use of htsjdk.variant.vcf.VCFFilterHeaderLine in project jvarkit by lindenb.
the class VcfStage method buildFilterHeaderTab.
/**
* build a table describing the INFO column
*/
private Tab buildFilterHeaderTab(final VCFHeader header) {
final TableView<VCFFilterHeaderLine> table = new TableView<>(FXCollections.observableArrayList(header.getFilterLines()));
table.getColumns().add(makeColumn("ID", F -> F.getID()));
table.getColumns().add(makeColumn("Description", F -> F.getDescription()));
final Tab tab = new Tab("FILTER", table);
tab.setClosable(false);
table.setPlaceholder(new Label("No FILTER defined."));
return tab;
}
use of htsjdk.variant.vcf.VCFFilterHeaderLine in project jvarkit by lindenb.
the class VCFReplaceTag method doVcfToVcf.
@Override
protected int doVcfToVcf(final String inputName, final VcfIterator r, final VariantContextWriter w) {
final VCFHeader header = r.getHeader();
final HashSet<VCFHeaderLine> copyMeta = new HashSet<>(header.getMetaDataInInputOrder());
for (final String key : this.transformMap.keySet()) {
switch(this.replaceTypeNo) {
case // INFO
0:
{
final VCFInfoHeaderLine info = header.getInfoHeaderLine(key);
if (info != null) {
copyMeta.remove(info);
copyMeta.add(VCFUtils.renameVCFInfoHeaderLine(info, this.transformMap.get(key)));
}
break;
}
case // FORMAT
1:
{
final VCFFormatHeaderLine fmt = header.getFormatHeaderLine(key);
if (fmt != null) {
copyMeta.remove(fmt);
copyMeta.add(VCFUtils.renameVCFFormatHeaderLine(fmt, this.transformMap.get(key)));
}
break;
}
case // FILTER
2:
{
final VCFFilterHeaderLine filter = header.getFilterHeaderLine(key);
if (filter != null) {
copyMeta.remove(filter);
copyMeta.add(VCFUtils.renameVCFFilterHeaderLine(filter, this.transformMap.get(key)));
}
break;
}
default:
throw new IllegalStateException("" + this.replaceTypeNo);
}
}
final VCFHeader h2 = new VCFHeader(copyMeta, header.getSampleNamesInOrder());
addMetaData(h2);
final SAMSequenceDictionaryProgress progress = new SAMSequenceDictionaryProgress(h2);
w.writeHeader(h2);
while (r.hasNext()) {
VariantContext ctx = progress.watch(r.next());
VariantContextBuilder b = new VariantContextBuilder(ctx);
switch(this.replaceTypeNo) {
case // INFO
0:
{
for (String key : this.transformMap.keySet()) {
Object o = ctx.getAttribute(key);
if (o != null) {
b.rmAttribute(key);
b.attribute(this.transformMap.get(key), o);
}
}
break;
}
case // FORMAT
1:
{
List<Genotype> newgenotypes = new ArrayList<>(ctx.getNSamples());
for (int i = 0; i < ctx.getNSamples(); ++i) {
Genotype g = ctx.getGenotype(i);
Map<String, Object> atts = g.getExtendedAttributes();
GenotypeBuilder gb = new GenotypeBuilder(g);
for (String key : this.transformMap.keySet()) {
Object o = atts.get(key);
if (o != null) {
atts.remove(key);
atts.put(this.transformMap.get(key), o);
}
}
gb.attributes(atts);
newgenotypes.add(gb.make());
}
b.genotypes(newgenotypes);
break;
}
case // FILTER
2:
{
Set<String> filters = new HashSet<>(ctx.getFilters());
for (String key : this.transformMap.keySet()) {
if (filters.contains(key)) {
filters.remove(key);
filters.add(this.transformMap.get(key));
}
}
b.filters(filters);
break;
}
default:
throw new IllegalStateException("" + this.replaceTypeNo);
}
w.add(b.make());
if (w.checkError())
break;
}
progress.finish();
LOG.info("done");
return 0;
}
use of htsjdk.variant.vcf.VCFFilterHeaderLine in project jvarkit by lindenb.
the class XContaminations method doWork.
