentsSimplified(bed.localUpdate);
for (Variable v : bed.localUpdate) {
multiconditional(v, context, " ");
}
for (Variable v : bed.localBufferedInternalUpdate) {
result.append(" " + mangle(v) + " = " + mangle("next_", v) + ";\n");
}
// contained populations
for (EquationSet e : s.parts) {
if (((BackendDataC) e.backendData).needGlobalUpdate) {
result.append(" " + mangle(e.name) + ".update ();\n");
}
}
pop_region(result);
result.append("}\n");
result.append("\n");
}
// Unit finalize
if (bed.needLocalFinalize) {
result.append("bool " + ns + "finalize ()\n");
result.append("{\n");
// contained populations
for (EquationSet e : s.parts) {
if (((BackendDataC) e.backendData).needGlobalFinalize) {
// ignore return value
result.append(" " + mangle(e.name) + ".finalize ();\n");
}
}
// Early-out if we are already dead
if (// $live is stored in this part
bed.liveFlag >= 0) {
// early-out if we are already dead, to avoid another call to die()
result.append(" if (! (flags & (" + bed.localFlagType + ") 0x1 << " + bed.liveFlag + ")) return false;\n");
}
// Preemptively fetch current event
boolean needT = bed.eventSources.size() > 0 || s.lethalP || bed.localBufferedExternal.contains(bed.dt);
if (needT) {
result.append(" EventStep<" + T + "> * event = getEvent ();\n");
context.hasEvent = true;
}
// Events
for (EventSource es : bed.eventSources) {
EventTarget et = es.target;
String eventMonitor = "eventMonitor_" + prefix(et.container);
if (es.monitorIndex > 0)
eventMonitor += "_" + es.monitorIndex;
if (es.testEach) {
result.append(" for (Part * p : " + eventMonitor + ")\n");
result.append(" {\n");
result.append(" if (! p->eventTest (" + et.valueIndex + ")) continue;\n");
eventGenerate(" ", et, context, false);
result.append(" }\n");
} else // All monitors share same condition, so only test one.
{
result.append(" if (! " + eventMonitor + ".empty () && " + eventMonitor + "[0]->eventTest (" + et.valueIndex + "))\n");
result.append(" {\n");
if (// Each target instance may require a different delay.
es.delayEach) {
result.append(" for (auto p : " + eventMonitor + ")\n");
result.append(" {\n");
eventGenerate(" ", et, context, false);
result.append(" }\n");
} else // All delays are the same.
{
eventGenerate(" ", et, context, true);
}
result.append(" }\n");
}
}
int eventCount = bed.eventTargets.size();
if (eventCount > 0) {
result.append(" flags &= ~(" + bed.localFlagType + ") 0 << " + eventCount + ";\n");
}
// Finalize variables
if (bed.lastT) {
result.append(" lastT = Simulator<" + T + ">::instance.currentEvent->t;\n");
}
for (Variable v : bed.localBufferedExternal) {
if (v == bed.dt) {
result.append(" if (" + mangle("next_", v) + " != event->dt) setPeriod (" + mangle("next_", v) + ");\n");
} else {
result.append(" " + mangle(v) + " = " + mangle("next_", v) + ";\n");
}
}
for (Variable v : bed.localBufferedExternalWrite) {
result.append(" " + clearAccumulator(mangle("next_", v), v, context) + ";\n");
}
if (bed.type != null) {
result.append(" switch (" + mangle("$type") + ")\n");
result.append(" {\n");
// Each "split" is one particular set of new parts to transform into.
// Each combination requires a separate piece of code. Thus, the outer
// structure here is a switch statement. Each case within the switch implements
// a particular combination of new parts. At this point, $type merely indicates
// which combination to process. Afterward, it will be set to an index within that
// combination, per the N2A language document.
int countSplits = s.splits.size();
for (int i = 0; i < countSplits; i++) {
ArrayList<EquationSet> split = s.splits.get(i);
// Check if $type = me. Ignore this particular case, since it is a null operation
if (split.size() == 1 && split.get(0) == s) {
continue;
}
result.append(" case " + (i + 1) + ":\n");
result.append(" {\n");
// indicates that this instance is one of the resulting parts
boolean used = false;
int countParts = split.size();
for (int j = 0; j < countParts; j++) {
EquationSet to = split.get(j);
if (to == s && !used) {
used = true;
result.append(" " + mangle("$type") + " = " + (j + 1) + ";\n");
} else {
result.append(" " + containerOf(s, false, "") + mangle(s.name) + "_2_" + mangle(to.name) + " (this, " + (j + 1) + ");\n");
}
}
if (used) {
result.append(" break;\n");
} else {
result.append(" die ();\n");
result.append(" return false;\n");
}
result.append(" }\n");
}
result.append(" }\n");
}
if (s.lethalP) {
// lethalP implies that $p exists, so no need to check for null
if (bed.p.hasAttribute("constant")) {
double pvalue = ((Scalar) ((Constant) bed.p.equations.first().expression).value).value;
if (pvalue != 0) {
// If $t' is exactly 1, then pow() is unnecessary here. However, that is a rare situation.
result.append(" if (pow (" + resolve(bed.p.reference, context, false) + ", " + resolve(bed.dt.reference, context, false));
if (context.useExponent) {
// second operand must have exponent=15
result.append(context.printShift(bed.dt.exponent - 15));
// exponentA
result.append(", " + bed.p.exponent);
// exponentResult
result.append(", " + bed.p.exponent);
}
result.append(") < uniform<" + T + "> ()");
// -1 is hard-coded from the Uniform function.
