use of org.antlr.v4.runtime.atn.PlusBlockStartState in project antlr4 by antlr.
the class DOTGenerator method getDOT.
/**
* Return a String containing a DOT description that, when displayed,
* will show the incoming state machine visually. All nodes reachable
* from startState will be included.
*/
public String getDOT(ATNState startState, String[] ruleNames, boolean isLexer) {
if (startState == null)
return null;
// The output DOT graph for visualization
Set<ATNState> markedStates = new HashSet<ATNState>();
ST dot = stlib.getInstanceOf("atn");
dot.add("startState", startState.stateNumber);
dot.add("rankdir", rankdir);
List<ATNState> work = new LinkedList<ATNState>();
work.add(startState);
while (!work.isEmpty()) {
ATNState s = work.get(0);
if (markedStates.contains(s)) {
work.remove(0);
continue;
}
markedStates.add(s);
// don't go past end of rule node to the follow states
if (s instanceof RuleStopState)
continue;
// special case: if decision point, then line up the alt start states
// unless it's an end of block
// if ( s instanceof BlockStartState ) {
// ST rankST = stlib.getInstanceOf("decision-rank");
// DecisionState alt = (DecisionState)s;
// for (int i=0; i<alt.getNumberOfTransitions(); i++) {
// ATNState target = alt.transition(i).target;
// if ( target!=null ) {
// rankST.add("states", target.stateNumber);
// }
// }
// dot.add("decisionRanks", rankST);
// }
// make a DOT edge for each transition
ST edgeST;
for (int i = 0; i < s.getNumberOfTransitions(); i++) {
Transition edge = s.transition(i);
if (edge instanceof RuleTransition) {
RuleTransition rr = ((RuleTransition) edge);
// don't jump to other rules, but display edge to follow node
edgeST = stlib.getInstanceOf("edge");
String label = "<" + ruleNames[rr.ruleIndex];
if (((RuleStartState) rr.target).isLeftRecursiveRule) {
label += "[" + rr.precedence + "]";
}
label += ">";
edgeST.add("label", label);
edgeST.add("src", "s" + s.stateNumber);
edgeST.add("target", "s" + rr.followState.stateNumber);
edgeST.add("arrowhead", arrowhead);
dot.add("edges", edgeST);
work.add(rr.followState);
continue;
}
if (edge instanceof ActionTransition) {
edgeST = stlib.getInstanceOf("action-edge");
edgeST.add("label", getEdgeLabel(edge.toString()));
} else if (edge instanceof AbstractPredicateTransition) {
edgeST = stlib.getInstanceOf("edge");
edgeST.add("label", getEdgeLabel(edge.toString()));
} else if (edge.isEpsilon()) {
edgeST = stlib.getInstanceOf("epsilon-edge");
edgeST.add("label", getEdgeLabel(edge.toString()));
boolean loopback = false;
if (edge.target instanceof PlusBlockStartState) {
loopback = s.equals(((PlusBlockStartState) edge.target).loopBackState);
} else if (edge.target instanceof StarLoopEntryState) {
loopback = s.equals(((StarLoopEntryState) edge.target).loopBackState);
}
edgeST.add("loopback", loopback);
} else if (edge instanceof AtomTransition) {
edgeST = stlib.getInstanceOf("edge");
AtomTransition atom = (AtomTransition) edge;
String label = String.valueOf(atom.label);
if (isLexer)
label = "'" + getEdgeLabel(new StringBuilder().appendCodePoint(atom.label).toString()) + "'";
else if (grammar != null)
label = grammar.getTokenDisplayName(atom.label);
edgeST.add("label", getEdgeLabel(label));
} else if (edge instanceof SetTransition) {
edgeST = stlib.getInstanceOf("edge");
SetTransition set = (SetTransition) edge;
String label = set.label().toString();
if (isLexer)
label = set.label().toString(true);
else if (grammar != null)
label = set.label().toString(grammar.getVocabulary());
if (edge instanceof NotSetTransition)
label = "~" + label;
edgeST.add("label", getEdgeLabel(label));
} else if (edge instanceof RangeTransition) {
edgeST = stlib.getInstanceOf("edge");
RangeTransition range = (RangeTransition) edge;
String label = range.label().toString();
if (isLexer)
label = range.toString();
else if (grammar != null)
label = range.label().toString(grammar.getVocabulary());
edgeST.add("label", getEdgeLabel(label));
} else {
edgeST = stlib.getInstanceOf("edge");
edgeST.add("label", getEdgeLabel(edge.toString()));
}
edgeST.add("src", "s" + s.stateNumber);
edgeST.add("target", "s" + edge.target.stateNumber);
edgeST.add("arrowhead", arrowhead);
if (s.getNumberOfTransitions() > 1) {
edgeST.add("transitionIndex", i);
} else {
edgeST.add("transitionIndex", false);
}
dot.add("edges", edgeST);
work.add(edge.target);
}
}
// }
for (ATNState s : markedStates) {
if (!(s instanceof RuleStopState))
continue;
ST st = stlib.getInstanceOf("stopstate");
st.add("name", "s" + s.stateNumber);
st.add("label", getStateLabel(s));
dot.add("states", st);
}
for (ATNState s : markedStates) {
if (s instanceof RuleStopState)
continue;
ST st = stlib.getInstanceOf("state");
st.add("name", "s" + s.stateNumber);
st.add("label", getStateLabel(s));
st.add("transitions", s.getTransitions());
dot.add("states", st);
}
return dot.render();
}
use of org.antlr.v4.runtime.atn.PlusBlockStartState in project antlr4 by tunnelvisionlabs.
