use of net.imglib2.img.Img in project vcell by virtualcell.
the class DeconstructGeometryCommand method run.
@Override
public void run() {
// Crop to get a z-stack over time (remove channel dimension)
long maxX = fluorData.max(fluorData.dimensionIndex(Axes.X));
long maxY = fluorData.max(fluorData.dimensionIndex(Axes.Y));
long maxZ = fluorData.max(fluorData.dimensionIndex(Axes.Z));
long maxTime = fluorData.max(fluorData.dimensionIndex(Axes.TIME));
Img fluorImg = fluorData.getImgPlus().getImg();
FinalInterval intervals = Intervals.createMinMax(0, 0, 0, 0, 0, maxX, maxY, maxZ, 0, maxTime);
RandomAccessibleInterval fluorImgCropped = ops.transform().crop(fluorImg, intervals, true);
// Calculate scale factors
double[] scaleFactors = { 1, 1, 1, 1 };
for (int i = 0; i < geomData.numDimensions(); i++) {
scaleFactors[i] = geomData.dimension(i) / (double) fluorImgCropped.dimension(i);
}
// Scale the fluorescence dataset to match the geometry
NLinearInterpolatorFactory interpolatorFactory = new NLinearInterpolatorFactory();
RandomAccessibleInterval fluorScaled = ops.transform().scale(fluorImgCropped, scaleFactors, interpolatorFactory);
// Crop out the first slice of each z-stack in time series
intervals = Intervals.createMinMax(0, 0, 0, 0, fluorScaled.dimension(0) - 1, fluorScaled.dimension(1) - 1, 0, fluorScaled.dimension(3) - 1);
IntervalView fluorXYT = (IntervalView) ops.transform().crop(fluorScaled, intervals, true);
// Create a blank image of the same X-Y-Time dimensions
long[] dimensions = { fluorXYT.dimension(0), fluorXYT.dimension(1), fluorXYT.dimension(2) };
Img<DoubleType> result = ops.create().img(dimensions);
// Calculate constant d in TIRF exponential decay function
theta = theta * 2 * Math.PI / 360;
double n1 = 1.52;
double n2 = 1.38;
double d = lambda * Math.pow((Math.pow(n1, 2) * Math.pow(Math.sin(theta), 2) - Math.pow(n2, 2)), -0.5) / (4 * Math.PI);
// Iterate through each time point, using 3D geometry to generate 2D intensities
Cursor<DoubleType> cursor = fluorXYT.localizingCursor();
RandomAccess fluorRA = fluorScaled.randomAccess();
RandomAccess<RealType<?>> geomRA = geomData.randomAccess();
RandomAccess<DoubleType> resultRA = result.randomAccess();
maxZ = geomData.dimension(2) - 1;
while (cursor.hasNext()) {
cursor.fwd();
int[] positionXYZ = { cursor.getIntPosition(0), cursor.getIntPosition(1), (int) maxZ - 1 };
int[] positionXYZT = { cursor.getIntPosition(0), cursor.getIntPosition(1), (int) maxZ - 1, cursor.getIntPosition(2) };
resultRA.setPosition(cursor);
geomRA.setPosition(positionXYZ);
double sum = 0.0;
while (positionXYZ[2] >= 0 && geomRA.get().getRealDouble() != 0.0) {
fluorRA.setPosition(positionXYZT);
geomRA.setPosition(positionXYZ);
sum += geomRA.get().getRealDouble() * Math.exp(-zSpacing * positionXYZ[2] / d);
positionXYZ[2]--;
}
resultRA.get().set(sum);
}
System.out.println("done");
displayService.createDisplay(result);
}
use of net.imglib2.img.Img in project vcell by virtualcell.
the class VCellResultService method importCsv.
