use of javax.imageio.IIOException in project imageio-ext by geosolutions-it.
the class NITFReader method readHeader.
public synchronized void readHeader() throws IOException {
if (reader != null)
return;
if (handle == null) {
throw new IllegalStateException("No input handle");
}
try {
reader = new Reader();
record = reader.read(handle);
} catch (NITFException e) {
LOGGER.severe(e.getLocalizedMessage());
throw new IIOException("NITF Exception", e);
}
}
use of javax.imageio.IIOException in project imageio-ext by geosolutions-it.
the class TIFFDecompressor method reformatData.
/**
* Reformats data read as bytes into a short or int buffer.
*/
private static void reformatData(byte[] buf, int bytesPerRow, int numRows, short[] shortData, int[] intData, int outOffset, int outStride) throws IIOException {
if (shortData != null) {
if (DEBUG) {
System.out.println("Reformatting data to short");
}
int inOffset = 0;
int shortsPerRow = bytesPerRow / 2;
int numExtraBytes = bytesPerRow % 2;
for (int j = 0; j < numRows; j++) {
int k = outOffset;
for (int i = 0; i < shortsPerRow; i++) {
shortData[k++] = (short) (((buf[inOffset++] & 0xff) << 8) | (buf[inOffset++] & 0xff));
}
if (numExtraBytes != 0) {
shortData[k++] = (short) ((buf[inOffset++] & 0xff) << 8);
}
outOffset += outStride;
}
} else if (intData != null) {
if (DEBUG) {
System.out.println("Reformatting data to int");
}
int inOffset = 0;
int intsPerRow = bytesPerRow / 4;
int numExtraBytes = bytesPerRow % 4;
for (int j = 0; j < numRows; j++) {
int k = outOffset;
for (int i = 0; i < intsPerRow; i++) {
intData[k++] = ((buf[inOffset++] & 0xff) << 24) | ((buf[inOffset++] & 0xff) << 16) | ((buf[inOffset++] & 0xff) << 8) | (buf[inOffset++] & 0xff);
}
if (numExtraBytes != 0) {
int shift = 24;
int ival = 0;
for (int b = 0; b < numExtraBytes; b++) {
ival |= (buf[inOffset++] & 0xff) << shift;
shift -= 8;
}
intData[k++] = ival;
}
outOffset += outStride;
}
} else {
throw new IIOException("shortData == null && intData == null!");
}
}
use of javax.imageio.IIOException in project imageio-ext by geosolutions-it.
the class TIFFDecompressor method decode.
/**
* Decodes the input bit stream (located in the
* <code>ImageInputStream</code> <code>stream</code>, at offset
* <code>offset</code>, and continuing for <code>byteCount</code>
* bytes) into the output <code>BufferedImage</code>
* <code>image</code>.
*
* <p> The default implementation analyzes the destination image
* to determine if it is suitable as the destination for the
* <code>decodeRaw</code> method. If not, a suitable image is
* created. Next, <code>decodeRaw</code> is called to perform the
* actual decoding, and the results are copied into the
* destination image if necessary. Subsampling and offsetting are
* performed automatically.
*
* <p> The precise responsibilities of this routine are as
* follows. The input bit stream is defined by the instance
* variables <code>stream</code>, <code>offset</code>, and
* <code>byteCount</code>. These bits contain the data for the
* region of the source image defined by <code>srcMinX</code>,
* <code>srcMinY</code>, <code>srcWidth</code>, and
* <code>srcHeight</code>.
*
* <p> The source data is required to be subsampling, starting at
* the <code>sourceXOffset</code>th column and including
* every <code>subsampleX</code>th pixel thereafter (and similarly
* for <code>sourceYOffset</code> and
* <code>subsampleY</code>).
*
* <p> Pixels are copied into the destination with an addition shift of
* (<code>dstXOffset</code>, <code>dstYOffset</code>). The complete
* set of formulas relating the source and destination coordinate spaces
* are:
*
* <pre>
* dx = (sx - sourceXOffset)/subsampleX + dstXOffset;
* dy = (sy - sourceYOffset)/subsampleY + dstYOffset;
* </pre>
*
* Only source pixels such that <code>(sx - sourceXOffset) %
* subsampleX == 0</code> and <code>(sy - sourceYOffset) %
* subsampleY == 0</code> are copied.