@Override
public int doWork(final List<String> args) {
long last_save_ms = System.currentTimeMillis();
if (this.output_as_vcf && !this.use_only_sample_name) {
LOG.error("cannot write vcf if --sample is not set");
return -1;
}
if (args.size() < 2) {
LOG.error("Illegal Number of args");
return -1;
}
final Set<File> bamFiles = IOUtils.unrollFiles(args.subList(1, args.size())).stream().map(S -> new File(S)).collect(Collectors.toSet());
if (bamFiles.isEmpty()) {
LOG.error("Undefined BAM file(s)");
return -1;
}
SAMRecordIterator iter = null;
VcfIterator in = null;
Map<String, SamReader> sample2samReader = new HashMap<>();
VariantContextWriter vcfw = null;
try {
final SamReaderFactory srf = super.createSamReaderFactory();
if (args.get(0).equals("-")) {
in = super.openVcfIterator(null);
} else {
in = super.openVcfIterator(args.get(0));
}
VCFHeader vcfHeader = in.getHeader();
final SAMSequenceDictionary dict1 = vcfHeader.getSequenceDictionary();
if (dict1 == null) {
LOG.error(JvarkitException.VcfDictionaryMissing.getMessage(args.get(0)));
return -1;
}
final Set<String> sampleNames = new HashSet<>(vcfHeader.getSampleNamesInOrder());
if (sampleNames.isEmpty()) {
LOG.error("VCF contains no sample");
return -1;
}
for (final File bamFile : bamFiles) {
LOG.info("Opening " + bamFile);
final SamReader samReader = srf.open(bamFile);
final SAMFileHeader samHeader = samReader.getFileHeader();
final SAMSequenceDictionary dict2 = samHeader.getSequenceDictionary();
if (dict2 == null) {
samReader.close();
LOG.error(JvarkitException.BamDictionaryMissing.getMessage(bamFile.getPath()));
return -1;
}
if (!SequenceUtil.areSequenceDictionariesEqual(dict1, dict2)) {
samReader.close();
LOG.error(JvarkitException.DictionariesAreNotTheSame.getMessage(dict1, dict2));
return -1;
}
if (!samReader.hasIndex()) {
samReader.close();
LOG.error("sam is not indexed : " + bamFile);
return -1;
}
String sampleName = null;
for (final SAMReadGroupRecord rgr : samHeader.getReadGroups()) {
final String s = rgr.getSample();
if (StringUtil.isBlank(s))
continue;
if (sampleName == null) {
sampleName = s;
} else if (!sampleName.equals(s)) {
samReader.close();
LOG.error("Cannot handle more than one sample/bam " + bamFile + " " + sampleName);
return -1;
}
}
if (sampleName == null) {
samReader.close();
LOG.error("No sample in " + bamFile);
// skip this bam
continue;
}
if (!sampleNames.contains(sampleName)) {
samReader.close();
LOG.error("Not in VCF header: sample " + sampleName + " " + bamFile);
// skip this bam
continue;
}
if (sample2samReader.containsKey(sampleName)) {
samReader.close();
LOG.error("Cannot handle more than one bam/sample: " + bamFile + " " + sampleName);
return -1;
}
sample2samReader.put(sampleName, samReader);
}
if (sample2samReader.size() < 2) {
LOG.error("Not engough BAM/samples. Expected at least two valid BAMs");
return -1;
}
sampleNames.retainAll(sample2samReader.keySet());
/* create a VCF is VCF output asked */
final List<SamplePair> sampleListForVcf;
if (this.output_as_vcf) {
vcfw = super.openVariantContextWriter(outputFile);
final Set<VCFHeaderLine> metaData = new HashSet<>();
metaData.add(new VCFFormatHeaderLine("S1S1", 1, VCFHeaderLineType.Integer, "reads sample 1 supporting sample 1"));
metaData.add(new VCFFormatHeaderLine("S1S2", 1, VCFHeaderLineType.Integer, "reads sample 1 supporting sample 2"));
metaData.add(new VCFFormatHeaderLine("S1SO", 1, VCFHeaderLineType.Integer, "reads sample 1 supporting others"));
metaData.add(new VCFFormatHeaderLine("S2S1", 1, VCFHeaderLineType.Integer, "reads sample 2 supporting sample 1"));
metaData.add(new VCFFormatHeaderLine("S2S2", 1, VCFHeaderLineType.Integer, "reads sample 2 supporting sample 2"));
metaData.add(new VCFFormatHeaderLine("S2SO", 1, VCFHeaderLineType.Integer, "reads sample 2 supporting others"));
metaData.add(new VCFFormatHeaderLine("FR", 1, VCFHeaderLineType.Float, "Fraction. '-1' for unavailable."));
metaData.add(new VCFFormatHeaderLine("S1A", 1, VCFHeaderLineType.Character, "sample 1 allele"));