if (context.useExponent)
result.append(context.printShift(-1 - bed.p.exponent));
result.append(")\n");
}
} else {
if (bed.p.hasAttribute("temporary")) {
// Assemble a minimal set of expressions to evaluate $p
List<Variable> list = new ArrayList<Variable>();
for (Variable t : s.ordered) if (t.hasAttribute("temporary") && bed.p.dependsOn(t) != null)
list.add(t);
list.add(bed.p);
s.simplify("$live", list, bed.p);
if (T.equals("int"))
EquationSet.determineExponentsSimplified(list);
for (Variable v : list) {
multiconditional(v, context, " ");
}
}
result.append(" if (" + mangle("$p") + " <= 0 || " + mangle("$p") + " < " + context.print(1, bed.p.exponent) + " && pow (" + mangle("$p") + ", " + resolve(bed.dt.reference, context, false));
if (context.useExponent) {
result.append(context.printShift(bed.dt.exponent - 15));
result.append(", " + bed.p.exponent);
result.append(", " + bed.p.exponent);
}
result.append(") < uniform<" + T + "> ()");
if (context.useExponent)
result.append(context.printShift(-1 - bed.p.exponent));
result.append(")\n");
}
result.append(" {\n");
result.append(" die ();\n");
result.append(" return false;\n");
result.append(" }\n");
}
if (s.lethalConnection) {
for (ConnectionBinding c : s.connectionBindings) {
VariableReference r = s.resolveReference(c.alias + ".$live");
if (!r.variable.hasAttribute("constant")) {
result.append(" if (" + resolve(r, context, false, "", true) + " == 0)\n");
result.append(" {\n");
result.append(" die ();\n");
result.append(" return false;\n");
result.append(" }\n");
}
}
}
if (s.lethalContainer) {
VariableReference r = s.resolveReference("$up.$live");
if (!r.variable.hasAttribute("constant")) {
result.append(" if (" + resolve(r, context, false, "", true) + " == 0)\n");
result.append(" {\n");
result.append(" die ();\n");
result.append(" return false;\n");
result.append(" }\n");
}
}
result.append(" return true;\n");
context.hasEvent = false;
result.append("}\n");
result.append("\n");
}
// Unit updateDerivative
if (bed.needLocalUpdateDerivative) {
result.append("void " + ns + "updateDerivative ()\n");
result.append("{\n");
push_region(result, ns + "updateDerivative()");
for (Variable v : bed.localBufferedInternalDerivative) {
result.append(" " + type(v) + " " + mangle("next_", v) + ";\n");
}
s.simplify("$live", bed.localDerivativeUpdate);
if (T.equals("int"))
EquationSet.determineExponentsSimplified(bed.localDerivativeUpdate);
for (Variable v : bed.localDerivativeUpdate) {
multiconditional(v, context, " ");
}
for (Variable v : bed.localBufferedInternalDerivative) {
result.append(" " + mangle(v) + " = " + mangle("next_", v) + ";\n");
}
// contained populations
for (EquationSet e : s.parts) {
if (((BackendDataC) e.backendData).needGlobalUpdateDerivative) {
result.append(" " + mangle(e.name) + ".updateDerivative ();\n");
}
}
pop_region(result);
result.append("}\n");
result.append("\n");
}
// Unit finalizeDerivative
if (bed.needLocalFinalizeDerivative) {
result.append("void " + ns + "finalizeDerivative ()\n");
result.append("{\n");
for (Variable v : bed.localBufferedExternalDerivative) {
result.append(" " + mangle(v) + " = " + mangle("next_", v) + ";\n");
}
for (Variable v : bed.localBufferedExternalWriteDerivative) {
result.append(" " + clearAccumulator(mangle("next_", v), v, context) + ";\n");
}
// contained populations
for (EquationSet e : s.parts) {
if (((BackendDataC) e.backendData).needGlobalFinalizeDerivative) {
result.append(" " + mangle(e.name) + ".finalizeDerivative ();\n");
}
}
result.append("}\n");
result.append("\n");
}
if (bed.needLocalPreserve) {
// Unit snapshot
result.append("void " + ns + "snapshot ()\n");
result.append("{\n");
if (bed.needLocalPreserve) {
result.append(" preserve = new Preserve;\n");
for (Variable v : bed.localIntegrated) {
result.append(" preserve->" + mangle(v) + " = " + mangle(v) + ";\n");
}
for (Variable v : bed.localDerivativePreserve) {
result.append(" preserve->" + mangle(v) + " = " + mangle(v) + ";\n");
}
for (Variable v : bed.localBufferedExternalWriteDerivative) {
result.append(" preserve->" + mangle("next_", v) + " = " + mangle("next_", v) + ";\n");
result.append(" " + clearAccumulator(mangle("next_", v), v, context) + ";\n");
}
}
for (EquationSet e : s.parts) {
if (((BackendDataC) e.backendData).needGlobalPreserve) {
result.append(" " + mangle(e.name) + ".snapshot ();\n");
}
}
result.append("}\n");
result.append("\n");
// Unit restore
result.append("void " + ns + "restore ()\n");
result.append("{\n");
if (bed.needLocalPreserve) {
for (Variable v : bed.localDerivativePreserve) {
result.append(" " + mangle(v) + " = preserve->" + mangle(v) + ";\n");
}
for (Variable v : bed.localBufferedExternalWriteDerivative) {
result.append(" " + mangle("next_", v) + " = preserve->" + mangle("next_", v) + ";\n");
}
result.append(" delete preserve;\n");
result.append(" preserve = 0;\n");
}
for (EquationSet e : s.parts) {
if (((BackendDataC) e.backendData).needGlobalPreserve) {
result.append(" " + mangle(e.name) + ".restore ();\n");
}
}
result.append("}\n");
result.append("\n");
}
if (bed.needLocalDerivative) {
// Unit pushDerivative
result.append("void " + ns + "pushDerivative ()\n");
result.append("{\n");
if (bed.localDerivative.size() > 0) {
result.append(" Derivative * temp = new Derivative;\n");
result.append(" temp->next = stackDerivative;\n");
result.append(" stackDerivative = temp;\n");
for (Variable v : bed.localDerivative) {
result.append(" temp->" + mangle(v) + " = " + mangle(v) + ";\n");
}
}
for (EquationSet e : s.parts) {
if (((BackendDataC) e.backendData).needGlobalDerivative) {
result.append(" " + mangle(e.name) + ".pushDerivative ();\n");
}
}
result.append("}\n");
result.append("\n");
// Unit multiplyAddToStack
result.append("void " + ns + "multiplyAddToStack (" + T + " scalar)\n");
result.append("{\n");
for (Variable v : bed.localDerivative) {
result.append(" stackDerivative->" + mangle(v) + " += ");
if (T.equals("int")) {
result.append("(int) ((int64_t) " + mangle(v) + " * scalar >> " + (Operator.MSB - 1) + ");\n");
} else {
result.append(mangle(v) + " * scalar;\n");
}
}
for (EquationSet e : s.parts) {
if (((BackendDataC) e.backendData).needGlobalDerivative) {
result.append(" " + mangle(e.name) + ".multiplyAddToStack (scalar);\n");
}
}
result.append("}\n");
result.append("\n");
// Unit multiply
result.append("void " + ns + "multiply (" + T + " scalar)\n");
result.append("{\n");
for (Variable v : bed.localDerivative) {
if (T.equals("int")) {
result.append(" " + mangle(v) + " = (int64_t) " + mangle(v) + " * scalar >> " + (Operator.MSB - 1) + ";\n");
} else {
result.append(" " + mangle(v) + " *= scalar;\n");
}
}
for (EquationSet e : s.parts) {
if (((BackendDataC) e.backendData).needGlobalDerivative) {
result.append(" " + mangle(e.name) + ".multiply (scalar);\n");
}
}
result.append("}\n");
result.append("\n");
// Unit addToMembers
result.append("void " + ns + "addToMembers ()\n");
result.append("{\n");
if (bed.localDerivative.size() > 0) {
for (Variable v : bed.localDerivative) {
result.append(" " + mangle(v) + " += stackDerivative->" + mangle(v) + ";\n");
}
result.append(" Derivative * temp = stackDerivative;\n");
result.append(" stackDerivative = stackDerivative->next;\n");
result.append(" delete temp;\n");
}
for (EquationSet e : s.parts) {
if (((BackendDataC) e.backendData).needGlobalDerivative) {
result.append(" " + mangle(e.name) + ".addToMembers ();\n");
}
}
result.append("}\n");
result.append("\n");
}
// Unit setPart
if (s.connectionBindings != null) {
result.append("void " + ns + "setPart (int i, Part * part)\n");
result.append("{\n");
result.append(" switch (i)\n");
result.append(" {\n");
for (ConnectionBinding c : s.connectionBindings) {
result.append(" case " + c.index + ": " + mangle(c.alias) + " = (" + prefix(c.endpoint) + " *) part; return;\n");
}
result.append(" }\n");
result.append("}\n");
result.append("\n");
}
// Unit getPart
if (s.connectionBindings != null) {
result.append("Part<" + T + "> * " + ns + "getPart (int i)\n");
result.append("{\n");
result.append(" switch (i)\n");
result.append(" {\n");
for (ConnectionBinding c : s.connectionBindings) {
result.append(" case " + c.index + ": return " + mangle(c.alias) + ";\n");
}
result.append(" }\n");
result.append(" return 0;\n");
result.append("}\n");
result.append("\n");
}
// Unit getCount
if (bed.accountableEndpoints.size() > 0) {
result.append("int " + ns + "getCount (int i)\n");
result.append("{\n");
result.append(" switch (i)\n");
result.append(" {\n");
for (ConnectionBinding c : s.connectionBindings) {
if (bed.accountableEndpoints.contains(c.alias)) {
result.append(" case " + c.index + ": return " + mangle(c.alias) + "->" + prefix(s) + "_" + mangle(c.alias) + "_count;\n");
}
}
result.append(" }\n");
result.append(" return 0;\n");
result.append("}\n");
result.append("\n");
}
// Unit getProject
if (bed.hasProject) {
result.append("void " + ns + "getProject (int i, MatrixFixed<" + T + ",3,1> & xyz)\n");
result.append("{\n");
// $project is evaluated similar to $p. The result is not stored.