*
* <p> The inverse mapping, from destination to source coordinates,
* is one-to-one:
*
* <pre>
* sx = (dx - dstXOffset)*subsampleX + sourceXOffset;
* sy = (dy - dstYOffset)*subsampleY + sourceYOffset;
* </pre>
*
* <p> The region of the destination image to be updated is given
* by the instance variables <code>dstMinX</code>,
* <code>dstMinY</code>, <code>dstWidth</code>, and
* <code>dstHeight</code>.
*
* <p> It is possible that not all of the source data being read
* will contribute to the destination image. For example, the
* destination offsets could be set such that some of the source
* pixels land outside of the bounds of the image. As a
* convenience, the bounds of the active source region (that is,
* the region of the strip or tile being read that actually
* contributes to the destination image, taking clipping into
* account) are available as <code>activeSrcMinX</code>,
* <code>activeSrcMinY</code>, <code>activeSrcWidth</code> and
* <code>activeSrcHeight</code>. Thus, the source pixel at
* (<code>activeSrcMinX</code>, <code>activeSrcMinY</code>) will
* map to the destination pixel (<code>dstMinX</code>,
* <code>dstMinY</code>).
*
* <p> The sequence of source bands given by
* <code>sourceBands</code> are to be copied into the sequence of
* bands in the destination given by
* <code>destinationBands</code>.
*
* <p> Some standard tag information is provided the instance
* variables <code>photometricInterpretation</code>,
* <code>compression</code>, <code>samplesPerPixel</code>,
* <code>bitsPerSample</code>, <code>sampleFormat</code>,
* <code>extraSamples</code>, and <code>colorMap</code>.
*
* <p> In practice, unless there is a significant performance
* advantage to be gained by overriding this routine, most users
* will prefer to use the default implementation of this routine,
* and instead override the <code>decodeRaw</code> and/or
* <code>getRawImageType</code> methods.
*
* @exception IOException if an error occurs in
* <code>decodeRaw</code>.
*/
public void decode() throws IOException {
byte[] byteData = null;
short[] shortData = null;
int[] intData = null;
float[] floatData = null;
double[] doubleData = null;
int dstOffset = 0;
int pixelBitStride = 1;
int scanlineStride = 0;
if (useTurbo) {
decodeRaw(byteData, dstOffset, pixelBitStride, scanlineStride);
} else {
// Analyze raw image
this.rawImage = null;
if (isImageSimple) {
if (isBilevel) {
rawImage = this.image;
} else if (isContiguous) {
rawImage = image.getSubimage(dstMinX, dstMinY, dstWidth, dstHeight);
}
}
boolean isDirectCopy = rawImage != null;
if (rawImage == null) {
rawImage = createRawImage();
if (rawImage == null) {
throw new IIOException("Couldn't create image buffer!");
}
}
WritableRaster ras = rawImage.getRaster();
if (isBilevel) {
Rectangle rect = isImageSimple ? new Rectangle(dstMinX, dstMinY, dstWidth, dstHeight) : ras.getBounds();
byteData = ImageUtil.getPackedBinaryData(ras, rect);
dstOffset = 0;
pixelBitStride = 1;
scanlineStride = (rect.width + 7) / 8;
} else {
SampleModel sm = ras.getSampleModel();
DataBuffer db = ras.getDataBuffer();
boolean isSupportedType = false;
if (sm instanceof ComponentSampleModel) {
ComponentSampleModel csm = (ComponentSampleModel) sm;
dstOffset = csm.getOffset(-ras.getSampleModelTranslateX(), -ras.getSampleModelTranslateY());
scanlineStride = csm.getScanlineStride();
if (db instanceof DataBufferByte) {
DataBufferByte dbb = (DataBufferByte) db;
byteData = dbb.getData();
pixelBitStride = csm.getPixelStride() * 8;
isSupportedType = true;
} else if (db instanceof DataBufferUShort) {
DataBufferUShort dbus = (DataBufferUShort) db;
shortData = dbus.getData();
pixelBitStride = csm.getPixelStride() * 16;
isSupportedType = true;
} else if (db instanceof DataBufferShort) {
DataBufferShort dbs = (DataBufferShort) db;
