use of java.awt.color.ICC_ColorSpace in project jdk8u_jdk by JetBrains.
the class JPEGImageWriter method writeOnThread.
private void writeOnThread(IIOMetadata streamMetadata, IIOImage image, ImageWriteParam param) throws IOException {
if (ios == null) {
throw new IllegalStateException("Output has not been set!");
}
if (image == null) {
throw new IllegalArgumentException("image is null!");
}
// if streamMetadata is not null, issue a warning
if (streamMetadata != null) {
warningOccurred(WARNING_STREAM_METADATA_IGNORED);
}
// Obtain the raster and image, if there is one
boolean rasterOnly = image.hasRaster();
RenderedImage rimage = null;
if (rasterOnly) {
srcRas = image.getRaster();
} else {
rimage = image.getRenderedImage();
if (rimage instanceof BufferedImage) {
// Use the Raster directly.
srcRas = ((BufferedImage) rimage).getRaster();
} else if (rimage.getNumXTiles() == 1 && rimage.getNumYTiles() == 1) {
// Get the unique tile.
srcRas = rimage.getTile(rimage.getMinTileX(), rimage.getMinTileY());
// as the tile dimensions might differ.
if (srcRas.getWidth() != rimage.getWidth() || srcRas.getHeight() != rimage.getHeight()) {
srcRas = srcRas.createChild(srcRas.getMinX(), srcRas.getMinY(), rimage.getWidth(), rimage.getHeight(), srcRas.getMinX(), srcRas.getMinY(), null);
}
} else {
// Image is tiled so get a contiguous raster by copying.
srcRas = rimage.getData();
}
}
// Now determine if we are using a band subset
// By default, we are using all source bands
int numSrcBands = srcRas.getNumBands();
indexed = false;
indexCM = null;
ColorModel cm = null;
ColorSpace cs = null;
isAlphaPremultiplied = false;
srcCM = null;
if (!rasterOnly) {
cm = rimage.getColorModel();
if (cm != null) {
cs = cm.getColorSpace();
if (cm instanceof IndexColorModel) {
indexed = true;
indexCM = (IndexColorModel) cm;
numSrcBands = cm.getNumComponents();
}
if (cm.isAlphaPremultiplied()) {
isAlphaPremultiplied = true;
srcCM = cm;
}
}
}
srcBands = JPEG.bandOffsets[numSrcBands - 1];
int numBandsUsed = numSrcBands;
if (param != null) {
int[] sBands = param.getSourceBands();
if (sBands != null) {
if (indexed) {
warningOccurred(WARNING_NO_BANDS_ON_INDEXED);
} else {
srcBands = sBands;
numBandsUsed = srcBands.length;
if (numBandsUsed > numSrcBands) {
throw new IIOException("ImageWriteParam specifies too many source bands");
}
}
}
}
boolean usingBandSubset = (numBandsUsed != numSrcBands);
boolean fullImage = ((!rasterOnly) && (!usingBandSubset));
int[] bandSizes = null;
if (!indexed) {
bandSizes = srcRas.getSampleModel().getSampleSize();
// If this is a subset, we must adjust bandSizes
if (usingBandSubset) {
int[] temp = new int[numBandsUsed];
for (int i = 0; i < numBandsUsed; i++) {
temp[i] = bandSizes[srcBands[i]];
}
bandSizes = temp;
}
} else {
int[] tempSize = srcRas.getSampleModel().getSampleSize();
bandSizes = new int[numSrcBands];
for (int i = 0; i < numSrcBands; i++) {
// All the same
bandSizes[i] = tempSize[0];
}
}
for (int i = 0; i < bandSizes.length; i++) {
// per sample.
if (bandSizes[i] <= 0 || bandSizes[i] > 8) {
throw new IIOException("Illegal band size: should be 0 < size <= 8");
}
// to 8-bit.
