use of nars.language.Statement in project opennars by opennars.
the class LocalRules method inferToSym.
/* -------------------- two-premise inference rules -------------------- */
/**
* {<S --> P>, <P --> S} |- <S <-> p> Produce Similarity/Equivalence from a
* pair of reversed Inheritance/Implication
*
* @param judgment1 The first premise
* @param judgment2 The second premise
* @param nal Reference to the memory
*/
private static void inferToSym(Sentence judgment1, Sentence judgment2, DerivationContext nal) {
Statement s1 = (Statement) judgment1.term;
Term t1 = s1.getSubject();
Term t2 = s1.getPredicate();
Term content;
if (s1 instanceof Inheritance) {
content = Similarity.make(t1, t2);
} else {
content = Equivalence.make(t1, t2, s1.getTemporalOrder());
}
TruthValue value1 = judgment1.truth;
TruthValue value2 = judgment2.truth;
TruthValue truth = TruthFunctions.intersection(value1, value2);
BudgetValue budget = BudgetFunctions.forward(truth, nal);
// (allow overlap) but not needed here, isn't detachment
nal.doublePremiseTask(content, truth, budget, false, false);
}
use of nars.language.Statement in project opennars by opennars.
the class RuleTables method compoundAndStatement.
/**
* Inference between a compound term and a statement
*
* @param compound The compound term
* @param index The location of the current term in the compound
* @param statement The statement
* @param side The location of the current term in the statement
* @param beliefTerm The content of the belief
* @param nal Reference to the memory
*/
private static void compoundAndStatement(CompoundTerm compound, short index, Statement statement, short side, Term beliefTerm, DerivationContext nal) {
if (index >= compound.term.length) {
return;
}
Term component = compound.term[index];
Task task = nal.getCurrentTask();
if (component.getClass() == statement.getClass()) {
if ((compound instanceof Conjunction) && (nal.getCurrentBelief() != null)) {
Conjunction conj = (Conjunction) compound;
Term[] u = new Term[] { compound, statement };
if (Variables.unify(VAR_DEPENDENT, component, statement, u)) {
compound = (Conjunction) u[0];
statement = (Statement) u[1];
if (// only allow dep var elimination
conj.isSpatial || compound.getTemporalOrder() != TemporalRules.ORDER_FORWARD || index == 0) {
// for (&/ on first component!!
SyllogisticRules.elimiVarDep(compound, component, statement.equals(beliefTerm), nal);
}
} else if (task.sentence.isJudgment()) {
// && !compound.containsTerm(component)) {
CompositionalRules.introVarInner(statement, (Statement) component, compound, nal);
}
}
} else {
if (task.sentence.isJudgment()) {
if (statement instanceof Inheritance) {
StructuralRules.structuralCompose1(compound, index, statement, nal);
if (!(compound instanceof SetExt || compound instanceof SetInt || compound instanceof Negation)) {
StructuralRules.structuralCompose2(compound, index, statement, side, nal);
}
// {A --> B, A @ (A&C)} |- (A&C) --> (B&C)
} else if ((statement instanceof Similarity) && !(compound instanceof Conjunction)) {
StructuralRules.structuralCompose2(compound, index, statement, side, nal);
}
// {A <-> B, A @ (A&C)} |- (A&C) <-> (B&C)
}
}
}
use of nars.language.Statement in project opennars by opennars.
the class RuleTables method detachmentWithVar.
private static void detachmentWithVar(Sentence originalMainSentence, Sentence subSentence, int index, boolean checkTermAgain, DerivationContext nal) {
if (originalMainSentence == null) {
return;
}
// for substitution
Sentence mainSentence = originalMainSentence;
if (!(mainSentence.term instanceof Statement))
return;
Statement statement = (Statement) mainSentence.term;
Term component = statement.term[index];
Term content = subSentence.term;
if (nal.getCurrentBelief() != null) {
Term[] u = new Term[] { statement, content };
if (!component.hasVarIndep() && !component.hasVarDep()) {
// because of example: <<(*,w1,#2) --> [good]> ==> <w1 --> TRANSLATE>>. <(*,w1,w2) --> [good]>.