shortData = dbs.getData();
pixelBitStride = csm.getPixelStride() * 16;
isSupportedType = true;
} else if (db instanceof DataBufferInt) {
DataBufferInt dbi = (DataBufferInt) db;
intData = dbi.getData();
pixelBitStride = csm.getPixelStride() * 32;
isSupportedType = true;
} else if (db instanceof DataBufferFloat) {
DataBufferFloat dbf = (DataBufferFloat) db;
floatData = dbf.getData();
pixelBitStride = csm.getPixelStride() * 32;
isSupportedType = true;
} else if (db instanceof DataBufferDouble) {
DataBufferDouble dbf = (DataBufferDouble) db;
doubleData = dbf.getData();
pixelBitStride = csm.getPixelStride() * 64;
isSupportedType = true;
}
} else if (sm instanceof MultiPixelPackedSampleModel) {
MultiPixelPackedSampleModel mppsm = (MultiPixelPackedSampleModel) sm;
dstOffset = mppsm.getOffset(-ras.getSampleModelTranslateX(), -ras.getSampleModelTranslateY());
pixelBitStride = mppsm.getPixelBitStride();
scanlineStride = mppsm.getScanlineStride();
if (db instanceof DataBufferByte) {
DataBufferByte dbb = (DataBufferByte) db;
byteData = dbb.getData();
isSupportedType = true;
} else if (db instanceof DataBufferUShort) {
DataBufferUShort dbus = (DataBufferUShort) db;
shortData = dbus.getData();
isSupportedType = true;
} else if (db instanceof DataBufferInt) {
DataBufferInt dbi = (DataBufferInt) db;
intData = dbi.getData();
isSupportedType = true;
}
} else if (sm instanceof SinglePixelPackedSampleModel) {
SinglePixelPackedSampleModel sppsm = (SinglePixelPackedSampleModel) sm;
dstOffset = sppsm.getOffset(-ras.getSampleModelTranslateX(), -ras.getSampleModelTranslateY());
scanlineStride = sppsm.getScanlineStride();
if (db instanceof DataBufferByte) {
DataBufferByte dbb = (DataBufferByte) db;
byteData = dbb.getData();
pixelBitStride = 8;
isSupportedType = true;
} else if (db instanceof DataBufferUShort) {
DataBufferUShort dbus = (DataBufferUShort) db;
shortData = dbus.getData();
pixelBitStride = 16;
isSupportedType = true;
} else if (db instanceof DataBufferInt) {
DataBufferInt dbi = (DataBufferInt) db;
intData = dbi.getData();
pixelBitStride = 32;
isSupportedType = true;
}
}
if (!isSupportedType) {
throw new IIOException("Unsupported raw image type: SampleModel = " + sm + "; DataBuffer = " + db);
}
}
if (isBilevel) {
// Bilevel data are always in a contiguous byte buffer.
decodeRaw(byteData, dstOffset, pixelBitStride, scanlineStride);
} else {
SampleModel sm = ras.getSampleModel();
// bits except at the end of a row.
if (isDataBufferBitContiguous(sm)) {
// Use byte or float data directly.
if (byteData != null) {
if (DEBUG) {
System.out.println("Decoding bytes directly");
}
if (offset == 0 && byteCount == 0 && noData != null) {
setEmptyTile(byteData, dstOffset, pixelBitStride, scanlineStride, noData.byteValue());
} else {
decodeRaw(byteData, dstOffset, pixelBitStride, scanlineStride);
}
} else if (floatData != null) {
if (DEBUG) {
System.out.println("Decoding floats directly");
}
if (offset == 0 && byteCount == 0 && noData != null) {
setEmptyTile(floatData, dstOffset, pixelBitStride, scanlineStride, noData.floatValue());
} else {
decodeRaw(floatData, dstOffset, pixelBitStride, scanlineStride);
}
} else if (doubleData != null) {
if (DEBUG) {
System.out.println("Decoding doubles directly");
}
if (offset == 0 && byteCount == 0 && noData != null) {
setEmptyTile(doubleData, dstOffset, pixelBitStride, scanlineStride, noData.doubleValue());
} else {
decodeRaw(doubleData, dstOffset, pixelBitStride, scanlineStride);
}
} else {
if (shortData != null) {
if (offset == 0 && byteCount == 0 && noData != null) {
setEmptyTile(shortData, dstOffset, pixelBitStride, scanlineStride, noData.shortValue());
} else if (areSampleSizesEqual(sm) && sm.getSampleSize(0) == 16) {
if (DEBUG) {
System.out.println("Decoding shorts directly");
}
// Decode directly into short data.
