use of net.imglib2.type.logic.BitType in project vcell by virtualcell.
the class CompareController method getMaskFromGeometry.
private RandomAccessibleInterval<BitType> getMaskFromGeometry() {
DatasetSelectionPanel panel = new DatasetSelectionPanel();
List<Dataset> geometryList = model.getProject().getGeometry();
final String description = "Geometry: ";
panel.addComboBox(geometryList.toArray(new Dataset[geometryList.size()]), description);
int returnVal = JOptionPane.showConfirmDialog(view, panel, "Select cell geometry", JOptionPane.OK_CANCEL_OPTION, JOptionPane.PLAIN_MESSAGE);
if (returnVal == JOptionPane.OK_OPTION) {
Dataset geometry = panel.getSelectedDatasetForDescription(description);
@SuppressWarnings("unchecked") RandomAccessibleInterval<BitType> mask = (RandomAccessibleInterval<BitType>) opService.run("largestRegionSlice", geometry);
return mask;
}
return null;
}
use of net.imglib2.type.logic.BitType in project vcell by virtualcell.
the class ConstructTIRFGeometry method run.
@Override
public void run() {
// Calculate constant d in TIRF exponential decay function
// Angle of incidence in radians
theta = theta * 2 * Math.PI / 360;
// Refractive index of glass
final double n1 = 1.52;
// Refractive index of cytosol
final double n2 = 1.38;
final double d = lambda * Math.pow((Math.pow(n1, 2) * Math.pow(Math.sin(theta), 2) - Math.pow(n2, 2)), -0.5) / (4 * Math.PI);
System.out.println("d: " + d);
final double fluorPerMolecule = 250;
// Get frame of interest to define geometry
long maxX = data.dimension(0) - 1;
long maxY = data.dimension(1) - 1;
Interval interval = Intervals.createMinMax(0, 0, sliceIndex, maxX, maxY, sliceIndex);
RandomAccessibleInterval<T> croppedRAI = ops.transform().crop(data, interval, true);
// Subtract lowest pixel value
IterableInterval<T> dataII = Views.iterable(croppedRAI);
double min = ops.stats().min(dataII).getRealDouble();
Cursor<T> dataCursor = dataII.cursor();
while (dataCursor.hasNext()) {
double val = dataCursor.next().getRealDouble();
dataCursor.get().setReal(val - min);
}
// Perform Gaussian blur
RandomAccessibleInterval<T> blurredRAI = ops.filter().gauss(croppedRAI, 2);
IterableInterval<T> blurredII = Views.iterable(blurredRAI);
// Segment slice by threshold and fill holes
IterableInterval<BitType> thresholded = ops.threshold().huang(blurredII);
Img<BitType> thresholdedImg = ops.convert().bit(thresholded);
RandomAccessibleInterval<BitType> thresholdedRAI = ops.morphology().fillHoles(thresholdedImg);
// Get the largest region
RandomAccessibleInterval<LabelingType<ByteType>> labeling = ops.labeling().cca(thresholdedRAI, ConnectedComponents.StructuringElement.EIGHT_CONNECTED);
LabelRegions<ByteType> labelRegions = new LabelRegions<>(labeling);
Iterator<LabelRegion<ByteType>> iterator = labelRegions.iterator();
LabelRegion<ByteType> maxRegion = iterator.next();
while (iterator.hasNext()) {
LabelRegion<ByteType> currRegion = iterator.next();
if (currRegion.size() > maxRegion.size()) {
maxRegion = currRegion;
}
}
// Generate z index map
double iMax = ops.stats().max(dataII).getRealDouble();
Img<UnsignedShortType> dataImg = ops.convert().uint16(dataII);
Img<UnsignedShortType> zMap = ops.convert().uint16(ops.create().img(dataII));
LabelRegionCursor cursor = maxRegion.localizingCursor();
RandomAccess<UnsignedShortType> zMapRA = zMap.randomAccess();
RandomAccess<UnsignedShortType> dataRA = dataImg.randomAccess();
while (cursor.hasNext()) {
cursor.fwd();
zMapRA.setPosition(cursor);
dataRA.setPosition(cursor);
double val = dataRA.get().getRealDouble();
// Log of 0 is undefined
if (val < 1) {