the class DOTGenerator method getDOT.
/**
* Return a String containing a DOT description that, when displayed,
* will show the incoming state machine visually. All nodes reachable
* from startState will be included.
*/
public String getDOT(ATNState startState, String[] ruleNames, boolean isLexer) {
if (startState == null)
return null;
// The output DOT graph for visualization
Set<ATNState> markedStates = new HashSet<ATNState>();
ST dot = stlib.getInstanceOf("atn");
dot.add("startState", startState.stateNumber);
dot.add("rankdir", rankdir);
List<ATNState> work = new LinkedList<ATNState>();
work.add(startState);
while (!work.isEmpty()) {
ATNState s = work.get(0);
if (markedStates.contains(s)) {
work.remove(0);
continue;
}
markedStates.add(s);
// don't go past end of rule node to the follow states
if (s instanceof RuleStopState)
continue;
// special case: if decision point, then line up the alt start states
// unless it's an end of block
// if ( s instanceof BlockStartState ) {
// ST rankST = stlib.getInstanceOf("decision-rank");
// DecisionState alt = (DecisionState)s;
// for (int i=0; i<alt.getNumberOfTransitions(); i++) {
// ATNState target = alt.transition(i).target;
// if ( target!=null ) {
// rankST.add("states", target.stateNumber);
// }
// }
// dot.add("decisionRanks", rankST);
// }
// make a DOT edge for each transition
ST edgeST;
for (int i = 0; i < s.getNumberOfTransitions(); i++) {
Transition edge = s.transition(i);
if (edge instanceof RuleTransition) {
RuleTransition rr = ((RuleTransition) edge);
// don't jump to other rules, but display edge to follow node
edgeST = stlib.getInstanceOf("edge");
String label = "<" + ruleNames[rr.ruleIndex];
if (((RuleStartState) rr.target).isPrecedenceRule) {
label += "[" + rr.precedence + "]";
}
label += ">";
edgeST.add("label", label);
edgeST.add("src", "s" + s.stateNumber);
edgeST.add("target", "s" + rr.followState.stateNumber);
edgeST.add("arrowhead", arrowhead);
dot.add("edges", edgeST);
work.add(rr.followState);
continue;
}
if (edge instanceof ActionTransition) {
edgeST = stlib.getInstanceOf("action-edge");
edgeST.add("label", getEdgeLabel(edge.toString()));
} else if (edge instanceof AbstractPredicateTransition) {
edgeST = stlib.getInstanceOf("edge");
edgeST.add("label", getEdgeLabel(edge.toString()));
} else if (edge.isEpsilon()) {
edgeST = stlib.getInstanceOf("epsilon-edge");
edgeST.add("label", getEdgeLabel(edge.toString()));
boolean loopback = false;
if (edge.target instanceof PlusBlockStartState) {
loopback = s.equals(((PlusBlockStartState) edge.target).loopBackState);
} else if (edge.target instanceof StarLoopEntryState) {
loopback = s.equals(((StarLoopEntryState) edge.target).loopBackState);
}
edgeST.add("loopback", loopback);
} else if (edge instanceof AtomTransition) {
edgeST = stlib.getInstanceOf("edge");
AtomTransition atom = (AtomTransition) edge;
String label = String.valueOf(atom.label);
if (isLexer)
label = "'" + getEdgeLabel(new StringBuilder().appendCodePoint(atom.label).toString()) + "'";
else if (grammar != null)
label = grammar.getTokenDisplayName(atom.label);
edgeST.add("label", getEdgeLabel(label));
} else if (edge instanceof SetTransition) {