metaData.add(new VCFFormatHeaderLine("S2A", 1, VCFHeaderLineType.Character, "sample 2 allele"));
metaData.add(new VCFFilterHeaderLine("XCONTAMINATION", "Fraction test is > " + fraction_treshold));
metaData.add(new VCFFilterHeaderLine("BADSAMPLES", "At least one pair of genotype fails the 'LE' test"));
metaData.add(new VCFInfoHeaderLine("LE", 1, VCFHeaderLineType.Integer, "number of pair of genotypes having (S1S1<=S1S2 or S2S2<=S2S1)."));
metaData.add(new VCFInfoHeaderLine("BADSAMPLES", VCFHeaderLineCount.UNBOUNDED, VCFHeaderLineType.String, "Samples founds failing the 'LE' test"));
sampleListForVcf = new ArrayList<>();
final List<String> sampleList = new ArrayList<>(sampleNames);
for (int x = 0; x + 1 < sampleList.size(); ++x) {
for (int y = x + 1; y < sampleList.size(); ++y) {
sampleListForVcf.add(new SamplePair(new SimpleSampleIdenfifier(sampleList.get(x)), new SimpleSampleIdenfifier(sampleList.get(y))));
}
}
final VCFHeader header2 = new VCFHeader(metaData, sampleListForVcf.stream().map(V -> V.getLabel()).sorted().collect(Collectors.toList()));
header2.setSequenceDictionary(dict1);
vcfw.writeHeader(header2);
} else {
vcfw = null;
sampleListForVcf = null;
}
final Map<SamplePair, SampleAlleles> contaminationTable = new HashMap<>();
final SAMSequenceDictionaryProgress progress = new SAMSequenceDictionaryProgress(dict1).logger(LOG);
while (in.hasNext()) {
final VariantContext ctx = progress.watch(in.next());
if (!ctx.isSNP() || ctx.isFiltered() || !ctx.isBiallelic() || ctx.isSymbolic() || !this.variantFilter.test(ctx)) {
continue;
}
int count_homref = 0;
int count_homvar = 0;
int count_het = 0;
final Map<String, Genotype> sample2gt = new HashMap<>();
for (int gidx = 0; gidx < ctx.getNSamples(); ++gidx) {
final Genotype G = ctx.getGenotype(gidx);
if (!G.isCalled())
continue;
if (G.isHet()) {
// here because in use_singleton we must be sure that there is only one hom_var
count_het++;
if (this.use_singleton && count_het > 0)
break;
} else if (G.isHomVar()) {
// here because in use_singleton we must be sure that there is only one hom_var
count_homvar++;
if (this.use_singleton && count_homvar > 1)
break;
}
if (G.isFiltered())
continue;
if (!sample2samReader.containsKey(G.getSampleName()))
continue;
if (!sampleNames.contains(G.getSampleName()))
continue;
if (!this.genotypeFilter.test(ctx, G))
continue;
sample2gt.put(G.getSampleName(), G);
}
if (this.use_singleton && count_het > 0)
continue;
if (this.use_singleton && count_homvar > 1)
continue;
if (sample2gt.size() < 2)
continue;
// reset and recount
count_homref = 0;
count_homvar = 0;
count_het = 0;
for (final String sampleName : sample2gt.keySet()) {
final Genotype G = ctx.getGenotype(sampleName);
switch(G.getType()) {
case HOM_REF:
count_homref++;
break;
case HOM_VAR:
count_homvar++;
break;
case HET:
count_het++;
break;
default:
break;
}
}
// singleton check
if (this.use_singleton && (count_het > 0 || count_homvar != 1)) {
continue;
}
// at least one HOM_REF and one HOM_VAR
if (count_homref == 0)
continue;
if (count_homvar == 0)
continue;
final Map<SampleIdentifier, Counter<Character>> sample_identifier_2allelesCount = new HashMap<>();
/* scan Reads for those Genotype/Samples */
for (final String sampleName : sample2gt.keySet()) {
if (!sample2samReader.containsKey(sampleName))
continue;
// sample name is not in vcf header
final SamReader samReader = sample2samReader.get(sampleName);
if (samReader == null)
continue;
final Genotype genotype = sample2gt.get(sampleName);
if (genotype == null)
continue;
iter = samReader.query(ctx.getContig(), ctx.getStart(), ctx.getEnd(), false);
while (iter.hasNext()) {
final SAMRecord record = iter.next();
if (record.getEnd() < ctx.getStart())
continue;
if (ctx.getEnd() < record.getStart())
continue;
if (record.getReadUnmappedFlag())
continue;
if (this.filter.filterOut(record))
continue;
final SAMReadGroupRecord srgr = record.getReadGroup();
// not current sample
