use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rex.RexCall in project calcite by apache.
the class RexImpTable method createImplementor.
public static CallImplementor createImplementor(final NotNullImplementor implementor, final NullPolicy nullPolicy, final boolean harmonize) {
switch(nullPolicy) {
case ANY:
case STRICT:
case SEMI_STRICT:
return new CallImplementor() {
public Expression implement(RexToLixTranslator translator, RexCall call, NullAs nullAs) {
return implementNullSemantics0(translator, call, nullAs, nullPolicy, harmonize, implementor);
}
};
case AND:
// : Boolean.FALSE;
return new CallImplementor() {
public Expression implement(RexToLixTranslator translator, RexCall call, NullAs nullAs) {
assert call.getOperator() == AND : "AND null semantics is supported only for AND operator. Actual operator is " + String.valueOf(call.getOperator());
final RexCall call2 = call2(false, translator, call);
switch(nullAs) {
// Just foldAnd
case NOT_POSSIBLE:
case TRUE:
// thus if we convert nulls to true then no harm is made
case FALSE:
// AND call should return false iff has FALSEs or has NULLs,
// thus if we convert nulls to false, no harm is made
final List<Expression> expressions = translator.translateList(call2.getOperands(), nullAs);
return Expressions.foldAnd(expressions);
case NULL:
case IS_NULL:
case IS_NOT_NULL:
final List<Expression> nullAsTrue = translator.translateList(call2.getOperands(), NullAs.TRUE);
final List<Expression> nullAsIsNull = translator.translateList(call2.getOperands(), NullAs.IS_NULL);
Expression hasFalse = Expressions.not(Expressions.foldAnd(nullAsTrue));
Expression hasNull = Expressions.foldOr(nullAsIsNull);
Expression result = nullAs.handle(Expressions.condition(hasFalse, BOXED_FALSE_EXPR, Expressions.condition(hasNull, NULL_EXPR, BOXED_TRUE_EXPR)));
return result;
default:
throw new IllegalArgumentException("Unknown nullAs when implementing AND: " + nullAs);
}
}
};
case OR:
// : Boolean.TRUE;
return new CallImplementor() {
public Expression implement(RexToLixTranslator translator, RexCall call, final NullAs nullAs) {
assert call.getOperator() == OR : "OR null semantics is supported only for OR operator. Actual operator is " + String.valueOf(call.getOperator());
final RexCall call2 = call2(harmonize, translator, call);
switch(nullAs) {
// Just foldOr
case NOT_POSSIBLE:
case TRUE:
// thus we convert nulls to TRUE and foldOr
case FALSE:
// This should return true iff has TRUE arguments,
// thus we convert nulls to FALSE and foldOr
final List<Expression> expressions = translator.translateList(call2.getOperands(), nullAs);
return Expressions.foldOr(expressions);
case NULL:
case IS_NULL:
case IS_NOT_NULL:
final List<Expression> nullAsFalse = translator.translateList(call2.getOperands(), NullAs.FALSE);
final List<Expression> nullAsIsNull = translator.translateList(call2.getOperands(), NullAs.IS_NULL);
Expression hasTrue = Expressions.foldOr(nullAsFalse);
Expression hasNull = Expressions.foldOr(nullAsIsNull);
Expression result = nullAs.handle(Expressions.condition(hasTrue, BOXED_TRUE_EXPR, Expressions.condition(hasNull, NULL_EXPR, BOXED_FALSE_EXPR)));
return result;
default:
throw new IllegalArgumentException("Unknown nullAs when implementing OR: " + nullAs);
}
}
};
case NOT:
// else false.
return new CallImplementor() {
public Expression implement(RexToLixTranslator translator, RexCall call, NullAs nullAs) {
switch(nullAs) {
case NULL:
return Expressions.call(BuiltInMethod.NOT.method, translator.translateList(call.getOperands(), nullAs));
default:
return Expressions.not(translator.translate(call.getOperands().get(0), negate(nullAs)));
}
}
private NullAs negate(NullAs nullAs) {
switch(nullAs) {
case FALSE:
return NullAs.TRUE;
case TRUE:
return NullAs.FALSE;
default:
return nullAs;
}
}
};
case NONE:
return new CallImplementor() {
public Expression implement(RexToLixTranslator translator, RexCall call, NullAs nullAs) {
final RexCall call2 = call2(false, translator, call);
return implementCall(translator, call2, implementor, nullAs);
}
};
default:
throw new AssertionError(nullPolicy);
}
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rex.RexCall in project calcite by apache.
the class RexToLixTranslator method translate0.