public Dataset importCsv(File directory) throws FileNotFoundException {
File[] files = directory.listFiles();
// TODO: Better handling
if (files == null)
return null;
ArrayList<ArrayList<Float>> timeSeries = new ArrayList<>(files.length);
Scanner scanner;
int dataSize = 0;
for (File file : files) {
scanner = new Scanner(file);
scanner.useDelimiter("[,\n]");
while (scanner.hasNext() && !scanner.hasNextDouble()) {
scanner.next();
}
if (!scanner.hasNextDouble()) {
scanner.close();
return null;
}
ArrayList<Float> data = new ArrayList<>();
while (scanner.hasNextDouble()) {
data.add(scanner.nextFloat());
}
scanner.close();
timeSeries.add(data);
dataSize = data.size();
}
int[] dimensions = { dataSize, timeSeries.size() };
Img<FloatType> img = new ArrayImgFactory<FloatType>().create(dimensions, new FloatType());
Cursor<FloatType> cursor = img.localizingCursor();
while (cursor.hasNext()) {
cursor.next();
int xPos = cursor.getIntPosition(0);
int tPos = cursor.getIntPosition(1);
Float val = timeSeries.get(tPos).get(xPos);
cursor.get().set(val);
}
Dataset dataset = datasetService.create(img);
// Drop single dimensions
@SuppressWarnings("unchecked") ImgPlus<FloatType> imgPlus = (ImgPlus<FloatType>) dataset.getImgPlus();
FinalInterval interval = Intervals.createMinMax(0, 0, imgPlus.dimension(0) - 1, imgPlus.dimension(1) - 1);
ImgPlus<FloatType> cropped = ops.transform().crop(imgPlus, interval, true);
dataset.setImgPlus(cropped);
System.out.println(dataset.numDimensions());
dataset.setName(directory.getName());
return dataset;
}
use of net.imglib2.img.Img in project vcell by virtualcell.
the class ImportSBMLCommand method run.
@Override
public void run() {
// Read SBML document
SBMLDocument document = null;
try {
document = SBMLReader.read(file);
} catch (XMLStreamException | IOException e) {
e.printStackTrace();
}
// Get SBML geometry
SpatialModelPlugin modelPlugin = (SpatialModelPlugin) document.getModel().getPlugin("spatial");
Geometry geometry = modelPlugin.getGeometry();
SampledField sampledField = geometry.getListOfSampledFields().get(0);
// Parse pixel values to int
String[] imgStringArray = sampledField.getSamples().split(" ");
int[] imgArray = new int[imgStringArray.length];
for (int i = 0; i < imgStringArray.length; i++) {
imgArray[i] = Integer.parseInt(imgStringArray[i]);
}
// Create the image and display
int width = sampledField.getNumSamples1();
int height = sampledField.getNumSamples2();
ArrayImg<UnsignedIntType, IntArray> img = ArrayImgs.unsignedInts(imgArray, width, height);
displayService.createDisplay(img);
}
use of net.imglib2.img.Img in project vcell by virtualcell.
the class ConstructTIRFGeometry method run.