if (srgr == null)
continue;
if (!sampleName.equals(srgr.getSample()))
continue;
final Cigar cigar = record.getCigar();
if (cigar == null || cigar.isEmpty())
continue;
byte[] readSeq = record.getReadBases();
if (readSeq == null || readSeq.length == 0)
continue;
int readPos = record.getReadPositionAtReferencePosition(ctx.getStart());
if (readPos < 1)
continue;
readPos--;
if (readPos >= readSeq.length)
continue;
final char base = Character.toUpperCase((char) readSeq[readPos]);
if (base == 'N')
continue;
final SampleIdentifier sampleIdentifier;
if (this.use_only_sample_name) {
sampleIdentifier = new SimpleSampleIdenfifier(sampleName);
} else {
final ShortReadName readName = ShortReadName.parse(record);
if (!readName.isValid()) {
LOG.info("No a valid read name " + record.getReadName());
continue;
}
sampleIdentifier = new SequencerFlowCellRunLaneSample(readName, sampleName);
}
Counter<Character> sampleAlleles = sample_identifier_2allelesCount.get(sampleIdentifier);
if (sampleAlleles == null) {
sampleAlleles = new Counter<Character>();
sample_identifier_2allelesCount.put(sampleIdentifier, sampleAlleles);
}
sampleAlleles.incr(base);
}
iter.close();
iter = null;
}
/* end scan reads for this sample */
/* sum-up data for this SNP */
final VariantContextBuilder vcb;
final List<Genotype> genotypeList;
if (this.output_as_vcf) {
vcb = new VariantContextBuilder(args.get(0), ctx.getContig(), ctx.getStart(), ctx.getEnd(), ctx.getAlleles());
if (ctx.hasID())
vcb.id(ctx.getID());
genotypeList = new ArrayList<>();
} else {
vcb = null;
genotypeList = null;
}
for (final String sample1 : sample2gt.keySet()) {
final Genotype g1 = sample2gt.get(sample1);
final char a1 = g1.getAllele(0).getBaseString().charAt(0);
for (final String sample2 : sample2gt.keySet()) {
if (sample1.compareTo(sample2) >= 0)
continue;
final Genotype g2 = sample2gt.get(sample2);
if (g2.sameGenotype(g1))
continue;
final char a2 = g2.getAllele(0).getBaseString().charAt(0);
for (final SampleIdentifier sfcr1 : sample_identifier_2allelesCount.keySet()) {
if (!sfcr1.getSampleName().equals(sample1))
continue;
final Counter<Character> counter1 = sample_identifier_2allelesCount.get(sfcr1);
if (counter1 == null)
continue;
for (final SampleIdentifier sfcr2 : sample_identifier_2allelesCount.keySet()) {
if (!sfcr2.getSampleName().equals(sample2))
continue;
final SamplePair samplePair = new SamplePair(sfcr1, sfcr2);
final Counter<Character> counter2 = sample_identifier_2allelesCount.get(sfcr2);
if (counter2 == null)
continue;
SampleAlleles sampleAlleles = contaminationTable.get(samplePair);
if (sampleAlleles == null) {
sampleAlleles = new SampleAlleles();
contaminationTable.put(samplePair, sampleAlleles);
if (!this.output_as_vcf && contaminationTable.size() % 10000 == 0)
LOG.info("n(pairs)=" + contaminationTable.size());
}
sampleAlleles.number_of_comparaisons++;
for (final Character allele : counter1.keySet()) {
final long n = counter1.count(allele);
if (allele.equals(a1)) {
sampleAlleles.reads_sample1_supporting_sample1 += n;
} else if (allele.equals(a2)) {
sampleAlleles.reads_sample1_supporting_sample2 += n;
} else {
sampleAlleles.reads_sample1_supporting_other += n;
}
}
for (final Character allele : counter2.keySet()) {
final long n = counter2.count(allele);
if (allele.equals(a2)) {
sampleAlleles.reads_sample2_supporting_sample2 += n;
} else if (allele.equals(a1)) {
sampleAlleles.reads_sample2_supporting_sample1 += n;
} else {
sampleAlleles.reads_sample2_supporting_other += n;
}
}
}
}
}
}
if (this.output_as_vcf) {
final Set<String> bad_samples = new TreeSet<>();
boolean fraction_flag = false;
int num_lt = 0;
for (final SamplePair samplepair : sampleListForVcf) {
final GenotypeBuilder gb = new GenotypeBuilder(samplepair.getLabel());
final SampleAlleles sampleAlleles = contaminationTable.get(samplepair);
if (sampleAlleles != null) {
gb.attribute("S1S1", sampleAlleles.reads_sample1_supporting_sample1);
gb.attribute("S1S2", sampleAlleles.reads_sample1_supporting_sample2);