/**
* Translates an expression that is not in the cache.
*
* @param expr Expression
* @param nullAs If false, if expression is definitely not null at
* runtime. Therefore we can optimize. For example, we can cast to int
* using x.intValue().
* @return Translated expression
*/
private Expression translate0(RexNode expr, RexImpTable.NullAs nullAs, Type storageType) {
if (nullAs == RexImpTable.NullAs.NULL && !expr.getType().isNullable()) {
nullAs = RexImpTable.NullAs.NOT_POSSIBLE;
}
switch(expr.getKind()) {
case INPUT_REF:
final int index = ((RexInputRef) expr).getIndex();
Expression x = inputGetter.field(list, index, storageType);
// safe to share
Expression input = list.append("inp" + index + "_", x);
if (nullAs == RexImpTable.NullAs.NOT_POSSIBLE && input.type.equals(storageType)) {
// unboxing via nullAs.handle below.
return input;
}
return handleNull(input, nullAs);
case LOCAL_REF:
return translate(deref(expr), nullAs, storageType);
case LITERAL:
return translateLiteral((RexLiteral) expr, nullifyType(expr.getType(), isNullable(expr) && nullAs != RexImpTable.NullAs.NOT_POSSIBLE), typeFactory, nullAs);
case DYNAMIC_PARAM:
return translateParameter((RexDynamicParam) expr, nullAs, storageType);
case CORREL_VARIABLE:
throw new RuntimeException("Cannot translate " + expr + ". Correlated" + " variables should always be referenced by field access");
case FIELD_ACCESS:
RexFieldAccess fieldAccess = (RexFieldAccess) expr;
RexNode target = deref(fieldAccess.getReferenceExpr());
// only $cor.field access is supported
if (!(target instanceof RexCorrelVariable)) {
throw new RuntimeException("cannot translate expression " + expr);
}
if (correlates == null) {
throw new RuntimeException("Cannot translate " + expr + " since " + "correlate variables resolver is not defined");
}
InputGetter getter = correlates.apply(((RexCorrelVariable) target).getName());
return getter.field(list, fieldAccess.getField().getIndex(), storageType);
default:
if (expr instanceof RexCall) {
return translateCall((RexCall) expr, nullAs);
}
throw new RuntimeException("cannot translate expression " + expr);
}
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rex.RexCall in project calcite by apache.
the class EnumerableTableFunctionScan method isQueryable.
private boolean isQueryable() {
if (!(getCall() instanceof RexCall)) {
return false;
}
final RexCall call = (RexCall) getCall();
if (!(call.getOperator() instanceof SqlUserDefinedTableFunction)) {
return false;
}
final SqlUserDefinedTableFunction udtf = (SqlUserDefinedTableFunction) call.getOperator();
if (!(udtf.getFunction() instanceof TableFunctionImpl)) {
return false;
}
final TableFunctionImpl tableFunction = (TableFunctionImpl) udtf.getFunction();
final Method method = tableFunction.method;
return QueryableTable.class.isAssignableFrom(method.getReturnType());
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rex.RexCall in project calcite by apache.
the class AbstractMaterializedViewRule method replaceWithOriginalReferences.
/**
* Given the input expression, it will replace (sub)expressions when possible
* using the content of the mapping. In particular, the mapping contains the
* digest of the expression and the index that the replacement input ref should
* point to.
*/
private static RexNode replaceWithOriginalReferences(final RexBuilder rexBuilder, final RelNode node, final NodeLineage nodeLineage, final RexNode exprToRewrite) {
// Currently we allow the following:
// 1) compensation pred can be directly map to expression
// 2) all references in compensation pred can be map to expressions
// We support bypassing lossless casts.