if (indexed) {
bandSizes[i] = 8;
}
}
if (debug) {
System.out.println("numSrcBands is " + numSrcBands);
System.out.println("numBandsUsed is " + numBandsUsed);
System.out.println("usingBandSubset is " + usingBandSubset);
System.out.println("fullImage is " + fullImage);
System.out.print("Band sizes:");
for (int i = 0; i < bandSizes.length; i++) {
System.out.print(" " + bandSizes[i]);
}
System.out.println();
}
// Destination type, if there is one
ImageTypeSpecifier destType = null;
if (param != null) {
destType = param.getDestinationType();
// Ignore dest type if we are writing a complete image
if ((fullImage) && (destType != null)) {
warningOccurred(WARNING_DEST_IGNORED);
destType = null;
}
}
// Examine the param
sourceXOffset = srcRas.getMinX();
sourceYOffset = srcRas.getMinY();
int imageWidth = srcRas.getWidth();
int imageHeight = srcRas.getHeight();
sourceWidth = imageWidth;
sourceHeight = imageHeight;
int periodX = 1;
int periodY = 1;
int gridX = 0;
int gridY = 0;
JPEGQTable[] qTables = null;
JPEGHuffmanTable[] DCHuffmanTables = null;
JPEGHuffmanTable[] ACHuffmanTables = null;
boolean optimizeHuffman = false;
JPEGImageWriteParam jparam = null;
int progressiveMode = ImageWriteParam.MODE_DISABLED;
if (param != null) {
Rectangle sourceRegion = param.getSourceRegion();
if (sourceRegion != null) {
Rectangle imageBounds = new Rectangle(sourceXOffset, sourceYOffset, sourceWidth, sourceHeight);
sourceRegion = sourceRegion.intersection(imageBounds);
sourceXOffset = sourceRegion.x;
sourceYOffset = sourceRegion.y;
sourceWidth = sourceRegion.width;
sourceHeight = sourceRegion.height;
}
if (sourceWidth + sourceXOffset > imageWidth) {
sourceWidth = imageWidth - sourceXOffset;
}
if (sourceHeight + sourceYOffset > imageHeight) {
sourceHeight = imageHeight - sourceYOffset;
}
periodX = param.getSourceXSubsampling();
periodY = param.getSourceYSubsampling();
gridX = param.getSubsamplingXOffset();
gridY = param.getSubsamplingYOffset();
switch(param.getCompressionMode()) {
case ImageWriteParam.MODE_DISABLED:
throw new IIOException("JPEG compression cannot be disabled");
case ImageWriteParam.MODE_EXPLICIT:
float quality = param.getCompressionQuality();
quality = JPEG.convertToLinearQuality(quality);
qTables = new JPEGQTable[2];
qTables[0] = JPEGQTable.K1Luminance.getScaledInstance(quality, true);
qTables[1] = JPEGQTable.K2Chrominance.getScaledInstance(quality, true);
break;
case ImageWriteParam.MODE_DEFAULT:
qTables = new JPEGQTable[2];
qTables[0] = JPEGQTable.K1Div2Luminance;
qTables[1] = JPEGQTable.K2Div2Chrominance;
break;
}
progressiveMode = param.getProgressiveMode();
if (param instanceof JPEGImageWriteParam) {
jparam = (JPEGImageWriteParam) param;
optimizeHuffman = jparam.getOptimizeHuffmanTables();
}
}
// Now examine the metadata
IIOMetadata mdata = image.getMetadata();
if (mdata != null) {
if (mdata instanceof JPEGMetadata) {
metadata = (JPEGMetadata) mdata;
if (debug) {
System.out.println("We have metadata, and it's JPEG metadata");
}
} else {
if (!rasterOnly) {
ImageTypeSpecifier type = destType;
if (type == null) {
type = new ImageTypeSpecifier(rimage);
}
metadata = (JPEGMetadata) convertImageMetadata(mdata, type, param);
} else {
warningOccurred(WARNING_METADATA_NOT_JPEG_FOR_RASTER);
}
}
}
// First set a default state
// If it's there, use it
ignoreJFIF = false;
// If it's there, use it
ignoreAdobe = false;
// Change if needed
newAdobeTransform = JPEG.ADOBE_IMPOSSIBLE;
writeDefaultJFIF = false;
writeAdobe = false;
// By default we'll do no conversion:
int inCsType = JPEG.JCS_UNKNOWN;
int outCsType = JPEG.JCS_UNKNOWN;
JFIFMarkerSegment jfif = null;
AdobeMarkerSegment adobe = null;
SOFMarkerSegment sof = null;
if (metadata != null) {
jfif = (JFIFMarkerSegment) metadata.findMarkerSegment(JFIFMarkerSegment.class, true);
adobe = (AdobeMarkerSegment) metadata.findMarkerSegment(AdobeMarkerSegment.class, true);
sof = (SOFMarkerSegment) metadata.findMarkerSegment(SOFMarkerSegment.class, true);
}
// By default don't write one
iccProfile = null;
// PhotoYCC does this
convertTosRGB = false;
converted = null;
if (destType != null) {
if (numBandsUsed != destType.getNumBands()) {
throw new IIOException("Number of source bands != number of destination bands");
}
cs = destType.getColorModel().getColorSpace();
// Check the metadata against the destination type
if (metadata != null) {
checkSOFBands(sof, numBandsUsed);
checkJFIF(jfif, destType, false);
// Do we want to write an ICC profile?