s.setConnect(1);
result.append(" switch (i)\n");
result.append(" {\n");
boolean needDefault = false;
for (ConnectionBinding c : s.connectionBindings) {
result.append(" case " + c.index + ":");
Variable project = s.find(new Variable(c.alias + ".$project"));
if (// fetch $xyz from endpoint
project == null) {
VariableReference fromXYZ = s.resolveReference(c.alias + ".$xyz");
if (fromXYZ.variable == null) {
needDefault = true;
} else {
if (// calculated value
fromXYZ.variable.hasAttribute("temporary")) {
result.append(" " + mangle(c.alias) + "->getXYZ (xyz); break;\n");
} else // stored value or "constant"
{
result.append(" xyz = " + resolve(fromXYZ, context, false) + "; break;\n");
}
}
} else // compute $project
{
// to complete the "case" line
result.append("\n");
result.append(" {\n");
if (// it could also be "constant", but no other type
project.hasAttribute("temporary")) {
// Assemble a minimal set of expressions to evaluate $project
List<Variable> list = new ArrayList<Variable>();
for (Variable t : s.ordered) {
if ((t.hasAttribute("temporary") || bed.localMembers.contains(t)) && project.dependsOn(t) != null)
list.add(t);
}
list.add(project);
s.simplify("$connect", list, project);
if (T.equals("int"))
EquationSet.determineExponentsSimplified(list);
for (Variable v : list) {
multiconditional(v, context, " ");
}
}
result.append(" xyz = " + resolve(project.reference, context, false) + ";\n");
result.append(" break;\n");
result.append(" }\n");
}
}
if (needDefault) {
result.append(" default:\n");
result.append(" xyz[0] = 0;\n");
result.append(" xyz[1] = 0;\n");
result.append(" xyz[2] = 0;\n");
}
result.append(" }\n");
result.append("}\n");
s.setConnect(0);
}
// Unit mapIndex
if (s.connectionMatrix != null && s.connectionMatrix.needsMapping) {
result.append("int " + ns + "mapIndex (int i, int rc)\n");
result.append("{\n");
Variable rc = new Variable("rc");
rc.reference = new VariableReference();
rc.reference.variable = rc;
rc.container = s;
rc.addAttribute("preexistent");
AccessVariable av = new AccessVariable();
av.reference = rc.reference;
ConnectionMatrix cm = s.connectionMatrix;
cm.rowMapping.replaceRC(av);
cm.colMapping.replaceRC(av);
result.append(" if (i == " + cm.rows.index + ") return ");
cm.rowMapping.rhs.render(context);
result.append(";\n");
result.append(" return ");
cm.colMapping.rhs.render(context);
result.append(";\n");
result.append("}\n");
result.append("\n");
}
// Unit getNewborn
if (bed.newborn >= 0) {
result.append("bool " + ns + "getNewborn ()\n");
result.append("{\n");
result.append(" return flags & (" + bed.localFlagType + ") 0x1 << " + bed.newborn + ";\n");
result.append("}\n");
result.append("\n");
}
// Unit getLive
if (bed.live != null && !bed.live.hasAttribute("constant")) {
result.append(T + " " + ns + "getLive ()\n");
result.append("{\n");
if (// "accessor" indicates whether or not $value is actually stored
!bed.live.hasAttribute("accessor")) {
result.append(" if (" + resolve(bed.live.reference, context, false, "", true) + " == 0) return 0;\n");
}
if (s.lethalConnection) {
for (ConnectionBinding c : s.connectionBindings) {
VariableReference r = s.resolveReference(c.alias + ".$live");
if (!r.variable.hasAttribute("constant")) {
result.append(" if (" + resolve(r, context, false, "", true) + " == 0) return 0;\n");
}
}
}
if (s.lethalContainer) {
VariableReference r = s.resolveReference("$up.$live");
if (!r.variable.hasAttribute("constant")) {
result.append(" if (" + resolve(r, context, false, "", true) + " == 0) return 0;\n");
}
}
result.append(" return 1;\n");
result.append("}\n");
result.append("\n");
}
// Unit getP
if (// Only connections need to provide an accessor
bed.p != null && s.connectionBindings != null) {
result.append(T + " " + ns + "getP ()\n");
result.append("{\n");
s.setConnect(1);
if (!bed.p.hasAttribute("constant")) {
// Assemble a minimal set of expressions to evaluate $p
List<Variable> list = new ArrayList<Variable>();
for (Variable t : s.ordered) {
if ((t.hasAttribute("temporary") || bed.localMembers.contains(t)) && bed.p.dependsOn(t) != null)
list.add(t);
}
list.add(bed.p);
s.simplify("$connect", list, bed.p);
if (T.equals("int"))
EquationSet.determineExponentsSimplified(list);
for (Variable v : list) {
multiconditional(v, context, " ");
}
}
result.append(" return " + resolve(bed.p.reference, context, false) + ";\n");
s.setConnect(0);
result.append("}\n");
result.append("\n");
}
// Unit getXYZ
if (// Connection targets need to provide an accessor.
bed.xyz != null && s.connected) {
result.append("void " + ns + "getXYZ (MatrixFixed<" + T + ",3,1> & xyz)\n");
result.append("{\n");
// If stored, then simply copy into the return value.