@Override
public void run() {
// Calculate constant d in TIRF exponential decay function
// Angle of incidence in radians
theta = theta * 2 * Math.PI / 360;
// Refractive index of glass
final double n1 = 1.52;
// Refractive index of cytosol
final double n2 = 1.38;
final double d = lambda * Math.pow((Math.pow(n1, 2) * Math.pow(Math.sin(theta), 2) - Math.pow(n2, 2)), -0.5) / (4 * Math.PI);
System.out.println("d: " + d);
final double fluorPerMolecule = 250;
// Get frame of interest to define geometry
long maxX = data.dimension(0) - 1;
long maxY = data.dimension(1) - 1;
Interval interval = Intervals.createMinMax(0, 0, sliceIndex, maxX, maxY, sliceIndex);
RandomAccessibleInterval<T> croppedRAI = ops.transform().crop(data, interval, true);
// Subtract lowest pixel value
IterableInterval<T> dataII = Views.iterable(croppedRAI);
double min = ops.stats().min(dataII).getRealDouble();
Cursor<T> dataCursor = dataII.cursor();
while (dataCursor.hasNext()) {
double val = dataCursor.next().getRealDouble();
dataCursor.get().setReal(val - min);
}
// Perform Gaussian blur
RandomAccessibleInterval<T> blurredRAI = ops.filter().gauss(croppedRAI, 2);
IterableInterval<T> blurredII = Views.iterable(blurredRAI);
// Segment slice by threshold and fill holes
IterableInterval<BitType> thresholded = ops.threshold().huang(blurredII);
Img<BitType> thresholdedImg = ops.convert().bit(thresholded);
RandomAccessibleInterval<BitType> thresholdedRAI = ops.morphology().fillHoles(thresholdedImg);
// Get the largest region
RandomAccessibleInterval<LabelingType<ByteType>> labeling = ops.labeling().cca(thresholdedRAI, ConnectedComponents.StructuringElement.EIGHT_CONNECTED);
LabelRegions<ByteType> labelRegions = new LabelRegions<>(labeling);
Iterator<LabelRegion<ByteType>> iterator = labelRegions.iterator();
LabelRegion<ByteType> maxRegion = iterator.next();
while (iterator.hasNext()) {
LabelRegion<ByteType> currRegion = iterator.next();
if (currRegion.size() > maxRegion.size()) {
maxRegion = currRegion;
}
}
// Generate z index map
double iMax = ops.stats().max(dataII).getRealDouble();
Img<UnsignedShortType> dataImg = ops.convert().uint16(dataII);
Img<UnsignedShortType> zMap = ops.convert().uint16(ops.create().img(dataII));
LabelRegionCursor cursor = maxRegion.localizingCursor();
RandomAccess<UnsignedShortType> zMapRA = zMap.randomAccess();
RandomAccess<UnsignedShortType> dataRA = dataImg.randomAccess();
while (cursor.hasNext()) {
cursor.fwd();
zMapRA.setPosition(cursor);
dataRA.setPosition(cursor);
double val = dataRA.get().getRealDouble();
// Log of 0 is undefined
if (val < 1) {
val = 1;
}
int z = (int) Math.round(-d * Math.log(val / iMax) / zRes);
zMapRA.get().set(z);
}
System.out.println("6");
// Use map to construct 3D geometry
// Add 5 slices of padding on top
int maxZ = (int) ops.stats().max(zMap).getRealDouble() + 5;
long[] resultDimensions = { maxX + 1, maxY + 1, maxZ };
Img<BitType> result = new ArrayImgFactory<BitType>().create(resultDimensions, new BitType());
RandomAccess<BitType> resultRA = result.randomAccess();
System.out.println(maxZ);
cursor.reset();
while (cursor.hasNext()) {
cursor.fwd();
zMapRA.setPosition(cursor);
int zIndex = zMapRA.get().get();
int[] position = { cursor.getIntPosition(0), cursor.getIntPosition(1), zIndex };
while (position[2] < maxZ) {
resultRA.setPosition(position);
resultRA.get().set(true);
position[2]++;
}
}
output = datasetService.create(result);
CalibratedAxis[] axes = new DefaultLinearAxis[] { new DefaultLinearAxis(Axes.X), new DefaultLinearAxis(Axes.Y), new DefaultLinearAxis(Axes.Z) };
output.setAxes(axes);
System.out.println("Done constructing geometry");
}
use of net.imglib2.img.Img in project vcell by virtualcell.
the class ProjectService method load.