if ((jfif != null) && (ignoreJFIF == false)) {
if (JPEG.isNonStandardICC(cs)) {
iccProfile = ((ICC_ColorSpace) cs).getProfile();
}
}
checkAdobe(adobe, destType, false);
} else {
// If we can add a JFIF or an Adobe marker segment, do so
if (JPEG.isJFIFcompliant(destType, false)) {
writeDefaultJFIF = true;
// Do we want to write an ICC profile?
if (JPEG.isNonStandardICC(cs)) {
iccProfile = ((ICC_ColorSpace) cs).getProfile();
}
} else {
int transform = JPEG.transformForType(destType, false);
if (transform != JPEG.ADOBE_IMPOSSIBLE) {
writeAdobe = true;
newAdobeTransform = transform;
}
}
// re-create the metadata
metadata = new JPEGMetadata(destType, null, this);
}
inCsType = getSrcCSType(destType);
outCsType = getDefaultDestCSType(destType);
} else {
// no destination type
if (metadata == null) {
if (fullImage) {
// no dest, no metadata, full image
// Use default metadata matching the image and param
metadata = new JPEGMetadata(new ImageTypeSpecifier(rimage), param, this);
if (metadata.findMarkerSegment(JFIFMarkerSegment.class, true) != null) {
cs = rimage.getColorModel().getColorSpace();
if (JPEG.isNonStandardICC(cs)) {
iccProfile = ((ICC_ColorSpace) cs).getProfile();
}
}
inCsType = getSrcCSType(rimage);
outCsType = getDefaultDestCSType(rimage);
}
// else no dest, no metadata, not an image,
// so no special headers, no color conversion
} else {
// no dest type, but there is metadata
checkSOFBands(sof, numBandsUsed);
if (fullImage) {
// no dest, metadata, image
// Check that the metadata and the image match
ImageTypeSpecifier inputType = new ImageTypeSpecifier(rimage);
inCsType = getSrcCSType(rimage);
if (cm != null) {
boolean alpha = cm.hasAlpha();
switch(cs.getType()) {
case ColorSpace.TYPE_GRAY:
if (!alpha) {
outCsType = JPEG.JCS_GRAYSCALE;
} else {
if (jfif != null) {
ignoreJFIF = true;
warningOccurred(WARNING_IMAGE_METADATA_JFIF_MISMATCH);
}
// out colorspace remains unknown
}
if ((adobe != null) && (adobe.transform != JPEG.ADOBE_UNKNOWN)) {
newAdobeTransform = JPEG.ADOBE_UNKNOWN;
warningOccurred(WARNING_IMAGE_METADATA_ADOBE_MISMATCH);
}
break;
case ColorSpace.TYPE_RGB:
if (!alpha) {
if (jfif != null) {
outCsType = JPEG.JCS_YCbCr;
if (JPEG.isNonStandardICC(cs) || ((cs instanceof ICC_ColorSpace) && (jfif.iccSegment != null))) {
iccProfile = ((ICC_ColorSpace) cs).getProfile();
}
} else if (adobe != null) {
switch(adobe.transform) {
case JPEG.ADOBE_UNKNOWN:
outCsType = JPEG.JCS_RGB;
break;
case JPEG.ADOBE_YCC:
outCsType = JPEG.JCS_YCbCr;
break;
default:
warningOccurred(WARNING_IMAGE_METADATA_ADOBE_MISMATCH);
newAdobeTransform = JPEG.ADOBE_UNKNOWN;
outCsType = JPEG.JCS_RGB;
break;
}
} else {
// consult the ids
int outCS = sof.getIDencodedCSType();
// consult the sampling factors
if (outCS != JPEG.JCS_UNKNOWN) {