if (bed.xyz.hasAttribute("temporary")) {
// Assemble a minimal set of expressions to evaluate $xyz
List<Variable> list = new ArrayList<Variable>();
for (Variable t : s.ordered) if (t.hasAttribute("temporary") && bed.xyz.dependsOn(t) != null)
list.add(t);
list.add(bed.xyz);
// evaluate in $live phase, because endpoints already exist when connection is evaluated.
s.simplify("$live", list, bed.xyz);
if (T.equals("int"))
EquationSet.determineExponentsSimplified(list);
for (Variable v : list) {
multiconditional(v, context, " ");
}
}
result.append(" xyz = " + resolve(bed.xyz.reference, context, false) + ";\n");
result.append("}\n");
result.append("\n");
}
// Unit events
if (bed.eventTargets.size() > 0) {
result.append("bool " + ns + "eventTest (int i)\n");
result.append("{\n");
result.append(" switch (i)\n");
result.append(" {\n");
for (EventTarget et : bed.eventTargets) {
result.append(" case " + et.valueIndex + ":\n");
result.append(" {\n");
// Not safe or useful to simplify et.dependencies before emitting.
for (Variable v : et.dependencies) {
multiconditional(v, context, " ");
}
if (et.edge != EventTarget.NONZERO) {
result.append(" " + T + " before = ");
if (et.trackOne)
result.append(resolve(et.track.reference, context, false));
else
result.append(mangle(et.track.name));
result.append(";\n");
}
if (// This is a single variable, so check its value directly.
et.trackOne) {
result.append(" " + T + " after = " + resolve(et.track.reference, context, true) + ";\n");
} else // This is an expression, so use our private auxiliary variable.
{
result.append(" " + T + " after = ");
et.event.operands[0].render(context);
result.append(";\n");
if (et.edge != EventTarget.NONZERO) {
result.append(" " + mangle(et.track.name) + " = after;\n");
}
}
switch(et.edge) {
case EventTarget.NONZERO:
if (et.timeIndex >= 0) {
// Guard against multiple events in a given cycle.
// Note that other trigger types don't need this because they set the auxiliary variable,
// so the next test in the same cycle will no longer see change.
result.append(" if (after == 0) return false;\n");
if (T.equals("int")) {
// No need for modulo arithmetic. Rather, int time should be wrapped elsewhere.
result.append(" " + T + " moduloTime = Simulator<" + T + ">::instance.currentEvent->t;\n");
} else // float, double
{
// Wrap time at 1 second, to fit in float precision.
result.append(" " + T + " moduloTime = (" + T + ") fmod (Simulator<" + T + ">::instance.currentEvent->t, 1);\n");
}
result.append(" if (eventTime" + et.timeIndex + " == moduloTime) return false;\n");
result.append(" eventTime" + et.timeIndex + " = moduloTime;\n");
result.append(" return true;\n");
} else {
result.append(" return after != 0;\n");
}
break;
case EventTarget.CHANGE:
result.append(" return before != after;\n");
break;
case EventTarget.FALL:
result.append(" return before != 0 && after == 0;\n");
break;
case EventTarget.RISE:
default:
result.append(" return before == 0 && after != 0;\n");
}
result.append(" }\n");
}
result.append(" }\n");
result.append(" return false;\n");
result.append("}\n");
result.append("\n");
if (bed.needLocalEventDelay) {
result.append(T + " " + ns + "eventDelay (int i)\n");
result.append("{\n");
result.append(" switch (i)\n");
result.append(" {\n");
for (EventTarget et : bed.eventTargets) {
if (et.delay >= -1)
continue;
// Need to evaluate expression
result.append(" case " + et.valueIndex + ":\n");
result.append(" {\n");
for (Variable v : et.dependencies) {
multiconditional(v, context, " ");
}
result.append(" " + T + " result = ");
et.event.operands[1].render(context);
result.append(";\n");
result.append(" if (result < 0) return -1;\n");
result.append(" return result;\n");
result.append(" }\n");
}
result.append(" }\n");
result.append(" return -1;\n");
result.append("}\n");
result.append("\n");
}
result.append("void " + ns + "setLatch (int i)\n");
result.append("{\n");
result.append(" flags |= (" + bed.localFlagType + ") 0x1 << i;\n");
result.append("}\n");
result.append("\n");
if (bed.eventReferences.size() > 0) {
result.append("void " + ns + "finalizeEvent ()\n");
result.append("{\n");
for (Variable v : bed.eventReferences) {
String current = resolve(v.reference, context, false);
String buffered = resolve(v.reference, context, true);
result.append(" " + current);
switch(v.assignment) {
case Variable.ADD:
result.append(" += " + buffered + ";\n");
result.append(" " + zero(buffered, v) + ";\n");
break;
case Variable.MULTIPLY:
case Variable.DIVIDE:
{
// The current and buffered values of the variable have the same exponent.
// raw = exponentV + exponentV - MSB
// shift = raw - exponentV = exponentV - MSB
int shift = v.exponent - Operator.MSB;
if (shift != 0 && T.equals("int")) {
result.append(" = (int64_t) " + current + " * " + buffered + context.printShift(shift) + ";\n");
} else {
result.append(" *= " + buffered + ";\n");
}
result.append(" " + clear(buffered, v, 1, context) + ";\n");
break;
}
case Variable.MIN:
// TODO: Write elementwise min() and max() for matrices.
result.append(" = min (" + current + ", " + buffered + ");\n");
result.append(" " + clear(buffered, v, Double.POSITIVE_INFINITY, context) + ";\n");
break;
case Variable.MAX:
result.append(" = max (" + current + ", " + buffered + ");\n");
result.append(" " + clear(buffered, v, Double.NEGATIVE_INFINITY, context) + ";\n");
break;
default:
// REPLACE
result.append(" = " + buffered + ";\n");
break;
}
}
result.append("}\n");
result.append("\n");
}
}
// Unit path
if (bed.needLocalPath) {
result.append("void " + ns + "path (String & result)\n");
result.append("{\n");
if (// Not a connection, or a unary connection
s.connectionBindings == null || s.connectionBindings.size() == 1) {
// We assume that result is passed in as the empty string.
if (s.container != null) {
if (// Will our container provide a non-empty path?
((BackendDataC) s.container.backendData).needLocalPath) {
result.append(" container->path (result);\n");
result.append(" result += \"." + s.name + "\";\n");
} else {
result.append(" result = \"" + s.name + "\";\n");
}
}
if (bed.index != null) {
result.append(" result += __24index;\n");
} else if (s.connectionBindings != null) {
ConnectionBinding c = s.connectionBindings.get(0);
BackendDataC cbed = (BackendDataC) c.endpoint.backendData;
if (cbed.index != null)
result.append(" result += " + mangle(c.alias) + "->__24index;\n");
}
} else // binary or higher connection
{
boolean first = true;
boolean temp = false;
for (ConnectionBinding c : s.connectionBindings) {
if (first) {
result.append(" " + mangle(c.alias) + "->path (result);\n");
first = false;
} else {
if (!temp) {
result.append(" String temp;\n");
temp = true;
}
result.append(" " + mangle(c.alias) + "->path (temp);\n");
result.append(" result += \"-\";\n");
result.append(" result += temp;\n");
}
}
}
result.append("}\n");
result.append("\n");
}
// Unit conversions
Set<Conversion> conversions = s.getConversions();
for (Conversion pair : conversions) {
EquationSet source = pair.from;
EquationSet dest = pair.to;
boolean connectionSource = source.connectionBindings != null;
boolean connectionDest = dest.connectionBindings != null;
if (connectionSource != connectionDest) {
Backend.err.get().println("Can't change $type between connection and non-connection.");
throw new Backend.AbortRun();
// Why not? Because a connection *must* know the instances it connects, while
// a compartment cannot know those instances. Thus, one can never be converted
// to the other.