edgeST = stlib.getInstanceOf("edge");
SetTransition set = (SetTransition) edge;
String label = set.label().toString();
if (isLexer)
label = set.label().toString(true);
else if (grammar != null)
label = set.label().toString(grammar.getVocabulary());
if (edge instanceof NotSetTransition)
label = "~" + label;
edgeST.add("label", getEdgeLabel(label));
} else if (edge instanceof RangeTransition) {
edgeST = stlib.getInstanceOf("edge");
RangeTransition range = (RangeTransition) edge;
String label = range.label().toString();
if (isLexer)
label = range.toString();
else if (grammar != null)
label = range.label().toString(grammar.getVocabulary());
edgeST.add("label", getEdgeLabel(label));
} else {
edgeST = stlib.getInstanceOf("edge");
edgeST.add("label", getEdgeLabel(edge.toString()));
}
edgeST.add("src", "s" + s.stateNumber);
edgeST.add("target", "s" + edge.target.stateNumber);
edgeST.add("arrowhead", arrowhead);
if (s.getNumberOfTransitions() > 1) {
edgeST.add("transitionIndex", i);
} else {
edgeST.add("transitionIndex", false);
}
dot.add("edges", edgeST);
work.add(edge.target);
}
}
// }
for (ATNState s : markedStates) {
if (!(s instanceof RuleStopState))
continue;
ST st = stlib.getInstanceOf("stopstate");
st.add("name", "s" + s.stateNumber);
st.add("label", getStateLabel(s));
dot.add("states", st);
}
for (ATNState s : markedStates) {
if (s instanceof RuleStopState)
continue;
ST st = stlib.getInstanceOf("state");
st.add("name", "s" + s.stateNumber);
st.add("label", getStateLabel(s));
st.add("transitions", s.getTransitions());
dot.add("states", st);
}
return dot.render();
}
use of org.antlr.v4.runtime.atn.PlusBlockStartState in project antlr4 by tunnelvisionlabs.
the class ATNDeserializer method deserialize.
@SuppressWarnings("deprecation")
public ATN deserialize(@NotNull char[] data) {
data = data.clone();
// was implemented.
for (int i = 1; i < data.length; i++) {
data[i] = (char) (data[i] - 2);
}
int p = 0;
int version = toInt(data[p++]);
if (version != SERIALIZED_VERSION) {
String reason = String.format(Locale.getDefault(), "Could not deserialize ATN with version %d (expected %d).", version, SERIALIZED_VERSION);
throw new UnsupportedOperationException(new InvalidClassException(ATN.class.getName(), reason));
}
UUID uuid = toUUID(data, p);
p += 8;
if (!SUPPORTED_UUIDS.contains(uuid)) {
String reason = String.format(Locale.getDefault(), "Could not deserialize ATN with UUID %s (expected %s or a legacy UUID).", uuid, SERIALIZED_UUID);
throw new UnsupportedOperationException(new InvalidClassException(ATN.class.getName(), reason));
}
boolean supportsLexerActions = isFeatureSupported(ADDED_LEXER_ACTIONS, uuid);
ATNType grammarType = ATNType.values()[toInt(data[p++])];
int maxTokenType = toInt(data[p++]);
ATN atn = new ATN(grammarType, maxTokenType);
//
// STATES
//
List<Tuple2<LoopEndState, Integer>> loopBackStateNumbers = new ArrayList<Tuple2<LoopEndState, Integer>>();
List<Tuple2<BlockStartState, Integer>> endStateNumbers = new ArrayList<Tuple2<BlockStartState, Integer>>();
int nstates = toInt(data[p++]);
for (int i = 0; i < nstates; i++) {
int stype = toInt(data[p++]);
// ignore bad type of states
if (stype == ATNState.INVALID_TYPE) {