SyllogisticRules.detachment(mainSentence, subSentence, index, checkTermAgain, nal);
} else if (Variables.unify(VAR_INDEPENDENT, component, content, u)) {
// happens through syllogisms
mainSentence = mainSentence.clone(u[0]);
subSentence = subSentence.clone(u[1]);
SyllogisticRules.detachment(mainSentence, subSentence, index, false, nal);
} else if ((statement instanceof Implication) && (statement.getPredicate() instanceof Statement) && (nal.getCurrentTask().sentence.isJudgment())) {
Statement s2 = (Statement) statement.getPredicate();
if ((content instanceof Statement) && (s2.getSubject().equals(((Statement) content).getSubject()))) {
CompositionalRules.introVarInner((Statement) content, s2, statement, nal);
}
CompositionalRules.IntroVarSameSubjectOrPredicate(originalMainSentence, subSentence, component, content, index, nal);
} else if ((statement instanceof Equivalence) && (statement.getPredicate() instanceof Statement) && (nal.getCurrentTask().sentence.isJudgment())) {
CompositionalRules.IntroVarSameSubjectOrPredicate(originalMainSentence, subSentence, component, content, index, nal);
}
}
}
use of nars.language.Statement in project opennars by opennars.
the class RuleTables method reason.
/**
* Entry point of the inference engine
*
* @param tLink The selected TaskLink, which will provide a task
* @param bLink The selected TermLink, which may provide a belief
* @param memory Reference to the memory
*/
public static void reason(final TaskLink tLink, final TermLink bLink, final DerivationContext nal) {
final Memory memory = nal.mem();
final Task task = nal.getCurrentTask();
final Sentence taskSentence = task.sentence;
// cloning for substitution
final Term taskTerm = taskSentence.term;
// cloning for substitution
Term beliefTerm = bLink.target;
final Concept beliefConcept = memory.concept(beliefTerm);
Sentence belief = (beliefConcept != null) ? beliefConcept.getBelief(nal, task) : null;
nal.setCurrentBelief(belief);
if (belief != null) {
// because interval handling that differs on conceptual level
beliefTerm = belief.term;
/*Sentence belief_event = beliefConcept.getBeliefForTemporalInference(task);
if(belief_event != null) {
boolean found_overlap = false;
if(Stamp.baseOverlap(task.sentence.stamp.evidentialBase, belief_event.stamp.evidentialBase)) {
found_overlap = true;
}
if(!found_overlap) { //temporal rules are inductive so no chance to succeed if there is an overlap
//and since the temporal rule is relatively expensive the check here was good.
Sentence inference_belief = belief;
nal.setCurrentBelief(belief_event);
nal.setTheNewStamp(task.sentence.stamp, belief_event.stamp, nal.memory.time());
TemporalRules.temporalInduction(task.sentence, belief_event, nal, true);
nal.setCurrentBelief(inference_belief);
nal.setTheNewStamp(task.sentence.stamp, belief.stamp, nal.memory.time());
}
}*/
// too restrictive, its checked for non-deductive inference rules in derivedTask (also for single prem)
nal.evidentalOverlap = Stamp.baseOverlap(task.sentence.stamp.evidentialBase, belief.stamp.evidentialBase);
if (nal.evidentalOverlap && (!task.sentence.isEternal() || !belief.isEternal())) {
// only allow for eternal reasoning for now to prevent derived event floods
return;
}
nal.emit(Events.BeliefReason.class, belief, beliefTerm, taskTerm, nal);
if (LocalRules.match(task, belief, nal)) {
// new tasks resulted from the match, so return
return;