decodeRaw(shortData, dstOffset, pixelBitStride, scanlineStride);
} else {
if (DEBUG) {
System.out.println("Decoding bytes->shorts");
}
// Decode into bytes and reformat into shorts.
int bpp = getBitsPerPixel(sm);
int bytesPerRow = (bpp * srcWidth + 7) / 8;
byte[] buf = new byte[bytesPerRow * srcHeight];
decodeRaw(buf, 0, bpp, bytesPerRow);
reformatData(buf, bytesPerRow, srcHeight, shortData, null, dstOffset, scanlineStride);
}
} else if (intData != null) {
if (offset == 0 && byteCount == 0 && noData != null) {
setEmptyTile(intData, dstOffset, pixelBitStride, scanlineStride, noData.intValue());
} else if (areSampleSizesEqual(sm) && sm.getSampleSize(0) == 32) {
if (DEBUG) {
System.out.println("Decoding ints directly");
}
// Decode directly into int data.
decodeRaw(intData, dstOffset, pixelBitStride, scanlineStride);
} else {
if (DEBUG) {
System.out.println("Decoding bytes->ints");
}
// Decode into bytes and reformat into ints.
int bpp = getBitsPerPixel(sm);
int bytesPerRow = (bpp * srcWidth + 7) / 8;
byte[] buf = new byte[bytesPerRow * srcHeight];
decodeRaw(buf, 0, bpp, bytesPerRow);
reformatData(buf, bytesPerRow, srcHeight, null, intData, dstOffset, scanlineStride);
}
}
}
} else {
if (DEBUG) {
System.out.println("Decoding discontiguous data");
}
// Read discontiguous data into bytes and set the samples
// into the Raster.
int bpp = getBitsPerPixel(sm);
int bytesPerRow = (bpp * srcWidth + 7) / 8;
byte[] buf = new byte[bytesPerRow * srcHeight];
decodeRaw(buf, 0, bpp, bytesPerRow);
reformatDiscontiguousData(buf, bytesPerRow, srcWidth, srcHeight, ras);
}
}
if (colorConverter != null) {
float[] rgb = new float[3];
if (byteData != null) {
for (int j = 0; j < dstHeight; j++) {
int idx = dstOffset;
for (int i = 0; i < dstWidth; i++) {
float x0 = (float) (byteData[idx] & 0xff);
float x1 = (float) (byteData[idx + 1] & 0xff);
float x2 = (float) (byteData[idx + 2] & 0xff);
colorConverter.toRGB(x0, x1, x2, rgb);
byteData[idx] = (byte) (rgb[0]);
byteData[idx + 1] = (byte) (rgb[1]);
byteData[idx + 2] = (byte) (rgb[2]);
idx += 3;
}
dstOffset += scanlineStride;
}
} else if (shortData != null) {
if (sampleFormat[0] == BaselineTIFFTagSet.SAMPLE_FORMAT_SIGNED_INTEGER) {
for (int j = 0; j < dstHeight; j++) {
int idx = dstOffset;
for (int i = 0; i < dstWidth; i++) {
float x0 = (float) shortData[idx];
float x1 = (float) shortData[idx + 1];
float x2 = (float) shortData[idx + 2];
colorConverter.toRGB(x0, x1, x2, rgb);
shortData[idx] = (short) (rgb[0]);
shortData[idx + 1] = (short) (rgb[1]);
shortData[idx + 2] = (short) (rgb[2]);
idx += 3;
}
dstOffset += scanlineStride;
}
} else {
for (int j = 0; j < dstHeight; j++) {
int idx = dstOffset;
for (int i = 0; i < dstWidth; i++) {
float x0 = (float) (shortData[idx] & 0xffff);
float x1 = (float) (shortData[idx + 1] & 0xffff);
float x2 = (float) (shortData[idx + 2] & 0xffff);