atn.addState(null);
continue;
}
int ruleIndex = toInt(data[p++]);
if (ruleIndex == Character.MAX_VALUE) {
ruleIndex = -1;
}
ATNState s = stateFactory(stype, ruleIndex);
if (stype == ATNState.LOOP_END) {
// special case
int loopBackStateNumber = toInt(data[p++]);
loopBackStateNumbers.add(Tuple.create((LoopEndState) s, loopBackStateNumber));
} else if (s instanceof BlockStartState) {
int endStateNumber = toInt(data[p++]);
endStateNumbers.add(Tuple.create((BlockStartState) s, endStateNumber));
}
atn.addState(s);
}
// delay the assignment of loop back and end states until we know all the state instances have been initialized
for (Tuple2<LoopEndState, Integer> pair : loopBackStateNumbers) {
pair.getItem1().loopBackState = atn.states.get(pair.getItem2());
}
for (Tuple2<BlockStartState, Integer> pair : endStateNumbers) {
pair.getItem1().endState = (BlockEndState) atn.states.get(pair.getItem2());
}
int numNonGreedyStates = toInt(data[p++]);
for (int i = 0; i < numNonGreedyStates; i++) {
int stateNumber = toInt(data[p++]);
((DecisionState) atn.states.get(stateNumber)).nonGreedy = true;
}
int numSllDecisions = toInt(data[p++]);
for (int i = 0; i < numSllDecisions; i++) {
int stateNumber = toInt(data[p++]);
((DecisionState) atn.states.get(stateNumber)).sll = true;
}
int numPrecedenceStates = toInt(data[p++]);
for (int i = 0; i < numPrecedenceStates; i++) {
int stateNumber = toInt(data[p++]);
((RuleStartState) atn.states.get(stateNumber)).isPrecedenceRule = true;
}
//
// RULES
//
int nrules = toInt(data[p++]);
if (atn.grammarType == ATNType.LEXER) {
atn.ruleToTokenType = new int[nrules];
}
atn.ruleToStartState = new RuleStartState[nrules];
for (int i = 0; i < nrules; i++) {
int s = toInt(data[p++]);
RuleStartState startState = (RuleStartState) atn.states.get(s);
startState.leftFactored = toInt(data[p++]) != 0;
atn.ruleToStartState[i] = startState;
if (atn.grammarType == ATNType.LEXER) {
int tokenType = toInt(data[p++]);
if (tokenType == 0xFFFF) {
tokenType = Token.EOF;
}
atn.ruleToTokenType[i] = tokenType;
if (!isFeatureSupported(ADDED_LEXER_ACTIONS, uuid)) {
// this piece of unused metadata was serialized prior to the
// addition of LexerAction
int actionIndexIgnored = toInt(data[p++]);
if (actionIndexIgnored == 0xFFFF) {
actionIndexIgnored = -1;
}
}
}
}
atn.ruleToStopState = new RuleStopState[nrules];
for (ATNState state : atn.states) {
if (!(state instanceof RuleStopState)) {
continue;
}
RuleStopState stopState = (RuleStopState) state;
atn.ruleToStopState[state.ruleIndex] = stopState;
atn.ruleToStartState[state.ruleIndex].stopState = stopState;
}
//
// MODES
//
int nmodes = toInt(data[p++]);
for (int i = 0; i < nmodes; i++) {
int s = toInt(data[p++]);
atn.modeToStartState.add((TokensStartState) atn.states.get(s));
}
atn.modeToDFA = new DFA[nmodes];
for (int i = 0; i < nmodes; i++) {
atn.modeToDFA[i] = new DFA(atn.modeToStartState.get(i));
}
//
// SETS
//
List<IntervalSet> sets = new ArrayList<IntervalSet>();
// First, read all sets with 16-bit Unicode code points <= U+FFFF.
p = deserializeSets(data, p, sets, getUnicodeDeserializer(UnicodeDeserializingMode.UNICODE_BMP));
// deserialize sets with 32-bit arguments <= U+10FFFF.