}
// The "2" functions only have local meaning, so they are never virtual.
// Must do everything init() normally does, including increment $n.
// Parameters:
// from -- the source part
// visitor -- the one managing the source part
// $type -- The integer index, in the $type expression, of the current target part. The target part's $type field will be initialized with this number (and zeroed after one cycle).
result.append("void " + ns + mangle(source.name) + "_2_" + mangle(dest.name) + " (" + mangle(source.name) + " * from, int " + mangle("$type") + ")\n");
result.append("{\n");
// if this is a recycled part, then clear() is called
result.append(" " + mangle(dest.name) + " * to = " + mangle(dest.name) + ".allocate ();\n");
if (connectionDest) {
// Match connection bindings
for (ConnectionBinding c : dest.connectionBindings) {
ConnectionBinding d = source.findConnection(c.alias);
if (d == null) {
Backend.err.get().println("Unfulfilled connection binding during $type change.");
throw new Backend.AbortRun();
}
result.append(" to->" + mangle(c.alias) + " = from->" + mangle(c.alias) + ";\n");
}
}
// TODO: Convert contained populations from matching populations in the source part?
result.append(" to->enterSimulation ();\n");
result.append(" getEvent ()->enqueue (to);\n");
// Match variables between the two sets.
// TODO: a match between variables should be marked as a dependency. This might change some "dummy" variables into stored values.
String[] forbiddenAttributes = new String[] { "global", "constant", "accessor", "reference", "temporary", "dummy", "preexistent" };
for (Variable v : dest.variables) {
if (v.name.equals("$type")) {
// initialize new part with its position in the $type split
result.append(" to->" + mangle(v) + " = " + mangle("$type") + ";\n");
continue;
}
if (v.hasAny(forbiddenAttributes))
continue;
Variable v2 = source.find(v);
if (v2 != null) {
result.append(" to->" + mangle(v) + " = " + resolve(v2.reference, context, false, "from->", false) + ";\n");
}
}
// Unless the user qualifies code with $type, the values just copied above will simply be overwritten.
result.append(" to->init ();\n");
result.append("}\n");
result.append("\n");
}
}
use of gov.sandia.n2a.eqset.EquationSet.ConnectionBinding in project n2a by frothga.
the class JobC method generateDefinitionsGlobal.
public void generateDefinitionsGlobal(RendererC context) throws Exception {
EquationSet s = context.part;
BackendDataC bed = context.bed;
StringBuilder result = context.result;
context.global = true;
String ps = prefix(s);
// namespace for all functions associated with part s
String ns = ps + "_Population::";
// Population ctor
if (bed.needGlobalCtor) {
result.append(ns + ps + "_Population ()\n");
result.append("{\n");
if (!bed.singleton) {
if (// and not singleton, so trackN is true
bed.n != null) {
result.append(" n = 0;\n");
}
if (!bed.trackInstances && bed.index != null) {
result.append(" nextIndex = 0;\n");
}
if (bed.newborn >= 0) {
result.append(" firstborn = 0;\n");
}
}
if (bed.needGlobalDerivative) {
result.append(" stackDerivative = 0;\n");
}
if (bed.needGlobalPreserve) {
result.append(" preserve = 0;\n");
}
result.append("}\n");
result.append("\n");
}
// Population dtor
if (bed.needGlobalDtor) {
result.append(ns + "~" + ps + "_Population ()\n");
result.append("{\n");
if (bed.needGlobalDerivative) {
result.append(" while (stackDerivative)\n");
result.append(" {\n");
result.append(" Derivative * temp = stackDerivative;\n");
result.append(" stackDerivative = stackDerivative->next;\n");
result.append(" delete temp;\n");
result.append(" }\n");
}
if (bed.needGlobalPreserve) {
result.append(" if (preserve) delete preserve;\n");
}
result.append("}\n");
result.append("\n");
}
// Population create
if (// In the case of a singleton, this will remain a pure virtual function, and throw an exception if called.
!bed.singleton) {
result.append("Part<" + T + "> * " + ns + "create ()\n");
result.append("{\n");
result.append(" " + ps + " * p = new " + ps + ";\n");
if (bed.pathToContainer == null)
result.append(" p->container = (" + prefix(s.container) + " *) container;\n");
result.append(" return p;\n");
result.append("}\n");
result.append("\n");
}
// Population add / remove
if (bed.index != null && !bed.singleton) {
result.append("void " + ns + "add (Part<" + T + "> * part)\n");
result.append("{\n");
result.append(" " + ps + " * p = (" + ps + " *) part;\n");
if (bed.trackInstances) {
result.append(" if (p->__24index < 0)\n");
result.append(" {\n");
result.append(" p->__24index = instances.size ();\n");
result.append(" instances.push_back (p);\n");
result.append(" }\n");
result.append(" else\n");
result.append(" {\n");
result.append(" instances[p->__24index] = p;\n");
result.append(" }\n");
if (bed.newborn >= 0) {
result.append(" p->flags = (" + bed.localFlagType + ") 0x1 << " + bed.newborn + ";\n");
result.append(" firstborn = min (firstborn, p->__24index);\n");
}
} else {
result.append(" if (p->__24index < 0) p->__24index = nextIndex++;\n");
}
result.append("}\n");
result.append("\n");
if (bed.trackInstances) {
result.append("void " + ns + "remove (Part<" + T + "> * part)\n");
result.append("{\n");
result.append(" " + ps + " * p = (" + ps + " *) part;\n");
result.append(" instances[p->__24index] = 0;\n");
result.append(" Population<" + T + ">::remove (part);\n");
result.append("}\n");
result.append("\n");
}
}
// Population init
if (bed.needGlobalInit) {
result.append("void " + ns + "init ()\n");
result.append("{\n");
s.setInit(1);
// Zero out members
for (Variable v : bed.globalMembers) {
result.append(" " + zero(mangle(v), v) + ";\n");
}
for (Variable v : bed.globalBufferedExternal) {
result.append(" " + clearAccumulator(mangle("next_", v), v, context) + ";\n");
result.append(" " + clearAccumulator(mangle(v), v, context) + ";\n");
}
if (!bed.globalFlagType.isEmpty()) {
result.append(" flags = 0;\n");
}
// Compute variables
if (// $n is not stored, so we need to declare a local variable to receive its value.