gb.attribute("S1SO", sampleAlleles.reads_sample1_supporting_other);
gb.attribute("S2S1", sampleAlleles.reads_sample2_supporting_sample1);
gb.attribute("S2S2", sampleAlleles.reads_sample2_supporting_sample2);
gb.attribute("S2SO", sampleAlleles.reads_sample2_supporting_other);
gb.attribute("S1A", sample2gt.get(samplepair.sample1.getSampleName()).getAllele(0).getDisplayString().charAt(0));
gb.attribute("S2A", sample2gt.get(samplepair.sample2.getSampleName()).getAllele(0).getDisplayString().charAt(0));
final double fraction = sampleAlleles.getFraction();
gb.attribute("FR", fraction);
if (!this.passFractionTreshold.test(fraction)) {
fraction_flag = true;
}
boolean bad_lt_flag = false;
if (sampleAlleles.reads_sample1_supporting_sample1 <= this.fail_factor * sampleAlleles.reads_sample1_supporting_sample2) {
bad_samples.add(samplepair.sample1.getSampleName());
bad_lt_flag = true;
}
if (sampleAlleles.reads_sample2_supporting_sample2 <= this.fail_factor * sampleAlleles.reads_sample2_supporting_sample1) {
bad_samples.add(samplepair.sample2.getSampleName());
bad_lt_flag = true;
}
if (bad_lt_flag) {
num_lt++;
}
} else {
gb.attribute("S1S1", -1);
gb.attribute("S1S2", -1);
gb.attribute("S1SO", -1);
gb.attribute("S2S1", -1);
gb.attribute("S2S2", -1);
gb.attribute("S2SO", -1);
gb.attribute("S1A", '.');
gb.attribute("S2A", '.');
gb.attribute("FR", -1f);
}
genotypeList.add(gb.make());
}
if (!bad_samples.isEmpty()) {
vcb.attribute("BADSAMPLES", new ArrayList<>(bad_samples));
}
vcb.attribute("LE", num_lt);
if (fraction_flag || !bad_samples.isEmpty()) {
if (fraction_flag)
vcb.filter("XCONTAMINATION");
if (!bad_samples.isEmpty())
vcb.filter("BADSAMPLES");
} else {
vcb.passFilters();
}
vcb.genotypes(genotypeList);
vcfw.add(vcb.make());
contaminationTable.clear();
} else {
final long now = System.currentTimeMillis();
if (this.outputFile != null && this.save_every_sec > -1L && last_save_ms + (this.save_every_sec * 1000L) > now) {
saveToFile(contaminationTable);
last_save_ms = now;
}
}
}
progress.finish();
if (this.output_as_vcf) {
vcfw.close();
vcfw = null;
} else {
saveToFile(contaminationTable);
}
return 0;
} catch (final Exception e) {
LOG.error(e);
return -1;
} finally {
CloserUtil.close(vcfw);
CloserUtil.close(in);
CloserUtil.close(iter);
for (SamReader samReader : sample2samReader.values()) CloserUtil.close(samReader);
sample2samReader.clear();
}
}
use of htsjdk.variant.vcf.VCFFilterHeaderLine in project jvarkit by lindenb.
the class Biostar78285 method doWork.
@Override
public int doWork(final List<String> args) {
if (this.gc_percent_window < 1) {
LOG.error("Bad GC% window size:" + this.gc_percent_window);
return -1;
}
final List<File> bamFiles = IOUtil.unrollFiles(args.stream().map(F -> new File(F)).collect(Collectors.toCollection(HashSet::new)), ".bam");
SAMSequenceDictionary dict = null;
final List<SamReader> samReaders = new ArrayList<>();
final List<CloseableIterator<SAMRecord>> samIterators = new ArrayList<>();
final TreeSet<String> samples = new TreeSet<>();
final String DEFAULT_PARTITION = "UNDEFINED_PARTITION";
IndexedFastaSequenceFile indexedFastaSequenceFile = null;
VariantContextWriter out = null;
try {
final SamReaderFactory samReaderFactory = SamReaderFactory.makeDefault().validationStringency(ValidationStringency.LENIENT);
for (final File bamFile : bamFiles) {
LOG.info("Opening " + bamFile);
final SamReader samReader = samReaderFactory.open(bamFile);
samReaders.add(samReader);
final SAMFileHeader header = samReader.getFileHeader();
if (header == null) {
LOG.error("No header in " + bamFile);
return -1;
}
if (header.getSortOrder() != SortOrder.coordinate) {
LOG.error("Sam file " + bamFile + " is not sorted on coordinate :" + header.getSortOrder());
return -1;
}
samples.addAll(header.getReadGroups().stream().map(RG -> this.partition.apply(RG, DEFAULT_PARTITION)).collect(Collectors.toSet()));
final SAMSequenceDictionary currDict = header.getSequenceDictionary();