if (isFeatureSupported(ADDED_UNICODE_SMP, uuid)) {
int previousSetCount = sets.size();
p = deserializeSets(data, p, sets, getUnicodeDeserializer(UnicodeDeserializingMode.UNICODE_SMP));
atn.setHasUnicodeSMPTransitions(sets.size() > previousSetCount);
}
//
// EDGES
//
int nedges = toInt(data[p++]);
for (int i = 0; i < nedges; i++) {
int src = toInt(data[p]);
int trg = toInt(data[p + 1]);
int ttype = toInt(data[p + 2]);
int arg1 = toInt(data[p + 3]);
int arg2 = toInt(data[p + 4]);
int arg3 = toInt(data[p + 5]);
Transition trans = edgeFactory(atn, ttype, src, trg, arg1, arg2, arg3, sets);
// System.out.println("EDGE "+trans.getClass().getSimpleName()+" "+
// src+"->"+trg+
// " "+Transition.serializationNames[ttype]+
// " "+arg1+","+arg2+","+arg3);
ATNState srcState = atn.states.get(src);
srcState.addTransition(trans);
p += 6;
}
// edges for rule stop states can be derived, so they aren't serialized
// Map rule stop state -> return state -> outermost precedence return
Set<Tuple3<Integer, Integer, Integer>> returnTransitions = new LinkedHashSet<Tuple3<Integer, Integer, Integer>>();
for (ATNState state : atn.states) {
boolean returningToLeftFactored = state.ruleIndex >= 0 && atn.ruleToStartState[state.ruleIndex].leftFactored;
for (int i = 0; i < state.getNumberOfTransitions(); i++) {
Transition t = state.transition(i);
if (!(t instanceof RuleTransition)) {
continue;
}
RuleTransition ruleTransition = (RuleTransition) t;
boolean returningFromLeftFactored = atn.ruleToStartState[ruleTransition.target.ruleIndex].leftFactored;
if (!returningFromLeftFactored && returningToLeftFactored) {
continue;
}
int outermostPrecedenceReturn = -1;
if (atn.ruleToStartState[ruleTransition.target.ruleIndex].isPrecedenceRule) {
if (ruleTransition.precedence == 0) {
outermostPrecedenceReturn = ruleTransition.target.ruleIndex;
}
}
returnTransitions.add(Tuple.create(ruleTransition.target.ruleIndex, ruleTransition.followState.stateNumber, outermostPrecedenceReturn));
}
}
// Add all elements from returnTransitions to the ATN
for (Tuple3<Integer, Integer, Integer> returnTransition : returnTransitions) {
EpsilonTransition transition = new EpsilonTransition(atn.states.get(returnTransition.getItem2()), returnTransition.getItem3());
atn.ruleToStopState[returnTransition.getItem1()].addTransition(transition);
}
for (ATNState state : atn.states) {
if (state instanceof BlockStartState) {
// we need to know the end state to set its start state
if (((BlockStartState) state).endState == null) {
throw new IllegalStateException();
}
// block end states can only be associated to a single block start state
if (((BlockStartState) state).endState.startState != null) {
throw new IllegalStateException();
}
((BlockStartState) state).endState.startState = (BlockStartState) state;
}
if (state instanceof PlusLoopbackState) {
PlusLoopbackState loopbackState = (PlusLoopbackState) state;
for (int i = 0; i < loopbackState.getNumberOfTransitions(); i++) {
ATNState target = loopbackState.transition(i).target;
if (target instanceof PlusBlockStartState) {
((PlusBlockStartState) target).loopBackState = loopbackState;
}
}
} else if (state instanceof StarLoopbackState) {
StarLoopbackState loopbackState = (StarLoopbackState) state;
for (int i = 0; i < loopbackState.getNumberOfTransitions(); i++) {
ATNState target = loopbackState.transition(i).target;
if (target instanceof StarLoopEntryState) {
((StarLoopEntryState) target).loopBackState = loopbackState;
}
}
}
}
//
// DECISIONS
//
int ndecisions = toInt(data[p++]);
for (int i = 1; i <= ndecisions; i++) {
int s = toInt(data[p++]);
DecisionState decState = (DecisionState) atn.states.get(s);
atn.decisionToState.add(decState);
decState.decision = i - 1;
}
//
if (atn.grammarType == ATNType.LEXER) {
if (supportsLexerActions) {
atn.lexerActions = new LexerAction[toInt(data[p++])];
for (int i = 0; i < atn.lexerActions.length; i++) {
LexerActionType actionType = LexerActionType.values()[toInt(data[p++])];
int data1 = toInt(data[p++]);
if (data1 == 0xFFFF) {
data1 = -1;
}
int data2 = toInt(data[p++]);
if (data2 == 0xFFFF) {
data2 = -1;
}
LexerAction lexerAction = lexerActionFactory(actionType, data1, data2);
atn.lexerActions[i] = lexerAction;
}
} else {
// for compatibility with older serialized ATNs, convert the old