}
}
// current belief and task may have changed, so set again:
nal.setCurrentBelief(belief);
nal.setCurrentTask(task);
// put here since LocalRules match should be possible even if the belief is foreign
if (equalSubTermsInRespectToImageAndProduct(taskTerm, beliefTerm))
return;
/*if ((memory.getNewTaskCount() > 0) && taskSentence.isJudgment()) {
return;
}*/
final short tIndex = tLink.getIndex(0);
short bIndex = bLink.getIndex(0);
switch(// dispatch first by TaskLink type
tLink.type) {
case TermLink.SELF:
switch(bLink.type) {
case TermLink.COMPONENT:
compoundAndSelf((CompoundTerm) taskTerm, beliefTerm, true, bIndex, nal);
break;
case TermLink.COMPOUND:
compoundAndSelf((CompoundTerm) beliefTerm, taskTerm, false, bIndex, nal);
break;
case TermLink.COMPONENT_STATEMENT:
if (belief != null) {
if (taskTerm instanceof Statement) {
SyllogisticRules.detachment(taskSentence, belief, bIndex, nal);
}
}
// else {
if (taskSentence.term instanceof Inheritance || taskSentence.term instanceof Similarity) {
StructuralRules.transformNegation((CompoundTerm) Negation.make(taskSentence.term), nal);
}
try {
goalFromQuestion(task, taskTerm, nal);
} catch (Exception ex) {
if (Parameters.DEBUG) {
System.out.print("Error in goalFromQuestion");
}
}
// }
break;
case TermLink.COMPOUND_STATEMENT:
if (belief != null) {
SyllogisticRules.detachment(belief, taskSentence, bIndex, nal);
}
break;
case TermLink.COMPONENT_CONDITION:
if ((belief != null) && (taskTerm instanceof Implication)) {
bIndex = bLink.getIndex(1);
SyllogisticRules.conditionalDedInd(task.sentence, (Implication) taskTerm, bIndex, beliefTerm, tIndex, nal);
}
break;
case TermLink.COMPOUND_CONDITION:
if ((belief != null) && (taskTerm instanceof Implication) && (beliefTerm instanceof Implication)) {
bIndex = bLink.getIndex(1);
SyllogisticRules.conditionalDedInd(belief, (Implication) beliefTerm, bIndex, taskTerm, tIndex, nal);
}
break;
}
break;
case TermLink.COMPOUND:
switch(bLink.type) {
case TermLink.COMPOUND:
compoundAndCompound((CompoundTerm) taskTerm, (CompoundTerm) beliefTerm, tIndex, bIndex, nal);
break;
case TermLink.COMPOUND_STATEMENT:
compoundAndStatement((CompoundTerm) taskTerm, tIndex, (Statement) beliefTerm, bIndex, beliefTerm, nal);
break;
case TermLink.COMPOUND_CONDITION:
if (belief != null) {
if (beliefTerm instanceof Implication) {
Term[] u = new Term[] { beliefTerm, taskTerm };
if (Variables.unify(VAR_INDEPENDENT, ((Statement) beliefTerm).getSubject(), taskTerm, u, true)) {
// only secure place that
// allows partial match
Sentence newBelief = belief.clone(u[0]);
Sentence newTaskSentence = taskSentence.clone(u[1]);
detachmentWithVar(newBelief, newTaskSentence, bIndex, false, nal);
} else {
SyllogisticRules.conditionalDedInd(belief, (Implication) beliefTerm, bIndex, taskTerm, -1, nal);
}
} else if (beliefTerm instanceof Equivalence) {
SyllogisticRules.conditionalAna((Equivalence) beliefTerm, bIndex, taskTerm, -1, nal);
}
}
break;
}
break;
case TermLink.COMPOUND_STATEMENT:
switch(bLink.type) {
case TermLink.COMPONENT:
if (taskTerm instanceof Statement) {
goalFromWantBelief(task, tIndex, bIndex, taskTerm, nal, beliefTerm);
componentAndStatement((CompoundTerm) nal.getCurrentTerm(), bIndex, (Statement) taskTerm, tIndex, nal);
}
break;
case TermLink.COMPOUND:
if (taskTerm instanceof Statement) {
compoundAndStatement((CompoundTerm) beliefTerm, bIndex, (Statement) taskTerm, tIndex, beliefTerm, nal);