RexShuttle visitor = new RexShuttle() {
@Override
public RexNode visitCall(RexCall call) {
RexNode rw = replace(call);
return rw != null ? rw : super.visitCall(call);
}
@Override
public RexNode visitTableInputRef(RexTableInputRef inputRef) {
RexNode rw = replace(inputRef);
return rw != null ? rw : super.visitTableInputRef(inputRef);
}
private RexNode replace(RexNode e) {
Integer pos = nodeLineage.exprsLineage.get(e.toString());
if (pos != null) {
// Found it
return rexBuilder.makeInputRef(node, pos);
}
pos = nodeLineage.exprsLineageLosslessCasts.get(e.toString());
if (pos != null) {
// Found it
return rexBuilder.makeCast(e.getType(), rexBuilder.makeInputRef(node, pos));
}
return null;
}
};
return visitor.apply(exprToRewrite);
}
use of org.apache.beam.vendor.calcite.v1_28_0.org.apache.calcite.rex.RexCall in project calcite by apache.
the class AbstractMaterializedViewRule method perform.
/**
* Rewriting logic is based on "Optimizing Queries Using Materialized Views:
* A Practical, Scalable Solution" by Goldstein and Larson.
*
* <p>On the query side, rules matches a Project-node chain or node, where node
* is either an Aggregate or a Join. Subplan rooted at the node operator must
* be composed of one or more of the following operators: TableScan, Project,
* Filter, and Join.
*
* <p>For each join MV, we need to check the following:
* <ol>
* <li> The plan rooted at the Join operator in the view produces all rows
* needed by the plan rooted at the Join operator in the query.</li>
* <li> All columns required by compensating predicates, i.e., predicates that
* need to be enforced over the view, are available at the view output.</li>
* <li> All output expressions can be computed from the output of the view.</li>
* <li> All output rows occur with the correct duplication factor. We might
* rely on existing Unique-Key - Foreign-Key relationships to extract that
* information.</li>
* </ol>
*
* <p>In turn, for each aggregate MV, we need to check the following:
* <ol>
* <li> The plan rooted at the Aggregate operator in the view produces all rows
* needed by the plan rooted at the Aggregate operator in the query.</li>
* <li> All columns required by compensating predicates, i.e., predicates that
* need to be enforced over the view, are available at the view output.</li>
* <li> The grouping columns in the query are a subset of the grouping columns
* in the view.</li>
* <li> All columns required to perform further grouping are available in the
* view output.</li>
* <li> All columns required to compute output expressions are available in the
* view output.</li>
* </ol>
*
* <p>The rule contains multiple extensions compared to the original paper. One of
* them is the possibility of creating rewritings using Union operators, e.g., if
* the result of a query is partially contained in the materialized view.
*/
protected void perform(RelOptRuleCall call, Project topProject, RelNode node) {
final RexBuilder rexBuilder = node.getCluster().getRexBuilder();
final RelMetadataQuery mq = RelMetadataQuery.instance();
final RelOptPlanner planner = call.getPlanner();
final RexExecutor executor = Util.first(planner.getExecutor(), RexUtil.EXECUTOR);
final RelOptPredicateList predicates = RelOptPredicateList.EMPTY;
final RexSimplify simplify = new RexSimplify(rexBuilder, predicates, true, executor);
final List<RelOptMaterialization> materializations = (planner instanceof VolcanoPlanner) ? ((VolcanoPlanner) planner).getMaterializations() : ImmutableList.<RelOptMaterialization>of();
if (!materializations.isEmpty()) {
// try to generate a rewriting are met
if (!isValidPlan(topProject, node, mq)) {
return;
}
// Obtain applicable (filtered) materializations
// TODO: Filtering of relevant materializations needs to be
// improved so we gather only materializations that might
// actually generate a valid rewriting.