if (currDict == null) {
LOG.error("SamFile doesn't contain a SAMSequenceDictionary : " + bamFile);
return -1;
}
if (dict == null) {
dict = currDict;
} else if (!SequenceUtil.areSequenceDictionariesEqual(dict, currDict)) {
LOG.error(JvarkitException.DictionariesAreNotTheSame.getMessage(dict, currDict));
return -1;
}
}
if (samReaders.isEmpty()) {
LOG.error("no bam");
return -1;
}
if (dict == null) {
LOG.error("no dictionary");
return -1;
}
final QueryInterval[] intervals;
if (this.captureBed != null) {
LOG.info("Opening " + this.captureBed);
ContigNameConverter.setDefaultAliases(dict);
final List<QueryInterval> L = new ArrayList<>();
final BedLineCodec codec = new BedLineCodec();
final LineIterator li = IOUtils.openFileForLineIterator(this.captureBed);
while (li.hasNext()) {
final BedLine bed = codec.decode(li.next());
if (bed == null)
continue;
final QueryInterval q = bed.toQueryInterval(dict);
L.add(q);
}
CloserUtil.close(li);
intervals = QueryInterval.optimizeIntervals(L.toArray(new QueryInterval[L.size()]));
} else {
intervals = null;
}
for (final SamReader samReader : samReaders) {
LOG.info("querying " + samReader.getResourceDescription());
final CloseableIterator<SAMRecord> iter;
if (intervals == null) {
iter = samReader.iterator();
} else {
iter = samReader.queryOverlapping(intervals);
}
samIterators.add(new FilterIterator<SAMRecord>(iter, R -> !R.getReadUnmappedFlag() && !filter.filterOut(R)));
}
if (this.refFile != null) {
LOG.info("opening " + refFile);
indexedFastaSequenceFile = new IndexedFastaSequenceFile(this.refFile);
final SAMSequenceDictionary refdict = indexedFastaSequenceFile.getSequenceDictionary();
ContigNameConverter.setDefaultAliases(refdict);
if (refdict == null) {
throw new JvarkitException.FastaDictionaryMissing(this.refFile);
}
if (!SequenceUtil.areSequenceDictionariesEqual(dict, refdict)) {
LOG.error(JvarkitException.DictionariesAreNotTheSame.getMessage(dict, refdict));
return -1;
}
}
out = openVariantContextWriter(this.outputFile);
final Set<VCFHeaderLine> metaData = new HashSet<>();
VCFStandardHeaderLines.addStandardFormatLines(metaData, true, VCFConstants.DEPTH_KEY, VCFConstants.GENOTYPE_KEY);
VCFStandardHeaderLines.addStandardInfoLines(metaData, true, VCFConstants.DEPTH_KEY);
metaData.add(new VCFFormatHeaderLine("DF", 1, VCFHeaderLineType.Integer, "Number of Reads on plus strand"));
metaData.add(new VCFFormatHeaderLine("DR", 1, VCFHeaderLineType.Integer, "Number of Reads on minus strand"));
metaData.add(new VCFInfoHeaderLine("AVG_DP", 1, VCFHeaderLineType.Float, "Mean depth"));
metaData.add(new VCFInfoHeaderLine("MEDIAN_DP", 1, VCFHeaderLineType.Float, "Median depth"));
metaData.add(new VCFInfoHeaderLine("MIN_DP", 1, VCFHeaderLineType.Integer, "Min depth"));
metaData.add(new VCFInfoHeaderLine("MAX_DP", 1, VCFHeaderLineType.Integer, "Max depth"));
metaData.add(new VCFHeaderLine(Biostar78285.class.getSimpleName() + ".SamFilter", this.filter.toString()));
for (final Integer treshold : this.minDepthTresholds) {
metaData.add(new VCFFilterHeaderLine("DP_LT_" + treshold, "All genotypes have DP< " + treshold));
metaData.add(new VCFInfoHeaderLine("NUM_DP_LT_" + treshold, 1, VCFHeaderLineType.Integer, "Number of genotypes having DP< " + treshold));
metaData.add(new VCFInfoHeaderLine("FRACT_DP_LT_" + treshold, 1, VCFHeaderLineType.Float, "Fraction of genotypes having DP< " + treshold));
}
if (indexedFastaSequenceFile != null) {
metaData.add(new VCFInfoHeaderLine("GC_PERCENT", 1, VCFHeaderLineType.Integer, "GC% window_size:" + this.gc_percent_window));
}
final List<Allele> refAlleles = Collections.singletonList(Allele.create("N", true));
final List<Allele> NO_CALLS = Arrays.asList(Allele.NO_CALL, Allele.NO_CALL);
final VCFHeader vcfHeader = new VCFHeader(metaData, samples);
vcfHeader.setSequenceDictionary(dict);
out.writeHeader(vcfHeader);
final SAMRecordCoordinateComparator samRecordCoordinateComparator = new SAMRecordCoordinateComparator();