// serialized action index for action transitions to the new
// form, which is the index of a LexerCustomAction
List<LexerAction> legacyLexerActions = new ArrayList<LexerAction>();
for (ATNState state : atn.states) {
for (int i = 0; i < state.getNumberOfTransitions(); i++) {
Transition transition = state.transition(i);
if (!(transition instanceof ActionTransition)) {
continue;
}
int ruleIndex = ((ActionTransition) transition).ruleIndex;
int actionIndex = ((ActionTransition) transition).actionIndex;
LexerCustomAction lexerAction = new LexerCustomAction(ruleIndex, actionIndex);
state.setTransition(i, new ActionTransition(transition.target, ruleIndex, legacyLexerActions.size(), false));
legacyLexerActions.add(lexerAction);
}
}
atn.lexerActions = legacyLexerActions.toArray(new LexerAction[legacyLexerActions.size()]);
}
}
markPrecedenceDecisions(atn);
atn.decisionToDFA = new DFA[ndecisions];
for (int i = 0; i < ndecisions; i++) {
atn.decisionToDFA[i] = new DFA(atn.decisionToState.get(i), i);
}
if (deserializationOptions.isVerifyATN()) {
verifyATN(atn);
}
if (deserializationOptions.isGenerateRuleBypassTransitions() && atn.grammarType == ATNType.PARSER) {
atn.ruleToTokenType = new int[atn.ruleToStartState.length];
for (int i = 0; i < atn.ruleToStartState.length; i++) {
atn.ruleToTokenType[i] = atn.maxTokenType + i + 1;
}
for (int i = 0; i < atn.ruleToStartState.length; i++) {
BasicBlockStartState bypassStart = new BasicBlockStartState();
bypassStart.ruleIndex = i;
atn.addState(bypassStart);
BlockEndState bypassStop = new BlockEndState();
bypassStop.ruleIndex = i;
atn.addState(bypassStop);
bypassStart.endState = bypassStop;
atn.defineDecisionState(bypassStart);
bypassStop.startState = bypassStart;
ATNState endState;
Transition excludeTransition = null;
if (atn.ruleToStartState[i].isPrecedenceRule) {
// wrap from the beginning of the rule to the StarLoopEntryState
endState = null;
for (ATNState state : atn.states) {
if (state.ruleIndex != i) {
continue;
}
if (!(state instanceof StarLoopEntryState)) {
continue;
}
ATNState maybeLoopEndState = state.transition(state.getNumberOfTransitions() - 1).target;
if (!(maybeLoopEndState instanceof LoopEndState)) {
continue;
}
if (maybeLoopEndState.epsilonOnlyTransitions && maybeLoopEndState.transition(0).target instanceof RuleStopState) {
endState = state;
break;
}
}
if (endState == null) {
throw new UnsupportedOperationException("Couldn't identify final state of the precedence rule prefix section.");
}
excludeTransition = ((StarLoopEntryState) endState).loopBackState.transition(0);
} else {
endState = atn.ruleToStopState[i];
}
// all non-excluded transitions that currently target end state need to target blockEnd instead
for (ATNState state : atn.states) {
for (Transition transition : state.transitions) {
if (transition == excludeTransition) {
continue;
}
if (transition.target == endState) {
transition.target = bypassStop;
}
}
}
// all transitions leaving the rule start state need to leave blockStart instead
while (atn.ruleToStartState[i].getNumberOfTransitions() > 0) {
Transition transition = atn.ruleToStartState[i].removeTransition(atn.ruleToStartState[i].getNumberOfTransitions() - 1);
bypassStart.addTransition(transition);
}
// link the new states
atn.ruleToStartState[i].addTransition(new EpsilonTransition(bypassStart));
bypassStop.addTransition(new EpsilonTransition(endState));
ATNState matchState = new BasicState();
atn.addState(matchState);
matchState.addTransition(new AtomTransition(bypassStop, atn.ruleToTokenType[i]));
bypassStart.addTransition(new EpsilonTransition(matchState));
}
if (deserializationOptions.isVerifyATN()) {
// reverify after modification
verifyATN(atn);
}
}
if (deserializationOptions.isOptimize()) {
while (true) {
int optimizationCount = 0;
optimizationCount += inlineSetRules(atn);
optimizationCount += combineChainedEpsilons(atn);
boolean preserveOrder = atn.grammarType == ATNType.LEXER;
optimizationCount += optimizeSets(atn, preserveOrder);
if (optimizationCount == 0) {
break;
}
}
if (deserializationOptions.isVerifyATN()) {
// reverify after modification
verifyATN(atn);
}
}
identifyTailCalls(atn);
return atn;
}
use of org.antlr.v4.runtime.atn.PlusBlockStartState in project antlr4 by tunnelvisionlabs.
the class ParserATNFactory method plus.