final List<RelOptMaterialization> applicableMaterializations = RelOptMaterializations.getApplicableMaterializations(node, materializations);
if (!applicableMaterializations.isEmpty()) {
// 2. Initialize all query related auxiliary data structures
// that will be used throughout query rewriting process
// Generate query table references
final Set<RelTableRef> queryTableRefs = mq.getTableReferences(node);
if (queryTableRefs == null) {
// Bail out
return;
}
// Extract query predicates
final RelOptPredicateList queryPredicateList = mq.getAllPredicates(node);
if (queryPredicateList == null) {
// Bail out
return;
}
final RexNode pred = simplify.simplify(RexUtil.composeConjunction(rexBuilder, queryPredicateList.pulledUpPredicates, false));
final Triple<RexNode, RexNode, RexNode> queryPreds = splitPredicates(rexBuilder, pred);
// Extract query equivalence classes. An equivalence class is a set
// of columns in the query output that are known to be equal.
final EquivalenceClasses qEC = new EquivalenceClasses();
for (RexNode conj : RelOptUtil.conjunctions(queryPreds.getLeft())) {
assert conj.isA(SqlKind.EQUALS);
RexCall equiCond = (RexCall) conj;
qEC.addEquivalenceClass((RexTableInputRef) equiCond.getOperands().get(0), (RexTableInputRef) equiCond.getOperands().get(1));
}
// rewrite the given query
for (RelOptMaterialization materialization : applicableMaterializations) {
RelNode view = materialization.tableRel;
Project topViewProject;
RelNode viewNode;
if (materialization.queryRel instanceof Project) {
topViewProject = (Project) materialization.queryRel;
viewNode = topViewProject.getInput();
} else {
topViewProject = null;
viewNode = materialization.queryRel;
}
// 3.1. View checks before proceeding
if (!isValidPlan(topViewProject, viewNode, mq)) {
// Skip it
continue;
}
// 3.2. Initialize all query related auxiliary data structures
// that will be used throughout query rewriting process
// Extract view predicates
final RelOptPredicateList viewPredicateList = mq.getAllPredicates(viewNode);
if (viewPredicateList == null) {
// Skip it
continue;
}
final RexNode viewPred = simplify.simplify(RexUtil.composeConjunction(rexBuilder, viewPredicateList.pulledUpPredicates, false));
final Triple<RexNode, RexNode, RexNode> viewPreds = splitPredicates(rexBuilder, viewPred);
// Extract view table references
final Set<RelTableRef> viewTableRefs = mq.getTableReferences(viewNode);
if (viewTableRefs == null) {
// Bail out
return;
}
// Extract view tables
MatchModality matchModality;
Multimap<RexTableInputRef, RexTableInputRef> compensationEquiColumns = ArrayListMultimap.create();
if (!queryTableRefs.equals(viewTableRefs)) {
// subset of query tables (add additional tables through joins if possible)
if (viewTableRefs.containsAll(queryTableRefs)) {
matchModality = MatchModality.QUERY_PARTIAL;
final EquivalenceClasses vEC = new EquivalenceClasses();
for (RexNode conj : RelOptUtil.conjunctions(viewPreds.getLeft())) {
assert conj.isA(SqlKind.EQUALS);
RexCall equiCond = (RexCall) conj;
vEC.addEquivalenceClass((RexTableInputRef) equiCond.getOperands().get(0), (RexTableInputRef) equiCond.getOperands().get(1));
}
if (!compensatePartial(viewTableRefs, vEC, queryTableRefs, compensationEquiColumns)) {
// Cannot rewrite, skip it
continue;
}
} else if (queryTableRefs.containsAll(viewTableRefs)) {
matchModality = MatchModality.VIEW_PARTIAL;
ViewPartialRewriting partialRewritingResult = compensateViewPartial(call.builder(), rexBuilder, mq, view, topProject, node, queryTableRefs, qEC, topViewProject, viewNode, viewTableRefs);
if (partialRewritingResult == null) {
// Cannot rewrite, skip it
continue;
}
// Rewrite succeeded
view = partialRewritingResult.newView;
topViewProject = partialRewritingResult.newTopViewProject;
viewNode = partialRewritingResult.newViewNode;
} else {
// Skip it
continue;
}
} else {
matchModality = MatchModality.COMPLETE;
}
// 4. We map every table in the query to a table with the same qualified
// name (all query tables are contained in the view, thus this is equivalent
// to mapping every table in the query to a view table).