public Task<Project, String> load(File root) {
final Task<Project, String> task = new Task<Project, String>() {
@Override
protected Project doInBackground() throws Exception {
Project project = new Project(root.getName());
String rootPath = root.getAbsolutePath();
File[] dataFiles = Paths.get(rootPath, "data").toFile().listFiles();
File[] geometryFiles = Paths.get(rootPath, "geometry").toFile().listFiles();
File[] modelDirectories = Paths.get(rootPath, "models").toFile().listFiles();
File[] resultsFiles = Paths.get(rootPath, "results").toFile().listFiles();
int numFiles = dataFiles.length + geometryFiles.length + modelDirectories.length + resultsFiles.length;
int numLoaded = 0;
if (dataFiles != null) {
for (File dataFile : dataFiles) {
try {
setSubtask(dataFile.getName());
Dataset data = datasetIOService.open(dataFile.getAbsolutePath());
project.getData().add(data);
numLoaded++;
setProgress(numLoaded * 100 / numFiles);
} catch (IOException e) {
e.printStackTrace();
}
}
}
if (geometryFiles != null) {
for (File geometryFile : geometryFiles) {
try {
setSubtask(geometryFile.getName());
Dataset geometry = datasetIOService.open(geometryFile.getAbsolutePath());
// Geometry datasets are saved as 8-bit images so we must convert back to 1-bit
if (geometry.firstElement() instanceof UnsignedByteType) {
@SuppressWarnings("unchecked") Img<UnsignedByteType> img = (Img<UnsignedByteType>) geometry.getImgPlus().getImg();
Img<BitType> converted = opService.convert().bit(img);
ImgPlus<BitType> convertedImgPlus = new ImgPlus<>(converted, geometry.getName());
geometry.setImgPlus(convertedImgPlus);
}
project.getGeometry().add(geometry);
numLoaded++;
setProgress(numLoaded * 100 / numFiles);
} catch (IOException e) {
e.printStackTrace();
}
}
}
if (modelDirectories != null) {
for (File modelDirectory : modelDirectories) {
setSubtask(modelDirectory.getName());
SBMLDocument sbmlDocument = null;
BufferedImage image = null;
File[] modelFiles = modelDirectory.listFiles();
System.out.println(modelFiles.length);
// Invalid model directory
if (modelFiles.length > 2)
continue;
for (File modelFile : modelFiles) {
System.out.println(modelFile.getName());
if (FilenameUtils.getExtension(modelFile.getName()).equals("xml")) {
sbmlDocument = new SBMLReader().readSBML(modelFile);
System.out.println("Loaded sbml");
} else if (FilenameUtils.getExtension(modelFile.getName()).equals("png")) {
image = ImageIO.read(modelFile);
System.out.println("Loaded image");
}
}
if (sbmlDocument != null) {
VCellModel vCellModel = new VCellModel(modelDirectory.getName(), null, sbmlDocument);
vCellModel.setImage(image);
project.getModels().add(vCellModel);
System.out.println("Added model");
}
numLoaded++;
setProgress(numLoaded * 100 / numFiles);
}
}
if (resultsFiles != null) {
for (File resultsFile : resultsFiles) {
try {
setSubtask(resultsFile.getName());
Dataset results = datasetIOService.open(resultsFile.getAbsolutePath());
// Loading 1-dimensional tif images adds a dimension
// so must crop out empty dimensions
@SuppressWarnings("unchecked") ImgPlus<T> imgPlus = (ImgPlus<T>) results.getImgPlus();
int numDimensions = imgPlus.numDimensions();
long[] dimensions = new long[2 * imgPlus.numDimensions()];
for (int i = 0; i < numDimensions; i++) {
dimensions[i] = 0;
dimensions[i + numDimensions] = imgPlus.dimension(i) - 1;
}
FinalInterval interval = Intervals.createMinMax(dimensions);
ImgPlus<T> cropped = opService.transform().crop(imgPlus, interval, true);
results.setImgPlus(cropped);
project.getResults().add(results);
numLoaded++;
setProgress(numLoaded * 100 / numFiles);
} catch (IOException e) {
e.printStackTrace();
}
}
}
currentProjectRoot = root;
return project;
}
};
return task;
}
Aggregations