bed.nInitOnly) {
result.append(" " + type(bed.n) + " " + mangle(bed.n) + ";\n");
}
s.simplify("$init", bed.globalInit);
if (T.equals("int"))
EquationSet.determineExponentsSimplified(bed.globalInit);
EquationSet.determineOrderInit(bed.globalInit);
for (Variable v : bed.globalInit) {
multiconditional(v, context, " ");
}
// create instances
if (bed.singleton) {
if (bed.newborn >= 0) {
result.append(" instance.flags = (" + bed.localFlagType + ") 0x1 << " + bed.newborn + ";\n");
}
result.append(" instance.enterSimulation ();\n");
result.append(" container->getEvent ()->enqueue (&instance);\n");
result.append(" instance.init ();\n");
} else {
if (// and not singleton, so trackN is true
bed.n != null) {
result.append(" resize (" + resolve(bed.n.reference, context, bed.nInitOnly));
if (context.useExponent)
result.append(context.printShift(bed.n.exponent - Operator.MSB));
result.append(");\n");
}
}
// make connections
if (s.connectionBindings != null) {
// queue to evaluate our connections
result.append(" Simulator<" + T + ">::instance.connect (this);\n");
}
s.setInit(0);
result.append("}\n");
result.append("\n");
}
// Population integrate
if (bed.needGlobalIntegrate) {
result.append("void " + ns + "integrate ()\n");
result.append("{\n");
push_region(result, ns + "integrate()");
result.append(" EventStep<" + T + "> * event = getEvent ();\n");
context.hasEvent = true;
result.append(" " + T + " dt = event->dt;\n");
result.append(" if (preserve)\n");
result.append(" {\n");
for (Variable v : bed.globalIntegrated) {
result.append(" " + resolve(v.reference, context, false) + " = preserve->" + mangle(v) + " + ");
// For fixed-point:
// raw result = exponentDerivative+exponentTime-MSB
// shift = raw-exponentVariable = exponentDerivative+exponentTime-MSB-exponentVariable
int shift = v.derivative.exponent + bed.dt.exponent - Operator.MSB - v.exponent;
if (shift != 0 && T.equals("int")) {
result.append("(int) ((int64_t) " + resolve(v.derivative.reference, context, false) + " * dt" + context.printShift(shift) + ");\n");
} else {
result.append(resolve(v.derivative.reference, context, false) + " * dt;\n");
}
}
result.append(" }\n");
result.append(" else\n");
result.append(" {\n");
for (Variable v : bed.globalIntegrated) {
result.append(" " + resolve(v.reference, context, false) + " += ");
int shift = v.derivative.exponent + bed.dt.exponent - Operator.MSB - v.exponent;
if (shift != 0 && T.equals("int")) {
result.append("(int) ((int64_t) " + resolve(v.derivative.reference, context, false) + " * dt" + context.printShift(shift) + ");\n");
} else {
result.append(resolve(v.derivative.reference, context, false) + " * dt;\n");
}
}
result.append(" }\n");
context.hasEvent = false;
pop_region(result);
result.append("}\n");
result.append("\n");
}
// Population update
if (bed.needGlobalUpdate) {
result.append("void " + ns + "update ()\n");
result.append("{\n");
push_region(result, ns + "update()");
for (Variable v : bed.globalBufferedInternalUpdate) {
result.append(" " + type(v) + " " + mangle("next_", v) + ";\n");
}
s.simplify("$live", bed.globalUpdate);
if (T.equals("int"))
EquationSet.determineExponentsSimplified(bed.globalUpdate);
for (Variable v : bed.globalUpdate) {
multiconditional(v, context, " ");
}
for (Variable v : bed.globalBufferedInternalUpdate) {
result.append(" " + mangle(v) + " = " + mangle("next_", v) + ";\n");
}
pop_region(result);
result.append("}\n");
result.append("\n");
}
// Population finalize
if (bed.needGlobalFinalize) {
result.append("bool " + ns + "finalize ()\n");
result.append("{\n");
if (// $n shares control with other specials, so must coordinate with them
bed.canResize && bed.n.derivative == null && bed.canGrowOrDie) {
// $n may be assigned during the regular update cycle, so we need to monitor it.
result.append(" if (" + mangle("$n") + " != " + mangle("next_", "$n") + ") Simulator<" + T + ">::instance.resize (this, max (0, " + mangle("next_", "$n"));
if (context.useExponent)
result.append(context.printShift(bed.n.exponent - Operator.MSB));
result.append("));\n");
result.append(" else Simulator<" + T + ">::instance.resize (this, -1);\n");
}
for (Variable v : bed.globalBufferedExternal) {
result.append(" " + mangle(v) + " = " + mangle("next_", v) + ";\n");
}
for (Variable v : bed.globalBufferedExternalWrite) {
result.append(" " + clearAccumulator(mangle("next_", v), v, context) + ";\n");
}
// Return value is generally ignored, except for top-level population.
boolean returnN = bed.needGlobalFinalizeN;
if (bed.canResize) {
if (bed.canGrowOrDie) {
if (// $n' exists
bed.n.derivative != null) {
// the rate of change in $n is pre-determined, so it relentlessly overrides any other structural dynamics
if (returnN) {
result.append(" if (n == 0) return false;\n");
returnN = false;
}
result.append(" Simulator<" + T + ">::instance.resize (this, max (0, " + mangle("$n"));
if (context.useExponent)
result.append(context.printShift(bed.n.exponent - Operator.MSB));
result.append("));\n");
}
} else // $n is the only kind of structural dynamics, so simply do a resize() when needed
{
if (returnN) {
result.append(" if (n == 0) return false;\n");
returnN = false;
}
result.append(" int floorN = max (0, ");
if (context.useExponent)
result.append(mangle("$n") + context.printShift(bed.n.exponent - Operator.MSB));
else
result.append("(int) " + mangle("$n"));
result.append(");\n");
result.append(" if (n != floorN) Simulator<" + T + ">::instance.resize (this, floorN);\n");
}
}
if (returnN) {
result.append(" return n;\n");
} else {
result.append(" return true;\n");
}
result.append("}\n");
result.append("\n");
}
// Population resize()
if (bed.canResize) {
result.append("void " + ns + "resize (int n)\n");
result.append("{\n");
if (bed.canGrowOrDie && bed.n.derivative == null) {
result.append(" if (n < 0)\n");
result.append(" {\n");
result.append(" " + mangle("$n") + " = this->n;\n");
result.append(" return;\n");
result.append(" }\n");
result.append("\n");
}
result.append(" Population<" + T + ">::resize (n);\n");
result.append("\n");
result.append(" for (int i = instances.size () - 1; this->n > n && i >= 0; i--)\n");
result.append(" {\n");
result.append(" Part * p = instances[i];\n");
result.append(" if (p && p->getLive ()) p->die ();\n");
result.append(" }\n");
result.append("}\n");
result.append("\n");
}
// Population getN
if (bed.trackN) {
result.append("int " + ns + "getN ()\n");
result.append("{\n");
result.append(" return n;\n");
result.append("}\n");
result.append("\n");
}
// Population updateDerivative
if (bed.needGlobalUpdateDerivative) {
result.append("void " + ns + "updateDerivative ()\n");
result.append("{\n");
push_region(result, ns + "updateDerivative()");
for (Variable v : bed.globalBufferedInternalDerivative) {
result.append(" " + type(v) + " " + mangle("next_", v) + ";\n");
}
// This is unlikely to make any difference. Just being thorough before call to multiconditional().