outCsType = outCS;
} else {
boolean subsampled = isSubsampled(sof.componentSpecs);
if (subsampled) {
outCsType = JPEG.JCS_YCbCr;
} else {
outCsType = JPEG.JCS_RGB;
}
}
}
} else {
// RGBA
if (jfif != null) {
ignoreJFIF = true;
warningOccurred(WARNING_IMAGE_METADATA_JFIF_MISMATCH);
}
if (adobe != null) {
if (adobe.transform != JPEG.ADOBE_UNKNOWN) {
newAdobeTransform = JPEG.ADOBE_UNKNOWN;
warningOccurred(WARNING_IMAGE_METADATA_ADOBE_MISMATCH);
}
outCsType = JPEG.JCS_RGBA;
} else {
// consult the ids
int outCS = sof.getIDencodedCSType();
// consult the sampling factors
if (outCS != JPEG.JCS_UNKNOWN) {
outCsType = outCS;
} else {
boolean subsampled = isSubsampled(sof.componentSpecs);
outCsType = subsampled ? JPEG.JCS_YCbCrA : JPEG.JCS_RGBA;
}
}
}
break;
case ColorSpace.TYPE_3CLR:
if (cs == JPEG.JCS.getYCC()) {
if (!alpha) {
if (jfif != null) {
convertTosRGB = true;
convertOp = new ColorConvertOp(cs, JPEG.JCS.sRGB, null);
outCsType = JPEG.JCS_YCbCr;
} else if (adobe != null) {
if (adobe.transform != JPEG.ADOBE_YCC) {
newAdobeTransform = JPEG.ADOBE_YCC;
warningOccurred(WARNING_IMAGE_METADATA_ADOBE_MISMATCH);
}
outCsType = JPEG.JCS_YCC;
} else {
outCsType = JPEG.JCS_YCC;
}
} else {
// PhotoYCCA
if (jfif != null) {
ignoreJFIF = true;
warningOccurred(WARNING_IMAGE_METADATA_JFIF_MISMATCH);
} else if (adobe != null) {
if (adobe.transform != JPEG.ADOBE_UNKNOWN) {
newAdobeTransform = JPEG.ADOBE_UNKNOWN;
warningOccurred(WARNING_IMAGE_METADATA_ADOBE_MISMATCH);
}
}
outCsType = JPEG.JCS_YCCA;
}
}
}
}
}
// else no dest, metadata, not an image. Defaults ok
}
}
boolean metadataProgressive = false;
int[] scans = null;
if (metadata != null) {
if (sof == null) {
sof = (SOFMarkerSegment) metadata.findMarkerSegment(SOFMarkerSegment.class, true);
}
if ((sof != null) && (sof.tag == JPEG.SOF2)) {
metadataProgressive = true;
if (progressiveMode == ImageWriteParam.MODE_COPY_FROM_METADATA) {
// Might still be null
scans = collectScans(metadata, sof);
} else {
numScans = 0;
}
}
if (jfif == null) {
jfif = (JFIFMarkerSegment) metadata.findMarkerSegment(JFIFMarkerSegment.class, true);
}
}
thumbnails = image.getThumbnails();
int numThumbs = image.getNumThumbnails();
forceJFIF = false;
// then thumbnails can be written
if (!writeDefaultJFIF) {
// If there is no metadata, then we can't write thumbnails
if (metadata == null) {
thumbnails = null;
if (numThumbs != 0) {
warningOccurred(WARNING_IGNORING_THUMBS);
}
} else {
// then the user must specify JFIF on the metadata
if (fullImage == false) {
if (jfif == null) {
// Or we can't include thumbnails
thumbnails = null;
if (numThumbs != 0) {
warningOccurred(WARNING_IGNORING_THUMBS);
}
}
} else {
// It is a full image, and there is metadata
if (jfif == null) {
// Can it have JFIF?