colorConverter.toRGB(x0, x1, x2, rgb);
shortData[idx] = (short) (rgb[0]);
shortData[idx + 1] = (short) (rgb[1]);
shortData[idx + 2] = (short) (rgb[2]);
idx += 3;
}
dstOffset += scanlineStride;
}
}
} else if (intData != null) {
for (int j = 0; j < dstHeight; j++) {
int idx = dstOffset;
for (int i = 0; i < dstWidth; i++) {
float x0 = (float) intData[idx];
float x1 = (float) intData[idx + 1];
float x2 = (float) intData[idx + 2];
colorConverter.toRGB(x0, x1, x2, rgb);
intData[idx] = (int) (rgb[0]);
intData[idx + 1] = (int) (rgb[1]);
intData[idx + 2] = (int) (rgb[2]);
idx += 3;
}
dstOffset += scanlineStride;
}
} else if (floatData != null) {
for (int j = 0; j < dstHeight; j++) {
int idx = dstOffset;
for (int i = 0; i < dstWidth; i++) {
float x0 = floatData[idx];
float x1 = floatData[idx + 1];
float x2 = floatData[idx + 2];
colorConverter.toRGB(x0, x1, x2, rgb);
floatData[idx] = rgb[0];
floatData[idx + 1] = rgb[1];
floatData[idx + 2] = rgb[2];
idx += 3;
}
dstOffset += scanlineStride;
}
}
// int[] p = new int[3];
// ras.getPixel(0, 0, p);
// System.out.println("p00 = " +
// p[0] + " " + p[1] + " " + p[2]);
// ras.getPixel(1, 0, p);
// System.out.println("p10 = " +
// p[0] + " " + p[1] + " " + p[2]);
// ras.getPixel(2, 0, p);
// System.out.println("p20 = " +
// p[0] + " " + p[1] + " " + p[2]);
// ras.getPixel(3, 0, p);
// System.out.println("p30 = " +
// p[0] + " " + p[1] + " " + p[2]);
// ColorSpace rgb = ColorSpace.getInstance(ColorSpace.CS_sRGB);
// ColorConvertOp op = new ColorConvertOp(colorSpace, rgb, null);
// WritableRaster dest = op.createCompatibleDestRaster(ras);
// op.filter(ras, dest);
// ras = dest;
}
if (photometricInterpretation == BaselineTIFFTagSet.PHOTOMETRIC_INTERPRETATION_WHITE_IS_ZERO) {
if (byteData != null) {
int bytesPerRow = (srcWidth * pixelBitStride + 7) / 8;
for (int y = 0; y < srcHeight; y++) {
int offset = dstOffset + y * scanlineStride;
for (int i = 0; i < bytesPerRow; i++) {
byteData[offset + i] ^= 0xff;
}
}
} else if (shortData != null) {
int shortsPerRow = (srcWidth * pixelBitStride + 15) / 16;
if (sampleFormat[0] == BaselineTIFFTagSet.SAMPLE_FORMAT_SIGNED_INTEGER) {
for (int y = 0; y < srcHeight; y++) {
int offset = dstOffset + y * scanlineStride;
for (int i = 0; i < shortsPerRow; i++) {
int shortOffset = offset + i;
// XXX Does this make any sense?
shortData[shortOffset] = (short) (Short.MAX_VALUE - shortData[shortOffset]);
}
}
} else {
for (int y = 0; y < srcHeight; y++) {
int offset = dstOffset + y * scanlineStride;
for (int i = 0; i < shortsPerRow; i++) {
shortData[offset + i] ^= 0xffff;
}
}
}
} else if (intData != null) {
int intsPerRow = (srcWidth * pixelBitStride + 15) / 16;
for (int y = 0; y < srcHeight; y++) {
int offset = dstOffset + y * scanlineStride;
for (int i = 0; i < intsPerRow; i++) {
int intOffset = offset + i;
// XXX Does this make any sense?