final PeekableIterator<SAMRecord> peekIter = new PeekableIterator<>(new MergingIterator<>((R1, R2) -> samRecordCoordinateComparator.fileOrderCompare(R1, R2), samIterators));
final SAMSequenceDictionaryProgress progress = new SAMSequenceDictionaryProgress(dict);
for (final SAMSequenceRecord ssr : dict.getSequences()) {
final IntervalTree<Boolean> capturePos;
if (intervals != null) {
if (!Arrays.stream(intervals).anyMatch(I -> I.referenceIndex == ssr.getSequenceIndex())) {
continue;
}
capturePos = new IntervalTree<>();
Arrays.stream(intervals).filter(I -> I.referenceIndex == ssr.getSequenceIndex()).forEach(I -> capturePos.put(I.start, I.end, true));
;
} else {
capturePos = null;
}
final GenomicSequence genomicSequence;
if (indexedFastaSequenceFile != null && indexedFastaSequenceFile.getSequenceDictionary().getSequence(ssr.getSequenceName()) != null) {
genomicSequence = new GenomicSequence(indexedFastaSequenceFile, ssr.getSequenceName());
} else {
genomicSequence = null;
}
final List<SAMRecord> buffer = new ArrayList<>();
for (int ssr_pos = 1; ssr_pos <= ssr.getSequenceLength(); ++ssr_pos) {
if (capturePos != null && !capturePos.overlappers(ssr_pos, ssr_pos).hasNext())
continue;
progress.watch(ssr.getSequenceName(), ssr_pos);
while (peekIter.hasNext()) {
final SAMRecord rec = peekIter.peek();
if (rec.getReadUnmappedFlag()) {
// consumme
peekIter.next();
continue;
}
if (this.filter.filterOut(rec)) {
// consumme
peekIter.next();
continue;
}
if (rec.getReferenceIndex() < ssr.getSequenceIndex()) {
throw new IllegalStateException("should not happen");
}
if (rec.getReferenceIndex() > ssr.getSequenceIndex()) {
break;
}
if (rec.getAlignmentEnd() < ssr_pos) {
throw new IllegalStateException("should not happen");
}
if (rec.getAlignmentStart() > ssr_pos) {
break;
}
buffer.add(peekIter.next());
}
int x = 0;
while (x < buffer.size()) {
final SAMRecord R = buffer.get(x);
if (R.getReferenceIndex() != ssr.getSequenceIndex() || R.getAlignmentEnd() < ssr_pos) {
buffer.remove(x);
} else {
x++;
}
}
final Map<String, PosInfo> count = samples.stream().map(S -> new PosInfo(S)).collect(Collectors.toMap(P -> P.sample, Function.identity()));
for (final SAMRecord rec : buffer) {
if (rec.getReferenceIndex() != ssr.getSequenceIndex())
throw new IllegalStateException("should not happen");
if (rec.getAlignmentEnd() < ssr_pos)
continue;
if (rec.getAlignmentStart() > ssr_pos)
continue;
final Cigar cigar = rec.getCigar();
if (cigar == null)
continue;
int refpos = rec.getAlignmentStart();
final String sample = this.partition.getPartion(rec, DEFAULT_PARTITION);
for (final CigarElement ce : cigar.getCigarElements()) {
if (refpos > ssr_pos)
break;
final CigarOperator op = ce.getOperator();
if (op.consumesReferenceBases()) {
if (op.consumesReadBases()) {
if (refpos <= ssr_pos && ssr_pos <= refpos + ce.getLength()) {
final PosInfo posInfo = count.get(sample);
if (posInfo != null) {
posInfo.dp++;
if (rec.getReadNegativeStrandFlag()) {
posInfo.negative_strand++;
}
}
break;
}
}
refpos += ce.getLength();
}
}
}
final VariantContextBuilder vcb = new VariantContextBuilder();
final Set<String> filters = new HashSet<>();
vcb.chr(ssr.getSequenceName());
vcb.start(ssr_pos);
vcb.stop(ssr_pos);
if (genomicSequence == null) {
vcb.alleles(refAlleles);
} else {
vcb.alleles(Collections.singletonList(Allele.create((byte) genomicSequence.charAt(ssr_pos - 1), true)));
final GenomicSequence.GCPercent gcp = genomicSequence.getGCPercent(Math.max((ssr_pos - 1) - this.gc_percent_window, 0), Math.min(ssr_pos + this.gc_percent_window, ssr.getSequenceLength()));
if (!gcp.isEmpty()) {
vcb.attribute("GC_PERCENT", gcp.getGCPercentAsInteger());
}
}
vcb.attribute(VCFConstants.DEPTH_KEY, (int) count.values().stream().mapToInt(S -> S.dp).sum());
vcb.genotypes(count.values().stream().map(C -> new GenotypeBuilder(C.sample, NO_CALLS).DP((int) C.dp).attribute("DR", C.negative_strand).attribute("DF", C.dp - C.negative_strand).make()).collect(Collectors.toList()));
for (final Integer treshold : this.minDepthTresholds) {