if ((outCsType == JPEG.JCS_GRAYSCALE) || (outCsType == JPEG.JCS_YCbCr)) {
if (numThumbs != 0) {
forceJFIF = true;
warningOccurred(WARNING_FORCING_JFIF);
}
} else {
// Nope, not JFIF-compatible
thumbnails = null;
if (numThumbs != 0) {
warningOccurred(WARNING_IGNORING_THUMBS);
}
}
}
}
}
}
// Set up a boolean to indicate whether we need to call back to
// write metadata
boolean haveMetadata = ((metadata != null) || writeDefaultJFIF || writeAdobe);
// Now that we have dealt with metadata, finalize our tables set up
// Are we going to write tables? By default, yes.
boolean writeDQT = true;
boolean writeDHT = true;
// But if the metadata has no tables, no.
DQTMarkerSegment dqt = null;
DHTMarkerSegment dht = null;
int restartInterval = 0;
if (metadata != null) {
dqt = (DQTMarkerSegment) metadata.findMarkerSegment(DQTMarkerSegment.class, true);
dht = (DHTMarkerSegment) metadata.findMarkerSegment(DHTMarkerSegment.class, true);
DRIMarkerSegment dri = (DRIMarkerSegment) metadata.findMarkerSegment(DRIMarkerSegment.class, true);
if (dri != null) {
restartInterval = dri.restartInterval;
}
if (dqt == null) {
writeDQT = false;
}
if (dht == null) {
// Ignored if optimizeHuffman is true
writeDHT = false;
}
}
// to use
if (qTables == null) {
// Get them from metadata, or use defaults
if (dqt != null) {
qTables = collectQTablesFromMetadata(metadata);
} else if (streamQTables != null) {
qTables = streamQTables;
} else if ((jparam != null) && (jparam.areTablesSet())) {
qTables = jparam.getQTables();
} else {
qTables = JPEG.getDefaultQTables();
}
}
// If we are optimizing, we don't want any tables.
if (optimizeHuffman == false) {
// If they were for progressive scans, we can't use them.
if ((dht != null) && (metadataProgressive == false)) {
DCHuffmanTables = collectHTablesFromMetadata(metadata, true);
ACHuffmanTables = collectHTablesFromMetadata(metadata, false);
} else if (streamDCHuffmanTables != null) {
DCHuffmanTables = streamDCHuffmanTables;
ACHuffmanTables = streamACHuffmanTables;
} else if ((jparam != null) && (jparam.areTablesSet())) {
DCHuffmanTables = jparam.getDCHuffmanTables();
ACHuffmanTables = jparam.getACHuffmanTables();
} else {
DCHuffmanTables = JPEG.getDefaultHuffmanTables(true);
ACHuffmanTables = JPEG.getDefaultHuffmanTables(false);
}
}
// By default, ids are 1 - N, no subsampling
int[] componentIds = new int[numBandsUsed];
int[] HsamplingFactors = new int[numBandsUsed];
int[] VsamplingFactors = new int[numBandsUsed];
int[] QtableSelectors = new int[numBandsUsed];
for (int i = 0; i < numBandsUsed; i++) {
// JFIF compatible
componentIds[i] = i + 1;
HsamplingFactors[i] = 1;
VsamplingFactors[i] = 1;
QtableSelectors[i] = 0;
}
// Now override them with the contents of sof, if there is one,
if (sof != null) {
for (int i = 0; i < numBandsUsed; i++) {
if (forceJFIF == false) {
// else use JFIF-compatible default
componentIds[i] = sof.componentSpecs[i].componentId;
}
HsamplingFactors[i] = sof.componentSpecs[i].HsamplingFactor;
VsamplingFactors[i] = sof.componentSpecs[i].VsamplingFactor;
QtableSelectors[i] = sof.componentSpecs[i].QtableSelector;
}
}
sourceXOffset += gridX;
sourceWidth -= gridX;
sourceYOffset += gridY;
sourceHeight -= gridY;
int destWidth = (sourceWidth + periodX - 1) / periodX;
int destHeight = (sourceHeight + periodY - 1) / periodY;
// Create an appropriate 1-line databuffer for writing
int lineSize = sourceWidth * numBandsUsed;
DataBufferByte buffer = new DataBufferByte(lineSize);
// Create a raster from that
int[] bandOffs = JPEG.bandOffsets[numBandsUsed - 1];
raster = Raster.createInterleavedRaster(buffer, sourceWidth, 1, lineSize, numBandsUsed, bandOffs, null);
// Call the writer, who will call back for every scanline
clearAbortRequest();
cbLock.lock();
try {
processImageStarted(currentImage);
} finally {
cbLock.unlock();
}
boolean aborted = false;
if (debug) {
System.out.println("inCsType: " + inCsType);
System.out.println("outCsType: " + outCsType);
}
// Note that getData disables acceleration on buffer, but it is
// just a 1-line intermediate data transfer buffer that does not
// affect the acceleration of the source image.
