use of net.imglib2.algorithm.neighborhood.Neighborhood in project imagej-ops by imagej.
the class Morphologies method computeMinSize.
/**
* Computes the min coordinate and the size of an {@link Interval} after
* padding with a list of {@link Shape}s in a series morphology operations.
*
* @param source the interval to be applied with some morphology operation
* @param shapes the list of Shapes for padding
* @return a size-2 array storing the min coordinate and the size of the
* padded interval
*/
public static final long[][] computeMinSize(final Interval source, final List<Shape> shapes) {
final int numDims = source.numDimensions();
final long[] min = new long[numDims];
final long[] size = new long[numDims];
for (int i = 0; i < numDims; i++) {
min[i] = source.min(i);
size[i] = source.dimension(i);
}
for (final Shape shape : shapes) {
final Neighborhood<BitType> nh = MorphologyUtils.getNeighborhood(shape, source);
for (int i = 0; i < numDims; i++) {
min[i] += nh.min(i);
size[i] += nh.dimension(i) - 1;
}
}
return new long[][] { min, size };
}
use of net.imglib2.algorithm.neighborhood.Neighborhood in project imagej-ops by imagej.
the class LocalPhansalkarThreshold method unaryComputer.
@Override
protected CenterAwareComputerOp<T, BitType> unaryComputer(final T inClass, final BitType outClass) {
final LocalThresholdMethod<T> op = new LocalThresholdMethod<T>() {
private UnaryComputerOp<Iterable<T>, DoubleType> mean;
private UnaryComputerOp<Iterable<T>, DoubleType> stdDeviation;
@Override
public void compute(final Iterable<T> neighborhood, final T center, final BitType output) {
if (mean == null) {
mean = Computers.unary(ops(), Ops.Stats.Mean.class, new DoubleType(), neighborhood);
}
if (stdDeviation == null) {
stdDeviation = Computers.unary(ops(), Ops.Stats.StdDev.class, new DoubleType(), neighborhood);
}
final DoubleType meanValue = new DoubleType();
mean.compute(neighborhood, meanValue);
final DoubleType stdDevValue = new DoubleType();
stdDeviation.compute(neighborhood, stdDevValue);
double threshold = meanValue.get() * (1.0d + p * Math.exp(-q * meanValue.get()) + k * ((stdDevValue.get() / r) - 1.0));
output.set(center.getRealDouble() >= threshold);
}
};
op.setEnvironment(ops());
return op;
}
use of net.imglib2.algorithm.neighborhood.Neighborhood in project imagej-ops by imagej.
the class HistogramOfOrientedGradients2D method compute.
@SuppressWarnings("unchecked")
@Override
public void compute(RandomAccessibleInterval<T> in, RandomAccessibleInterval<T> out) {
final RandomAccessible<FloatType> convertedIn = Converters.convert(Views.extendMirrorDouble(in), converterToFloat, new FloatType());
// compute partial derivative for each dimension
RandomAccessibleInterval<FloatType> derivative0 = createImgOp.calculate();
RandomAccessibleInterval<FloatType> derivative1 = createImgOp.calculate();
// case of grayscale image
if (in.numDimensions() == 2) {
PartialDerivative.gradientCentralDifference(convertedIn, derivative0, 0);
PartialDerivative.gradientCentralDifference(convertedIn, derivative1, 1);
} else // case of color image
{
List<RandomAccessibleInterval<FloatType>> listDerivs0 = new ArrayList<>();
List<RandomAccessibleInterval<FloatType>> listDerivs1 = new ArrayList<>();
for (int i = 0; i < in.dimension(2); i++) {
final RandomAccessibleInterval<FloatType> deriv0 = createImgOp.calculate();
final RandomAccessibleInterval<FloatType> deriv1 = createImgOp.calculate();
PartialDerivative.gradientCentralDifference(Views.interval(convertedIn, new long[] { 0, 0, i }, new long[] { in.max(0), in.max(1), i }), deriv0, 0);
PartialDerivative.gradientCentralDifference(Views.interval(convertedIn, new long[] { 0, 0, i }, new long[] { in.max(0), in.max(1), i }), deriv1, 1);
listDerivs0.add(deriv0);
listDerivs1.add(deriv1);
}
derivative0 = Converters.convert(Views.collapse(Views.stack(listDerivs0)), converterGetMax, new FloatType());
derivative1 = Converters.convert(Views.collapse(Views.stack(listDerivs1)), converterGetMax, new FloatType());
}
final RandomAccessibleInterval<FloatType> finalderivative0 = derivative0;
final RandomAccessibleInterval<FloatType> finalderivative1 = derivative1;
// compute angles and magnitudes
final RandomAccessibleInterval<FloatType> angles = createImgOp.calculate();
final RandomAccessibleInterval<FloatType> magnitudes = createImgOp.calculate();
final CursorBasedChunk chunkable = new CursorBasedChunk() {
@Override
public void execute(int startIndex, int stepSize, int numSteps) {
final Cursor<FloatType> cursorAngles = Views.flatIterable(angles).localizingCursor();