/**
* From {@code (blk)+} build
*
* <pre>
* |---------|
* v |
* [o-blk-o]->o->o
* </pre>
*
* We add a decision for loop back node to the existing one at {@code blk}
* start.
*/
@NotNull
@Override
public Handle plus(@NotNull GrammarAST plusAST, @NotNull Handle blk) {
PlusBlockStartState blkStart = (PlusBlockStartState) blk.left;
BlockEndState blkEnd = (BlockEndState) blk.right;
preventEpsilonClosureBlocks.add(Tuple.create(currentRule, blkStart, blkEnd));
PlusLoopbackState loop = newState(PlusLoopbackState.class, plusAST);
loop.nonGreedy = !((QuantifierAST) plusAST).isGreedy();
// no way to express SLL restriction
loop.sll = false;
atn.defineDecisionState(loop);
LoopEndState end = newState(LoopEndState.class, plusAST);
blkStart.loopBackState = loop;
end.loopBackState = loop;
plusAST.atnState = loop;
// blk can see loop back
epsilon(blkEnd, loop);
BlockAST blkAST = (BlockAST) plusAST.getChild(0);
if (((QuantifierAST) plusAST).isGreedy()) {
if (expectNonGreedy(blkAST)) {
g.tool.errMgr.grammarError(ErrorType.EXPECTED_NON_GREEDY_WILDCARD_BLOCK, g.fileName, plusAST.getToken(), plusAST.getToken().getText());
}
// loop back to start
epsilon(loop, blkStart);
// or exit
epsilon(loop, end);
} else {
// if not greedy, priority to exit branch; make it first
// exit
epsilon(loop, end);
// loop back to start
epsilon(loop, blkStart);
}
return new Handle(blkStart, end);
}
use of org.antlr.v4.runtime.atn.PlusBlockStartState in project antlr4 by tunnelvisionlabs.
the class ParserATNFactory method block.
/**
* From {@code A|B|..|Z} alternative block build
*
* <pre>
* o->o-A->o->o (last ATNState is BlockEndState pointed to by all alts)
* | ^
* |->o-B->o--|
* | |
* ... |
* | |
* |->o-Z->o--|
* </pre>
*
* So start node points at every alternative with epsilon transition and
* every alt right side points at a block end ATNState.
* <p>
* Special case: only one alternative: don't make a block with alt
* begin/end.
* <p>
* Special case: if just a list of tokens/chars/sets, then collapse to a
* single edged o-set->o graph.
* <p>
* TODO: Set alt number (1..n) in the states?
*/
@NotNull
@Override
public Handle block(@NotNull BlockAST blkAST, @NotNull GrammarAST ebnfRoot, @NotNull List<Handle> alts) {
if (ebnfRoot == null) {
if (alts.size() == 1) {
Handle h = alts.get(0);
blkAST.atnState = h.left;
return h;
}
BlockStartState start = newState(BasicBlockStartState.class, blkAST);
if (alts.size() > 1)
atn.defineDecisionState(start);
return makeBlock(start, blkAST, alts);
}
switch(ebnfRoot.getType()) {
case ANTLRParser.OPTIONAL:
BlockStartState start = newState(BasicBlockStartState.class, blkAST);
atn.defineDecisionState(start);
Handle h = makeBlock(start, blkAST, alts);
return optional(ebnfRoot, h);
case ANTLRParser.CLOSURE:
BlockStartState star = newState(StarBlockStartState.class, ebnfRoot);
if (alts.size() > 1)
atn.defineDecisionState(star);
h = makeBlock(star, blkAST, alts);
return star(ebnfRoot, h);
case ANTLRParser.POSITIVE_CLOSURE:
PlusBlockStartState plus = newState(PlusBlockStartState.class, ebnfRoot);
if (alts.size() > 1)
atn.defineDecisionState(plus);
h = makeBlock(plus, blkAST, alts);
return plus(ebnfRoot, h);
}
return null;
}
Aggregations