s.simplify("$live", bed.globalDerivativeUpdate);
if (T.equals("int"))
EquationSet.determineExponentsSimplified(bed.globalDerivativeUpdate);
for (Variable v : bed.globalDerivativeUpdate) {
multiconditional(v, context, " ");
}
for (Variable v : bed.globalBufferedInternalDerivative) {
result.append(" " + mangle(v) + " = " + mangle("next_", v) + ";\n");
}
pop_region(result);
result.append("}\n");
result.append("\n");
}
// Population finalizeDerivative
if (bed.needGlobalFinalizeDerivative) {
result.append("void " + ns + "finalizeDerivative ()\n");
result.append("{\n");
for (Variable v : bed.globalBufferedExternalDerivative) {
result.append(" " + mangle(v) + " = " + mangle("next_", v) + ";\n");
}
for (Variable v : bed.globalBufferedExternalWriteDerivative) {
result.append(" " + clearAccumulator(mangle("next_", v), v, context) + ";\n");
}
result.append("}\n");
result.append("\n");
}
if (bed.needGlobalPreserve) {
// Population snapshot
result.append("void " + ns + "snapshot ()\n");
result.append("{\n");
result.append(" preserve = new Preserve;\n");
for (Variable v : bed.globalIntegrated) {
result.append(" preserve->" + mangle(v) + " = " + mangle(v) + ";\n");
}
for (Variable v : bed.globalDerivativePreserve) {
result.append(" preserve->" + mangle(v) + " = " + mangle(v) + ";\n");
}
for (Variable v : bed.globalBufferedExternalWriteDerivative) {
result.append(" preserve->" + mangle("next_", v) + " = " + mangle("next_", v) + ";\n");
result.append(" " + clearAccumulator(mangle("next_", v), v, context) + ";\n");
}
result.append("}\n");
result.append("\n");
// Population restore
result.append("void " + ns + "restore ()\n");
result.append("{\n");
for (Variable v : bed.globalDerivativePreserve) {
result.append(" " + mangle(v) + " = preserve->" + mangle(v) + ";\n");
}
for (Variable v : bed.globalBufferedExternalWriteDerivative) {
result.append(" " + mangle("next_", v) + " = preserve->" + mangle("next_", v) + ";\n");
}
result.append(" delete preserve;\n");
result.append(" preserve = 0;\n");
result.append("}\n");
result.append("\n");
}
if (bed.needGlobalDerivative) {
// Population pushDerivative
result.append("void " + ns + "pushDerivative ()\n");
result.append("{\n");
result.append(" Derivative * temp = new Derivative;\n");
result.append(" temp->_next = stackDerivative;\n");
result.append(" stackDerivative = temp;\n");
for (Variable v : bed.globalDerivative) {
result.append(" temp->" + mangle(v) + " = " + mangle(v) + ";\n");
}
result.append("}\n");
result.append("\n");
// Population multiplyAddToStack
result.append("void " + ns + "multiplyAddToStack (" + T + " scalar)\n");
result.append("{\n");
for (Variable v : bed.globalDerivative) {
result.append(" stackDerivative->" + mangle(v) + " += ");
if (T.equals("int")) {
result.append("(int) ((int64_t) " + mangle(v) + " * scalar >> " + (Operator.MSB - 1) + ");\n");
} else {
result.append(mangle(v) + " * scalar;\n");
}
}
result.append("}\n");
result.append("\n");
// Population multiply
result.append("void " + ns + "multiply (" + T + " scalar)\n");
result.append("{\n");
for (Variable v : bed.globalDerivative) {
if (T.equals("int")) {
result.append(" " + mangle(v) + " = (int64_t) " + mangle(v) + " * scalar >> " + (Operator.MSB - 1) + ";\n");
} else {
result.append(" " + mangle(v) + " *= scalar;\n");
}
}
result.append("}\n");
result.append("\n");
// Population addToMembers
result.append("void " + ns + "addToMembers ()\n");
result.append("{\n");
for (Variable v : bed.globalDerivative) {
result.append(" " + mangle(v) + " += stackDerivative->" + mangle(v) + ";\n");
}
result.append(" Derivative * temp = stackDerivative;\n");
result.append(" stackDerivative = stackDerivative->next;\n");
result.append(" delete temp;\n");
result.append("}\n");
result.append("\n");
}
// Population clearNew
if (bed.newborn >= 0) {
result.append("void " + ns + "clearNew ()\n");
result.append("{\n");
// Reset our clearNew flag
result.append(" flags &= ~((" + bed.globalFlagType + ") 0x1 << " + bed.clearNew + ");\n");
if (bed.singleton) {
result.append(" instance.flags &= ~((" + bed.localFlagType + ") 0x1 << " + bed.newborn + ");\n");
} else {
result.append(" int count = instances.size ();\n");
result.append(" for (int i = firstborn; i < count; i++)\n");
result.append(" {\n");
result.append(" " + ps + " * p = instances[i];\n");
result.append(" if (p) p->flags &= ~((" + bed.localFlagType + ") 0x1 << " + bed.newborn + ");\n");
result.append(" }\n");
result.append(" firstborn = count;\n");
}
result.append("}\n");
result.append("\n");
}
// Population getIterators
if (s.connectionBindings != null) {
class ConnectionHolder {
public Operator k;
public Operator min;
public Operator max;
public Operator radius;
public boolean hasProject;
public EquationSet endpoint;
public List<Integer> indices = new ArrayList<Integer>();
public List<Object> resolution;
public boolean equivalent(Operator a, Operator b) {
if (a == b)
return true;
if (a == null || b == null)
return false;
return a.equals(b);
}
public boolean equals(Object o) {
// This is a safe assumption, since this is a local class.