final int count_lt = (int) count.values().stream().filter(S -> S.dp < treshold).count();
if (count_lt == samples.size()) {
filters.add("DP_LT_" + treshold);
}
vcb.attribute("NUM_DP_LT_" + treshold, count_lt);
if (!samples.isEmpty()) {
vcb.attribute("FRACT_DP_LT_" + treshold, count_lt / (float) samples.size());
}
}
if (!samples.isEmpty()) {
final int[] array = count.values().stream().mapToInt(S -> S.dp).toArray();
vcb.attribute("AVG_DP", Percentile.average().evaluate(array));
vcb.attribute("MEDIAN_DP", Percentile.median().evaluate(array));
vcb.attribute("MIN_DP", (int) Percentile.min().evaluate(array));
vcb.attribute("MAX_DP", (int) Percentile.max().evaluate(array));
}
if (filters.isEmpty()) {
vcb.passFilters();
} else {
vcb.filters(filters);
}
out.add(vcb.make());
}
}
progress.finish();
peekIter.close();
out.close();
out = null;
return 0;
} catch (final Exception err) {
LOG.error(err);
return -1;
} finally {
CloserUtil.close(out);
CloserUtil.close(samIterators);
CloserUtil.close(samReaders);
CloserUtil.close(indexedFastaSequenceFile);
}
}
use of htsjdk.variant.vcf.VCFFilterHeaderLine in project jvarkit by lindenb.
the class RDFVcfWriter method writeHeader.
public void writeHeader(VCFHeader header, URI source) {
if (this.header != null)
throw new RuntimeException("Header was already written");
this.header = header;
this.source = source;
if (this.source == null)
this.source = URI.create("urn:source/id" + (++id_generator));
try {
writeStartDocument();
this.w.writeStartElement(PFX, "Source", NS);
this.w.writeAttribute("rdf", RDF, "about", this.source.toString());
this.w.writeStartElement("dc", "title", DC);
this.w.writeCharacters(this.source.toString());
// dc:title
this.w.writeEndElement();
this.w.writeEndElement();
SAMSequenceDictionary dict = header.getSequenceDictionary();
if (dict != null) {
for (SAMSequenceRecord ssr : dict.getSequences()) {
this.w.writeStartElement(PFX, "Chromosome", NS);
this.w.writeAttribute("rdf", RDF, "about", "urn:chromosome/" + ssr.getSequenceName());
this.w.writeStartElement("dc", "title", DC);
this.w.writeCharacters(ssr.getSequenceName());
// dc:title
this.w.writeEndElement();
this.w.writeStartElement(PFX, "length", NS);
datatype("int");
this.w.writeCharacters(String.valueOf(ssr.getSequenceLength()));
// length
this.w.writeEndElement();
this.w.writeStartElement(PFX, "index", NS);
datatype("int");
this.w.writeCharacters(String.valueOf(ssr.getSequenceIndex()));
// length
this.w.writeEndElement();
// Chromosome
this.w.writeEndElement();
}
}
key2infoHandler.put(SnpEffPredictionParser.getDefaultTag(), new SnpEffHandler());
key2infoHandler.put(VepPredictionParser.getDefaultTag(), new VepHandler());
key2infoHandler.put(VCFPredictions.TAG, new MyPredictionHandler());
for (VCFInfoHeaderLine h : header.getInfoHeaderLines()) {
RDFVcfInfoHandler handler = key2infoHandler.get(h.getID());
if (handler == null) {
LOG.info("creating default handler for INFO:" + h.getID());
handler = createDefaultRdfVcfInfoHandlerFor(h);
key2infoHandler.put(handler.getKey(), handler);
}
handler.init(h);
}
for (VCFFilterHeaderLine h : header.getFilterLines()) {
this.w.writeStartElement(PFX, "Filter", NS);
this.w.writeAttribute("rdf", RDF, "about", "urn:filter/" + h.getKey());
this.w.writeStartElement("dc", "title", DC);
this.w.writeCharacters(h.getKey());
// dc:title
this.w.writeEndElement();
this.w.writeStartElement("dc", "description", DC);
this.w.writeCharacters(h.getValue());
// dc:title
this.w.writeEndElement();
// Filter
this.w.writeEndElement();
}
// Sample
for (String sample : header.getSampleNamesInOrder()) {
this.w.writeStartElement(PFX, "Sample", NS);
this.w.writeAttribute("rdf", RDF, "about", "urn:sample/" + sample);
this.w.writeStartElement("dc", "title", DC);
this.w.writeCharacters(sample);
// dc:title
this.w.writeEndElement();
// rdf:RDF
this.w.writeEndElement();
}
} catch (Exception e) {
throw new RuntimeException("close failed", e);
}
}
Aggregations