val = 1;
}
int z = (int) Math.round(-d * Math.log(val / iMax) / zRes);
zMapRA.get().set(z);
}
System.out.println("6");
// Use map to construct 3D geometry
// Add 5 slices of padding on top
int maxZ = (int) ops.stats().max(zMap).getRealDouble() + 5;
long[] resultDimensions = { maxX + 1, maxY + 1, maxZ };
Img<BitType> result = new ArrayImgFactory<BitType>().create(resultDimensions, new BitType());
RandomAccess<BitType> resultRA = result.randomAccess();
System.out.println(maxZ);
cursor.reset();
while (cursor.hasNext()) {
cursor.fwd();
zMapRA.setPosition(cursor);
int zIndex = zMapRA.get().get();
int[] position = { cursor.getIntPosition(0), cursor.getIntPosition(1), zIndex };
while (position[2] < maxZ) {
resultRA.setPosition(position);
resultRA.get().set(true);
position[2]++;
}
}
output = datasetService.create(result);
CalibratedAxis[] axes = new DefaultLinearAxis[] { new DefaultLinearAxis(Axes.X), new DefaultLinearAxis(Axes.Y), new DefaultLinearAxis(Axes.Z) };
output.setAxes(axes);
System.out.println("Done constructing geometry");
}
use of net.imglib2.type.logic.BitType in project vcell by virtualcell.
the class ProjectService method load.
public Task<Project, String> load(File root) {
final Task<Project, String> task = new Task<Project, String>() {
@Override
protected Project doInBackground() throws Exception {
Project project = new Project(root.getName());
String rootPath = root.getAbsolutePath();
File[] dataFiles = Paths.get(rootPath, "data").toFile().listFiles();
File[] geometryFiles = Paths.get(rootPath, "geometry").toFile().listFiles();
File[] modelDirectories = Paths.get(rootPath, "models").toFile().listFiles();
File[] resultsFiles = Paths.get(rootPath, "results").toFile().listFiles();
int numFiles = dataFiles.length + geometryFiles.length + modelDirectories.length + resultsFiles.length;
int numLoaded = 0;
if (dataFiles != null) {
for (File dataFile : dataFiles) {
try {
setSubtask(dataFile.getName());
Dataset data = datasetIOService.open(dataFile.getAbsolutePath());
project.getData().add(data);
numLoaded++;
setProgress(numLoaded * 100 / numFiles);
} catch (IOException e) {
e.printStackTrace();
}
}
}
if (geometryFiles != null) {
for (File geometryFile : geometryFiles) {
try {
setSubtask(geometryFile.getName());
Dataset geometry = datasetIOService.open(geometryFile.getAbsolutePath());
// Geometry datasets are saved as 8-bit images so we must convert back to 1-bit
if (geometry.firstElement() instanceof UnsignedByteType) {
@SuppressWarnings("unchecked") Img<UnsignedByteType> img = (Img<UnsignedByteType>) geometry.getImgPlus().getImg();
Img<BitType> converted = opService.convert().bit(img);
ImgPlus<BitType> convertedImgPlus = new ImgPlus<>(converted, geometry.getName());
geometry.setImgPlus(convertedImgPlus);
}
project.getGeometry().add(geometry);
numLoaded++;
setProgress(numLoaded * 100 / numFiles);
} catch (IOException e) {
e.printStackTrace();
}
}
}
if (modelDirectories != null) {
for (File modelDirectory : modelDirectories) {
setSubtask(modelDirectory.getName());
SBMLDocument sbmlDocument = null;
BufferedImage image = null;
File[] modelFiles = modelDirectory.listFiles();
System.out.println(modelFiles.length);
// Invalid model directory
if (modelFiles.length > 2)
continue;
for (File modelFile : modelFiles) {
System.out.println(modelFile.getName());
if (FilenameUtils.getExtension(modelFile.getName()).equals("xml")) {
sbmlDocument = new SBMLReader().readSBML(modelFile);
System.out.println("Loaded sbml");
} else if (FilenameUtils.getExtension(modelFile.getName()).equals("png")) {
image = ImageIO.read(modelFile);