aborted = writeImage(structPointer, buffer.getData(), inCsType, outCsType, numBandsUsed, bandSizes, sourceWidth, destWidth, destHeight, periodX, periodY, qTables, writeDQT, DCHuffmanTables, ACHuffmanTables, writeDHT, optimizeHuffman, (progressiveMode != ImageWriteParam.MODE_DISABLED), numScans, scans, componentIds, HsamplingFactors, VsamplingFactors, QtableSelectors, haveMetadata, restartInterval);
cbLock.lock();
try {
if (aborted) {
processWriteAborted();
} else {
processImageComplete();
}
ios.flush();
} finally {
cbLock.unlock();
}
// After a successful write
currentImage++;
}
use of java.awt.color.ICC_ColorSpace in project jdk8u_jdk by JetBrains.
the class ColorModel method getGray16TosRGB8LUT.
/*
* Return a byte LUT that converts 16-bit gray values in the grayCS
* ColorSpace to the appropriate 8-bit sRGB value. I.e., if lut
* is the byte array returned by this method and sval = lut[gval],
* then the sRGB triple (sval,sval,sval) is the best match to gval.
* Cache references to any computed LUT in a Map.
*/
static byte[] getGray16TosRGB8LUT(ICC_ColorSpace grayCS) {
if (isLinearGRAYspace(grayCS)) {
return getLinearRGB16TosRGB8LUT();
}
if (g16Tos8Map != null) {
byte[] g16Tos8LUT = g16Tos8Map.get(grayCS);
if (g16Tos8LUT != null) {
return g16Tos8LUT;
}
}
short[] tmp = new short[65536];
for (int i = 0; i <= 65535; i++) {
tmp[i] = (short) i;
}
ColorTransform[] transformList = new ColorTransform[2];
PCMM mdl = CMSManager.getModule();
ICC_ColorSpace srgbCS = (ICC_ColorSpace) ColorSpace.getInstance(ColorSpace.CS_sRGB);
transformList[0] = mdl.createTransform(grayCS.getProfile(), ColorTransform.Any, ColorTransform.In);
transformList[1] = mdl.createTransform(srgbCS.getProfile(), ColorTransform.Any, ColorTransform.Out);
ColorTransform t = mdl.createTransform(transformList);
tmp = t.colorConvert(tmp, null);
byte[] g16Tos8LUT = new byte[65536];
for (int i = 0, j = 2; i <= 65535; i++, j += 3) {
// All three components of tmp should be equal, since
// the input color space to colorConvert is a gray scale
// space. However, there are slight anomalies in the results.
// Copy tmp starting at index 2, since colorConvert seems
// to be slightly more accurate for the third component!
// scale unsigned short (0 - 65535) to unsigned byte (0 - 255)
g16Tos8LUT[i] = (byte) (((float) (tmp[j] & 0xffff)) * (1.0f / 257.0f) + 0.5f);
}
if (g16Tos8Map == null) {
g16Tos8Map = Collections.synchronizedMap(new WeakHashMap<ICC_ColorSpace, byte[]>(2));
}
g16Tos8Map.put(grayCS, g16Tos8LUT);
return g16Tos8LUT;
}
use of java.awt.color.ICC_ColorSpace in project jdk8u_jdk by JetBrains.
the class ColorModel method getLinearGray16ToOtherGray8LUT.