intData[intOffset] = Integer.MAX_VALUE - intData[intOffset];
}
}
} else if (floatData != null) {
int floatsPerRow = (srcWidth * pixelBitStride + 15) / 16;
for (int y = 0; y < srcHeight; y++) {
int offset = dstOffset + y * scanlineStride;
for (int i = 0; i < floatsPerRow; i++) {
int floatOffset = offset + i;
// XXX Does this make any sense?
floatData[floatOffset] = 1.0F - floatData[floatOffset];
}
}
}
}
if (isBilevel) {
Rectangle rect = isImageSimple ? new Rectangle(dstMinX, dstMinY, dstWidth, dstHeight) : ras.getBounds();
ImageUtil.setPackedBinaryData(byteData, ras, rect);
}
// equals the raster of 'image' or is a child thereof.
if (isDirectCopy) {
// rawImage == image) {
return;
}
}
// Copy the raw image data into the true destination image
Raster src = rawImage.getRaster();
// Create band child of source
Raster srcChild = src.createChild(0, 0, srcWidth, srcHeight, srcMinX, srcMinY, planar ? null : sourceBands);
WritableRaster dst = image.getRaster();
// Create dst child covering area and bands to be written
WritableRaster dstChild = dst.createWritableChild(dstMinX, dstMinY, dstWidth, dstHeight, dstMinX, dstMinY, destinationBands);
if (subsampleX == 1 && subsampleY == 1 && !adjustBitDepths) {
srcChild = srcChild.createChild(activeSrcMinX, activeSrcMinY, activeSrcWidth, activeSrcHeight, dstMinX, dstMinY, null);
dstChild.setRect(srcChild);
} else if (subsampleX == 1 && !adjustBitDepths) {
int sy = activeSrcMinY;
int dy = dstMinY;
while (sy < srcMinY + srcHeight) {
Raster srcRow = srcChild.createChild(activeSrcMinX, sy, activeSrcWidth, 1, dstMinX, dy, null);
dstChild.setRect(srcRow);
sy += subsampleY;
++dy;
}
} else {
// /init vars
int numBands = srcChild.getNumBands();
int sy = activeSrcMinY;
int dy = dstMinY;
// get the databuffer type
final int type = srcChild.getDataBuffer().getDataType();
switch(type) {
case DataBuffer.TYPE_BYTE:
case DataBuffer.TYPE_INT:
case DataBuffer.TYPE_SHORT:
case DataBuffer.TYPE_USHORT:
int[] p = srcChild.getPixel(srcMinX, srcMinY, (int[]) null);
while (sy < activeSrcMinY + activeSrcHeight) {
int sx = activeSrcMinX;
int dx = dstMinX;
while (sx < activeSrcMinX + activeSrcWidth) {
srcChild.getPixel(sx, sy, p);
if (adjustBitDepths) {
for (int band = 0; band < numBands; band++) {
p[band] = bitDepthScale[band][p[band]];
}
}
dstChild.setPixel(dx, dy, p);
sx += subsampleX;
++dx;
}
sy += subsampleY;
++dy;
}
break;
case DataBuffer.TYPE_DOUBLE:
double[] d = srcChild.getPixel(srcMinX, srcMinY, (double[]) null);
while (sy < activeSrcMinY + activeSrcHeight) {
int sx = activeSrcMinX;
int dx = dstMinX;
while (sx < activeSrcMinX + activeSrcWidth) {
srcChild.getPixel(sx, sy, d);
// if (adjustBitDepths) {
// for (int band = 0; band < numBands; band++) {
// d[band] = bitDepthScale[band][d[band]];
// }
// }
dstChild.setPixel(dx, dy, d);
sx += subsampleX;
++dx;
}
sy += subsampleY;
++dy;
}
break;
case DataBuffer.TYPE_FLOAT:
float[] f = srcChild.getPixel(srcMinX, srcMinY, (float[]) null);
while (sy < activeSrcMinY + activeSrcHeight) {
int sx = activeSrcMinX;
int dx = dstMinX;
while (sx < activeSrcMinX + activeSrcWidth) {
srcChild.getPixel(sx, sy, f);
// if (adjustBitDepths) {
// for (int band = 0; band < numBands; band++) {
// d[band] = bitDepthScale[band][d[band]];
// }
// }
dstChild.setPixel(dx, dy, f);
sx += subsampleX;
++dx;
}
sy += subsampleY;
++dy;
}
break;
default:
break;
}
}
}
use of javax.imageio.IIOException in project imageio-ext by geosolutions-it.