final Cursor<FloatType> cursorMagnitudes = Views.flatIterable(magnitudes).localizingCursor();
final Cursor<FloatType> cursorDerivative0 = Views.flatIterable(finalderivative0).localizingCursor();
final Cursor<FloatType> cursorDerivative1 = Views.flatIterable(finalderivative1).localizingCursor();
setToStart(cursorAngles, startIndex);
setToStart(cursorMagnitudes, startIndex);
setToStart(cursorDerivative0, startIndex);
setToStart(cursorDerivative1, startIndex);
for (int i = 0; i < numSteps; i++) {
final float x = cursorDerivative0.get().getRealFloat();
final float y = cursorDerivative1.get().getRealFloat();
cursorAngles.get().setReal(getAngle(x, y));
cursorMagnitudes.get().setReal(getMagnitude(x, y));
cursorAngles.jumpFwd(stepSize);
cursorMagnitudes.jumpFwd(stepSize);
cursorDerivative0.jumpFwd(stepSize);
cursorDerivative1.jumpFwd(stepSize);
}
}
};
ops().thread().chunker(chunkable, Views.flatIterable(magnitudes).size());
// stores each Thread to execute
final List<Callable<Void>> listCallables = new ArrayList<>();
// compute descriptor (default 3x3, i.e. 9 channels: one channel for
// each bin)
final RectangleShape shape = new RectangleShape(spanOfNeighborhood, false);
final NeighborhoodsAccessible<FloatType> neighborHood = shape.neighborhoodsRandomAccessible(angles);
for (int i = 0; i < in.dimension(0); i++) {
listCallables.add(new ComputeDescriptor(Views.interval(convertedIn, in), i, angles.randomAccess(), magnitudes.randomAccess(), (RandomAccess<FloatType>) out.randomAccess(), neighborHood.randomAccess()));
}
try {
es.invokeAll(listCallables);
} catch (final InterruptedException e) {
throw new RuntimeException(e);
}
listCallables.clear();
}
use of net.imglib2.algorithm.neighborhood.Neighborhood in project imagej-ops by imagej.
the class WatershedSeededTest method testWithMask.
@SuppressWarnings("unchecked")
private void testWithMask(final RandomAccessibleInterval<FloatType> in, final ImgLabeling<Integer, IntType> seeds) {
// create mask which is 1 everywhere
long[] dims = new long[in.numDimensions()];
in.dimensions(dims);
Img<BitType> mask = ArrayImgs.bits(dims);
RandomAccess<BitType> raMask = mask.randomAccess();
for (BitType b : mask) {
b.setZero();
}
for (int x = 0; x < 10; x++) {
for (int y = 0; y < 10; y++) {
raMask.setPosition(new int[] { x, y });
raMask.get().setOne();
}
}
/*
* use 8-connected neighborhood
*/
// compute result without watersheds
ImgLabeling<Integer, IntType> out = (ImgLabeling<Integer, IntType>) ops.run(WatershedSeeded.class, null, in, seeds, true, false, mask);
assertResults(in, out, seeds, mask, false, true);
// compute result with watersheds
ImgLabeling<Integer, IntType> out2 = (ImgLabeling<Integer, IntType>) ops.run(WatershedSeeded.class, null, in, seeds, true, true, mask);
assertResults(in, out2, seeds, mask, true, true);
/*
* use 4-connected neighborhood
*/
// compute result without watersheds
ImgLabeling<Integer, IntType> out3 = (ImgLabeling<Integer, IntType>) ops.run(WatershedSeeded.class, null, in, seeds, false, false, mask);
assertResults(in, out3, seeds, mask, false, true);
// compute result with watersheds
ImgLabeling<Integer, IntType> out4 = (ImgLabeling<Integer, IntType>) ops.run(WatershedSeeded.class, null, in, seeds, false, true, mask);
assertResults(in, out4, seeds, mask, true, true);
}
use of net.imglib2.algorithm.neighborhood.Neighborhood in project imagej-ops by imagej.
the class WatershedTest method testWithoutMask.
@SuppressWarnings("unchecked")
private void testWithoutMask(final RandomAccessibleInterval<FloatType> in) {
// create mask which is 1 everywhere
long[] dims = new long[in.numDimensions()];
in.dimensions(dims);
Img<BitType> mask = ArrayImgs.bits(dims);
for (BitType b : mask) {
b.setOne();
}
/*
* use 8-connected neighborhood
*/
// compute result without watersheds
ImgLabeling<Integer, IntType> out = (ImgLabeling<Integer, IntType>) ops.run(Watershed.class, null, in, true, false);
assertResults(in, out, mask, true, false, false);
// compute result with watersheds
ImgLabeling<Integer, IntType> out2 = (ImgLabeling<Integer, IntType>) ops.run(Watershed.class, null, in, true, true);
assertResults(in, out2, mask, true, true, false);
/*
* use 4-connected neighborhood
*/
// compute result without watersheds
ImgLabeling<Integer, IntType> out3 = (ImgLabeling<Integer, IntType>) ops.run(Watershed.class, null, in, false, false);
assertResults(in, out3, mask, false, false, false);
// compute result with watersheds
ImgLabeling<Integer, IntType> out4 = (ImgLabeling<Integer, IntType>) ops.run(Watershed.class, null, in, false, true);
assertResults(in, out4, mask, false, true, false);
}
Aggregations