/*
* Return a byte LUT that converts 16-bit gray values in the CS_GRAY
* linear gray ColorSpace to the appropriate 8-bit value in the
* grayCS ColorSpace. Cache references to any computed LUT in a Map.
*/
static byte[] getLinearGray16ToOtherGray8LUT(ICC_ColorSpace grayCS) {
if (lg16Toog8Map != null) {
byte[] lg16Toog8LUT = lg16Toog8Map.get(grayCS);
if (lg16Toog8LUT != null) {
return lg16Toog8LUT;
}
}
short[] tmp = new short[65536];
for (int i = 0; i <= 65535; i++) {
tmp[i] = (short) i;
}
ColorTransform[] transformList = new ColorTransform[2];
PCMM mdl = CMSManager.getModule();
ICC_ColorSpace lgCS = (ICC_ColorSpace) ColorSpace.getInstance(ColorSpace.CS_GRAY);
transformList[0] = mdl.createTransform(lgCS.getProfile(), ColorTransform.Any, ColorTransform.In);
transformList[1] = mdl.createTransform(grayCS.getProfile(), ColorTransform.Any, ColorTransform.Out);
ColorTransform t = mdl.createTransform(transformList);
tmp = t.colorConvert(tmp, null);
byte[] lg16Toog8LUT = new byte[65536];
for (int i = 0; i <= 65535; i++) {
// scale unsigned short (0 - 65535) to unsigned byte (0 - 255)
lg16Toog8LUT[i] = (byte) (((float) (tmp[i] & 0xffff)) * (1.0f / 257.0f) + 0.5f);
}
if (lg16Toog8Map == null) {
lg16Toog8Map = Collections.synchronizedMap(new WeakHashMap<ICC_ColorSpace, byte[]>(2));
}
lg16Toog8Map.put(grayCS, lg16Toog8LUT);
return lg16Toog8LUT;
}
use of java.awt.color.ICC_ColorSpace in project jdk8u_jdk by JetBrains.
the class CMMTests method getColorSpace.
protected static ColorSpace getColorSpace(TestEnvironment env) {
ColorSpace cs;
//(Boolean)env.getModifier(usePlatfromProfiles);
Boolean usePlatfrom = true;
int cs_code = env.getIntValue(csList);
if (usePlatfrom) {
cs = ColorSpace.getInstance(cs_code);
} else {
String resource = "profiles/";
switch(cs_code) {
case ColorSpace.CS_CIEXYZ:
resource += "CIEXYZ.pf";
break;
case ColorSpace.CS_GRAY:
resource += "GRAY.pf";
break;
case ColorSpace.CS_LINEAR_RGB:
resource += "LINEAR_RGB.pf";
break;
case ColorSpace.CS_PYCC:
resource += "PYCC.pf";
break;
case ColorSpace.CS_sRGB:
resource += "sRGB.pf";
break;
default:
throw new RuntimeException("Unknown color space: " + cs_code);
}
try {
InputStream is = CMMTests.class.getResourceAsStream(resource);
ICC_Profile p = ICC_Profile.getInstance(is);
cs = new ICC_ColorSpace(p);
} catch (IOException e) {
throw new RuntimeException("Unable load profile from resource " + resource, e);
}
}
return cs;
}
use of java.awt.color.ICC_ColorSpace in project jdk8u_jdk by JetBrains.
the class InvalidRenderIntentTest method main.
public static void main(String[] args) {
ICC_Profile pSRGB = ICC_Profile.getInstance(CS_sRGB);
byte[] raw_data = pSRGB.getData();
setRenderingIntent(0x1000000, raw_data);
ICC_Profile p = ICC_Profile.getInstance(raw_data);
ICC_ColorSpace cs = new ICC_ColorSpace(p);
// perfrom test color conversion
ColorConvertOp op = new ColorConvertOp(cs, ColorSpace.getInstance(CS_sRGB), null);
BufferedImage src = new BufferedImage(1, 1, TYPE_3BYTE_BGR);
BufferedImage dst = new BufferedImage(1, 1, TYPE_3BYTE_BGR);
try {
op.filter(src.getRaster(), dst.getRaster());
} catch (CMMException e) {
throw new RuntimeException("Test failed.", e);
}
System.out.println("Test passed.");
}
Aggregations