the class TIFFDeflateDecompressor method decodeRaw.
public synchronized void decodeRaw(byte[] b, int dstOffset, int bitsPerPixel, int scanlineStride) throws IOException {
// Check bitsPerSample.
if (predictor == BaselineTIFFTagSet.PREDICTOR_HORIZONTAL_DIFFERENCING) {
int len = bitsPerSample.length;
final int bps = bitsPerSample[0];
if (bps != 8 && bps != 16) {
throw new IIOException(bps + "-bit samples " + "are not supported for Horizontal " + "differencing Predictor");
}
for (int i = 0; i < len; i++) {
if (bitsPerSample[i] != bps) {
throw new IIOException("Varying sample width is not " + "supported for Horizontal " + "differencing Predictor (first: " + bps + ", unexpected:" + bitsPerSample[i] + ")");
}
}
}
// Seek to current tile data offset.
stream.seek(offset);
// Read the deflated data.
byte[] srcData = new byte[byteCount];
stream.readFully(srcData);
int bytesPerRow = (srcWidth * bitsPerPixel + 7) / 8;
byte[] buf;
int bufOffset;
if (bytesPerRow == scanlineStride) {
buf = b;
bufOffset = dstOffset;
} else {
buf = new byte[bytesPerRow * srcHeight];
bufOffset = 0;
}
// Set the input to the Inflater.
inflater.setInput(srcData);
// Inflate the data.
try {
inflater.inflate(buf, bufOffset, bytesPerRow * srcHeight);
} catch (DataFormatException dfe) {
throw new IIOException(I18N.getString("TIFFDeflateDecompressor0"), dfe);
}
// Reset the Inflater.
inflater.reset();
if (predictor == BaselineTIFFTagSet.PREDICTOR_HORIZONTAL_DIFFERENCING) {
if (bitsPerSample[0] == 8) {
for (int j = 0; j < srcHeight; j++) {
int count = bufOffset + samplesPerPixel * (j * srcWidth + 1);
for (int i = samplesPerPixel; i < srcWidth * samplesPerPixel; i++) {
buf[count] += buf[count - samplesPerPixel];
count++;
}
}
} else if (bitsPerSample[0] == 16) {
if (stream.getByteOrder() == ByteOrder.LITTLE_ENDIAN) {
for (int j = 0; j < srcHeight; j++) {
int count = dstOffset + samplesPerPixel * (j * srcWidth + 1) * 2;
for (int i = samplesPerPixel; i < srcWidth * samplesPerPixel; i++) {
int curr = (((int) buf[count]) & 0xFF) + (buf[count + 1] << 8);
int prev = (((int) buf[count - samplesPerPixel * 2]) & 0xFF) + (buf[count + 1 - samplesPerPixel * 2] << 8);
curr += prev;
buf[count] = (byte) curr;
buf[count + 1] = (byte) (curr >> 8);
count += 2;
}
}
} else {
for (int j = 0; j < srcHeight; j++) {
int count = dstOffset + samplesPerPixel * (j * srcWidth + 1) * 2;
for (int i = samplesPerPixel; i < srcWidth * samplesPerPixel; i++) {
int curr = (((int) buf[count + 1]) & 0xFF) + (buf[count] << 8);
int prev = (((int) buf[count + 1 - samplesPerPixel * 2]) & 0xFF) + (buf[count - samplesPerPixel * 2] << 8);
curr += prev;
buf[count + 1] = (byte) curr;
buf[count] = (byte) (curr >> 8);
count += 2;
}
}
}
} else
throw new IIOException("Unexpected branch of Horizontal differencing Predictor, bps=" + bitsPerSample[0]);
}
if (bytesPerRow != scanlineStride) {
if (DEBUG) {
System.out.println("bytesPerRow != scanlineStride");
}
int off = 0;
for (int y = 0; y < srcHeight; y++) {
System.arraycopy(buf, off, b, dstOffset, bytesPerRow);
off += bytesPerRow;
dstOffset += scanlineStride;
}
}
}
use of javax.imageio.IIOException in project imageio-ext by geosolutions-it.