System.out.println("Loaded image");
}
}
if (sbmlDocument != null) {
VCellModel vCellModel = new VCellModel(modelDirectory.getName(), null, sbmlDocument);
vCellModel.setImage(image);
project.getModels().add(vCellModel);
System.out.println("Added model");
}
numLoaded++;
setProgress(numLoaded * 100 / numFiles);
}
}
if (resultsFiles != null) {
for (File resultsFile : resultsFiles) {
try {
setSubtask(resultsFile.getName());
Dataset results = datasetIOService.open(resultsFile.getAbsolutePath());
// Loading 1-dimensional tif images adds a dimension
// so must crop out empty dimensions
@SuppressWarnings("unchecked") ImgPlus<T> imgPlus = (ImgPlus<T>) results.getImgPlus();
int numDimensions = imgPlus.numDimensions();
long[] dimensions = new long[2 * imgPlus.numDimensions()];
for (int i = 0; i < numDimensions; i++) {
dimensions[i] = 0;
dimensions[i + numDimensions] = imgPlus.dimension(i) - 1;
}
FinalInterval interval = Intervals.createMinMax(dimensions);
ImgPlus<T> cropped = opService.transform().crop(imgPlus, interval, true);
results.setImgPlus(cropped);
project.getResults().add(results);
numLoaded++;
setProgress(numLoaded * 100 / numFiles);
} catch (IOException e) {
e.printStackTrace();
}
}
}
currentProjectRoot = root;
return project;
}
};
return task;
}
use of net.imglib2.type.logic.BitType in project vcell by virtualcell.
the class ProjectService method saveDataset.
private void saveDataset(Dataset dataset, Path path) throws IOException {
Dataset datasetToSave = dataset.duplicate();
// SCIFIO cannot save 1-bit images so we must convert to 8-bit
if (datasetToSave.firstElement() instanceof BitType) {
@SuppressWarnings("unchecked") Img<BitType> img = (Img<BitType>) dataset.getImgPlus().getImg();
Img<UnsignedByteType> converted = opService.convert().uint8(img);
ImgPlus<UnsignedByteType> convertedImgPlus = new ImgPlus<>(converted, dataset.getName());
datasetToSave.setImgPlus(convertedImgPlus);
}
String name = dataset.getName();
if (FilenameUtils.getExtension(name).isEmpty()) {
// Default save extension
name += ".tif";
}
Path filePath = Paths.get(path.toString(), name);
datasetIOService.save(datasetToSave, filePath.toString());
}
use of net.imglib2.type.logic.BitType in project vcell by virtualcell.
the class ImageStatsForPlotting method computeMean.
/**
* Computes the mean of each XY slice along the 3rd dimension
* TODO: Currently assumes only 3 dimensions, must handle time series of z stacks and multiple channels
* @param data
* @return Pair containing A) the 3rd dimension index, and B) the mean value of the XY slice
*/
private Pair<double[], double[]> computeMean(RandomAccessibleInterval<T> data, IterableInterval<BitType> mask) {
double[] indices = new double[(int) data.dimension(2)];
double[] means = new double[indices.length];
for (int z = 0; z < indices.length; z++) {
FinalInterval interval = Intervals.createMinMax(0, 0, z, data.dimension(0) - 1, data.dimension(1) - 1, z);
double mean = 0.0;
RandomAccessibleInterval<T> cropped = ops.transform().crop(data, interval);
if (mask == null) {
mean = ops.stats().mean(Views.iterable(cropped)).getRealDouble();
} else {
Cursor<BitType> maskCursor = mask.localizingCursor();
RandomAccess<T> dataRA = cropped.randomAccess();
RealSum sum = new RealSum();
int size = 0;
maskCursor.reset();
while (maskCursor.hasNext()) {
maskCursor.fwd();
if (maskCursor.get().get()) {
dataRA.setPosition(maskCursor);
sum.add(dataRA.get().getRealDouble());
size++;
}
}
mean = sum.getSum() / size;
}
indices[z] = z;
means[z] = mean;
}
return new ValuePair<double[], double[]>(indices, means);
}
Aggregations