}
break;
case TermLink.COMPOUND_STATEMENT:
if (belief != null) {
syllogisms(tLink, bLink, taskTerm, beliefTerm, nal);
}
break;
case TermLink.COMPOUND_CONDITION:
if (belief != null) {
bIndex = bLink.getIndex(1);
if ((taskTerm instanceof Statement) && (beliefTerm instanceof Implication)) {
conditionalDedIndWithVar(belief, (Implication) beliefTerm, bIndex, (Statement) taskTerm, tIndex, nal);
}
}
break;
}
break;
case TermLink.COMPOUND_CONDITION:
switch(bLink.type) {
case TermLink.COMPOUND:
if (belief != null) {
detachmentWithVar(taskSentence, belief, tIndex, nal);
}
break;
case TermLink.COMPOUND_STATEMENT:
if (belief != null) {
if (// TODO maybe put instanceof test within conditionalDedIndWithVar()
taskTerm instanceof Implication) {
Term subj = ((Statement) taskTerm).getSubject();
if (subj instanceof Negation) {
if (taskSentence.isJudgment()) {
componentAndStatement((CompoundTerm) subj, bIndex, (Statement) taskTerm, tIndex, nal);
} else {
componentAndStatement((CompoundTerm) subj, tIndex, (Statement) beliefTerm, bIndex, nal);
}
} else {
conditionalDedIndWithVar(task.sentence, (Implication) taskTerm, tIndex, (Statement) beliefTerm, bIndex, nal);
}
}
break;
}
break;
}
}
}
use of nars.language.Statement in project opennars by opennars.
the class RuleTables method asymmetricSymmetric.
/**
* Syllogistic rules whose first premise is on an asymmetric relation, and
* the second on a symmetric relation
*
* @param asym The asymmetric premise
* @param sym The symmetric premise
* @param figure The location of the shared term
* @param nal Reference to the memory
*/
private static void asymmetricSymmetric(final Sentence asym, final Sentence sym, final int figure, final DerivationContext nal) {
Statement asymSt = (Statement) asym.term;
Statement symSt = (Statement) sym.term;
Term t1, t2;
Term[] u = new Term[] { asymSt, symSt };
switch(figure) {
case 11:
if (Variables.unify(VAR_INDEPENDENT, asymSt.getSubject(), symSt.getSubject(), u)) {
asymSt = (Statement) u[0];
symSt = (Statement) u[1];
t1 = asymSt.getPredicate();
t2 = symSt.getPredicate();
if (Variables.unify(VAR_QUERY, t1, t2, u)) {
LocalRules.matchAsymSym(asym, sym, figure, nal);
} else {
SyllogisticRules.analogy(t2, t1, asym, sym, figure, nal);
}
}
break;
case 12:
if (Variables.unify(VAR_INDEPENDENT, asymSt.getSubject(), symSt.getPredicate(), u)) {
asymSt = (Statement) u[0];
symSt = (Statement) u[1];
t1 = asymSt.getPredicate();
t2 = symSt.getSubject();
if (Variables.unify(VAR_QUERY, t1, t2, u)) {
LocalRules.matchAsymSym(asym, sym, figure, nal);
} else {
SyllogisticRules.analogy(t2, t1, asym, sym, figure, nal);
}
}
break;
case 21:
if (Variables.unify(VAR_INDEPENDENT, asymSt.getPredicate(), symSt.getSubject(), u)) {
asymSt = (Statement) u[0];
symSt = (Statement) u[1];
t1 = asymSt.getSubject();
t2 = symSt.getPredicate();
if (Variables.unify(VAR_QUERY, t1, t2, u)) {
LocalRules.matchAsymSym(asym, sym, figure, nal);
} else {
SyllogisticRules.analogy(t1, t2, asym, sym, figure, nal);
}
}
break;
case 22:
if (Variables.unify(VAR_INDEPENDENT, asymSt.getPredicate(), symSt.getPredicate(), u)) {
asymSt = (Statement) u[0];
symSt = (Statement) u[1];
t1 = asymSt.getSubject();
t2 = symSt.getSubject();
if (Variables.unify(VAR_QUERY, t1, t2, u)) {
LocalRules.matchAsymSym(asym, sym, figure, nal);
} else {
SyllogisticRules.analogy(t1, t2, asym, sym, figure, nal);
}
}
break;
}
}
Aggregations