the class TIFFBaseJPEGCompressor method encode.
public final int encode(byte[] b, int off, int width, int height, int[] bitsPerSample, int scanlineStride) throws IOException {
if (this.JPEGWriter == null) {
throw new IIOException("JPEG writer has not been initialized!");
}
if (!((bitsPerSample.length == 3 && bitsPerSample[0] == 8 && bitsPerSample[1] == 8 && bitsPerSample[2] == 8) || (bitsPerSample.length == 1 && bitsPerSample[0] == 8))) {
throw new IIOException("Can only JPEG compress 8- and 24-bit images!");
}
// Set the stream.
ImageOutputStream ios;
// usingCodecLib && !writeAbbreviatedStream
long initialStreamPosition;
if (usingCodecLib && !writeAbbreviatedStream) {
ios = stream;
initialStreamPosition = stream.getStreamPosition();
} else {
// is using a stream on the native side which cannot be reset.
if (baos == null) {
baos = new IIOByteArrayOutputStream();
} else {
baos.reset();
}
ios = new MemoryCacheImageOutputStream(baos);
initialStreamPosition = 0L;
}
JPEGWriter.setOutput(ios);
// Create a DataBuffer.
DataBufferByte dbb;
if (off == 0 || usingCodecLib) {
dbb = new DataBufferByte(b, b.length);
} else {
//
// Workaround for bug in core Java Image I/O JPEG
// ImageWriter which cannot handle non-zero offsets.
//
int bytesPerSegment = scanlineStride * height;
byte[] btmp = new byte[bytesPerSegment];
System.arraycopy(b, off, btmp, 0, bytesPerSegment);
dbb = new DataBufferByte(btmp, bytesPerSegment);
off = 0;
}
// Set up the ColorSpace.
int[] offsets;
ColorSpace cs;
if (bitsPerSample.length == 3) {
offsets = new int[] { off, off + 1, off + 2 };
cs = ColorSpace.getInstance(ColorSpace.CS_sRGB);
} else {
offsets = new int[] { off };
cs = ColorSpace.getInstance(ColorSpace.CS_GRAY);
}
// Create the ColorModel.
ColorModel cm = new ComponentColorModel(cs, false, false, Transparency.OPAQUE, DataBuffer.TYPE_BYTE);
// Create the SampleModel.
SampleModel sm = new PixelInterleavedSampleModel(DataBuffer.TYPE_BYTE, width, height, bitsPerSample.length, scanlineStride, offsets);
// Create the WritableRaster.
WritableRaster wras = Raster.createWritableRaster(sm, dbb, new Point(0, 0));
// Create the BufferedImage.
BufferedImage bi = new BufferedImage(cm, wras, false, null);
// Get the pruned JPEG image metadata (may be null).
IIOMetadata imageMetadata = getImageMetadata(writeAbbreviatedStream);
// Compress the image into the output stream.
int compDataLength;
if (usingCodecLib && !writeAbbreviatedStream) {
// Write complete JPEG stream
JPEGWriter.write(null, new IIOImage(bi, null, imageMetadata), JPEGParam);
compDataLength = (int) (stream.getStreamPosition() - initialStreamPosition);
} else {
if (writeAbbreviatedStream) {
// Write abbreviated JPEG stream
// First write the tables-only data.
JPEGWriter.prepareWriteSequence(JPEGStreamMetadata);
ios.flush();
// Rewind to the beginning of the byte array.
baos.reset();
// Write the abbreviated image data.
IIOImage image = new IIOImage(bi, null, imageMetadata);
JPEGWriter.writeToSequence(image, JPEGParam);
JPEGWriter.endWriteSequence();
} else {
// Write complete JPEG stream
JPEGWriter.write(null, new IIOImage(bi, null, imageMetadata), JPEGParam);
}
compDataLength = baos.size();
baos.writeTo(stream);
baos.reset();
}
return compDataLength;
}
Aggregations