ConnectionHolder that = (ConnectionHolder) o;
return equivalent(k, that.k) && equivalent(min, that.min) && equivalent(max, that.max) && equivalent(radius, that.radius) && hasProject == that.hasProject && endpoint == that.endpoint;
}
public void emit() {
for (Integer index : indices) {
result.append(" case " + index + ":\n");
}
result.append(" {\n");
if (k == null && radius == null) {
result.append(" result = new ConnectPopulation<" + T + "> (i);\n");
} else {
// Pulls in KDTree dependencies, for full NN support.
result.append(" result = new ConnectPopulationNN<" + T + "> (i);\n");
}
boolean testK = false;
boolean testRadius = false;
boolean constantKR = false;
if (k != null) {
result.append(" result->k = ");
k.render(context);
result.append(";\n");
testK = true;
if (k instanceof Constant) {
Constant c = (Constant) k;
if (c.value instanceof Scalar && ((Scalar) c.value).value != 0)
constantKR = true;
}
}
if (max != null) {
result.append(" result->Max = ");
max.render(context);
result.append(";\n");
}
if (min != null) {
result.append(" result->Min = ");
min.render(context);
result.append(";\n");
}
if (radius != null) {
result.append(" result->radius = ");
radius.render(context);
result.append(";\n");
testRadius = true;
if (radius instanceof Constant) {
Constant c = (Constant) radius;
if (c.value instanceof Scalar && ((Scalar) c.value).value != 0)
constantKR = true;
}
}
if (hasProject) {
result.append(" result->rank += 1;");
}
if (constantKR) {
result.append(" result->rank -= 2;\n");
} else {
if (testK && testRadius) {
result.append(" if (result->k > 0 || result->radius > 0) result->rank -= 2;\n");
} else if (testK) {
result.append(" if (result->k > 0) result->rank -= 2;\n");
} else if (testRadius) {
result.append(" if (result->radius > 0) result->rank -= 2;\n");
}
}
assembleInstances(s, "", resolution, 0, " ", result);
result.append(" result->size = result->instances->size ();\n");
result.append(" break;\n");
result.append(" }\n");
}
}
List<ConnectionHolder> connections = new ArrayList<ConnectionHolder>();
// TODO: Should determine this across the entire simulation, so that only one of getIteratorsSimple() or getIteratorsNN() is linked.
boolean needNN = false;
for (ConnectionBinding c : s.connectionBindings) {
ConnectionHolder h = new ConnectionHolder();
Variable v = s.find(new Variable(c.alias + ".$k"));
EquationEntry e = null;
if (v != null)
e = v.equations.first();
if (e != null)
h.k = e.expression;
v = s.find(new Variable(c.alias + ".$max"));
e = null;
if (v != null)
e = v.equations.first();
if (e != null)
h.max = e.expression;
v = s.find(new Variable(c.alias + ".$min"));
e = null;
if (v != null)
e = v.equations.first();
if (e != null)
h.min = e.expression;
v = s.find(new Variable(c.alias + ".$radius"));
e = null;
if (v != null)
e = v.equations.first();
if (e != null)
h.radius = e.expression;
h.hasProject = s.find(new Variable(c.alias + ".$project")) != null;
h.endpoint = c.endpoint;
int i = connections.indexOf(h);
if (i < 0) {
connections.add(h);
h.resolution = c.resolution;
} else {
h = connections.get(i);
}
h.indices.add(c.index);
if (h.k != null || h.radius != null)
needNN = true;
}
result.append("ConnectIterator<" + T + "> * " + ns + "getIterators ()\n");
result.append("{\n");
if (s.connectionMatrix == null) {
if (needNN) {
result.append(" return getIteratorsNN ();\n");
} else {
result.append(" return getIteratorsSimple ();\n");
}
} else {
ConnectionMatrix cm = s.connectionMatrix;
result.append(" ConnectPopulation<" + T + "> * rows = getIterator (" + cm.rows.index + ");\n");
result.append(" ConnectPopulation<" + T + "> * cols = getIterator (" + cm.cols.index + ");\n");
// Will be deleted when ConnectMatrix is deleted.
result.append(" " + ps + " * dummy = (" + ps + " *) create ();\n");
result.append(" dummy->setPart (" + cm.rows.index + ", (*rows->instances)[0]);\n");
result.append(" dummy->setPart (" + cm.cols.index + ", (*cols->instances)[0]);\n");
// We don't actually want $p. This just forces "dummy" to initialize any local matrix variables.
result.append(" dummy->getP ();\n");
// Create iterator
result.append(" IteratorNonzero<" + T + "> * it = ");
boolean found = false;
for (ProvideOperator po : extensions) {
if (po.getIterator(cm.A, context)) {
found = true;
break;
}
}
if (!found && cm.A instanceof AccessElement) {
AccessElement ae = (AccessElement) cm.A;
Operator op0 = ae.operands[0];
result.append("::getIterator (");
if (op0 instanceof AccessVariable) {
AccessVariable av = (AccessVariable) op0;
Variable v = av.reference.variable;
if (v.hasAttribute("temporary")) {
// Just assume that v is an alias for ReadMatrix.
// Also, matrix must be a static object. Enforced by AccessElement.hasCorrectForm().
ReadMatrix r = (ReadMatrix) v.equations.first().expression;
result.append(r.name + "->A");
} else {
result.append("& ");
context.global = false;
result.append(resolve(av.reference, context, false, "dummy->", false));
context.global = true;
}
} else // Must be a constant. Enforced by AccessElement.hasCorrectForm().
{
Constant c = (Constant) op0;
result.append(c.name);
}
result.append(");\n");
}
result.append(" return new ConnectMatrix<" + T + "> (rows, cols, " + cm.rows.index + ", " + cm.cols.index + ", it, dummy);\n");
}
result.append("}\n");
result.append("\n");
result.append("ConnectPopulation<" + T + "> * " + ns + "getIterator (int i)\n");
result.append("{\n");
result.append(" ConnectPopulation<" + T + "> * result = 0;\n");
result.append(" switch (i)\n");
result.append(" {\n");
for (ConnectionHolder h : connections) h.emit();
result.append(" }\n");
result.append(" return result;\n");
result.append("}\n");
result.append("\n");
}
// Population path
if (bed.needGlobalPath) {
result.append("void " + ns + "path (String & result)\n");
result.append("{\n");
if (// Will our container provide a non-empty path?
((BackendDataC) s.container.backendData).needLocalPath) {
result.append(" container->path (result);\n");
result.append(" result += \"." + s.name + "\";\n");
} else {
result.append(" result = \"" + s.name + "\";\n");
}
result.append("}\n");
result.append("\n");
}
}
use of gov.sandia.n2a.eqset.EquationSet.ConnectionBinding in project n2a by frothga.
the class JobC method findLiveReferences.
@SuppressWarnings("unchecked")
public void findLiveReferences(EquationSet s, ArrayList<Object> resolution, NavigableSet<EquationSet> touched, List<VariableReference> localReference, boolean terminate) {
if (terminate) {
Variable live = s.find(new Variable("$live"));
if (live == null || live.hasAttribute("constant"))
return;
if (live.hasAttribute("initOnly")) {
if (touched.add(s)) {
VariableReference result = new VariableReference();
result.variable = live;
result.resolution = (ArrayList<Object>) resolution.clone();
localReference.add(result);
s.referenced = true;
}
return;
}
// The third possibility is "accessor", in which case we fall through ...
}
// Recurse up to container
if (s.lethalContainer) {
resolution.add(s.container);
findLiveReferences(s.container, resolution, touched, localReference, true);
resolution.remove(resolution.size() - 1);
}
// Recurse into connections
if (s.lethalConnection) {
for (ConnectionBinding c : s.connectionBindings) {
resolution.add(c);
findLiveReferences(c.endpoint, resolution, touched, localReference, true);
resolution.remove(resolution.size() - 1);
}
}
}
Aggregations