final Multimap<RelTableRef, RelTableRef> multiMapTables = ArrayListMultimap.create();
for (RelTableRef queryTableRef1 : queryTableRefs) {
for (RelTableRef queryTableRef2 : queryTableRefs) {
if (queryTableRef1.getQualifiedName().equals(queryTableRef2.getQualifiedName())) {
multiMapTables.put(queryTableRef1, queryTableRef2);
}
}
}
// If a table is used multiple times, we will create multiple mappings,
// and we will try to rewrite the query using each of the mappings.
// Then, we will try to map every source table (query) to a target
// table (view), and if we are successful, we will try to create
// compensation predicates to filter the view results further
// (if needed).
final List<BiMap<RelTableRef, RelTableRef>> flatListMappings = generateTableMappings(multiMapTables);
for (BiMap<RelTableRef, RelTableRef> queryToViewTableMapping : flatListMappings) {
// TableMapping : mapping query tables -> view tables
// 4.0. If compensation equivalence classes exist, we need to add
// the mapping to the query mapping
final EquivalenceClasses currQEC = EquivalenceClasses.copy(qEC);
if (matchModality == MatchModality.QUERY_PARTIAL) {
for (Entry<RexTableInputRef, RexTableInputRef> e : compensationEquiColumns.entries()) {
// Copy origin
RelTableRef queryTableRef = queryToViewTableMapping.inverse().get(e.getKey().getTableRef());
RexTableInputRef queryColumnRef = RexTableInputRef.of(queryTableRef, e.getKey().getIndex(), e.getKey().getType());
// Add to query equivalence classes and table mapping
currQEC.addEquivalenceClass(queryColumnRef, e.getValue());
queryToViewTableMapping.put(e.getValue().getTableRef(), // identity
e.getValue().getTableRef());
}
}
// 4.1. Compute compensation predicates, i.e., predicates that need to be
// enforced over the view to retain query semantics. The resulting predicates
// are expressed using {@link RexTableInputRef} over the query.
// First, to establish relationship, we swap column references of the view
// predicates to point to query tables and compute equivalence classes.
final RexNode viewColumnsEquiPred = RexUtil.swapTableReferences(rexBuilder, viewPreds.getLeft(), queryToViewTableMapping.inverse());
final EquivalenceClasses queryBasedVEC = new EquivalenceClasses();
for (RexNode conj : RelOptUtil.conjunctions(viewColumnsEquiPred)) {
assert conj.isA(SqlKind.EQUALS);
RexCall equiCond = (RexCall) conj;
queryBasedVEC.addEquivalenceClass((RexTableInputRef) equiCond.getOperands().get(0), (RexTableInputRef) equiCond.getOperands().get(1));
}
Triple<RexNode, RexNode, RexNode> compensationPreds = computeCompensationPredicates(rexBuilder, simplify, currQEC, queryPreds, queryBasedVEC, viewPreds, queryToViewTableMapping);
if (compensationPreds == null && generateUnionRewriting) {
// Attempt partial rewriting using union operator. This rewriting
// will read some data from the view and the rest of the data from
// the query computation. The resulting predicates are expressed
// using {@link RexTableInputRef} over the view.
compensationPreds = computeCompensationPredicates(rexBuilder, simplify, queryBasedVEC, viewPreds, currQEC, queryPreds, queryToViewTableMapping.inverse());
if (compensationPreds == null) {
// This was our last chance to use the view, skip it
continue;
}
RexNode compensationColumnsEquiPred = compensationPreds.getLeft();
RexNode otherCompensationPred = RexUtil.composeConjunction(rexBuilder, ImmutableList.of(compensationPreds.getMiddle(), compensationPreds.getRight()), false);
assert !compensationColumnsEquiPred.isAlwaysTrue() || !otherCompensationPred.isAlwaysTrue();
// b. Generate union branch (query).
final RelNode unionInputQuery = rewriteQuery(call.builder(), rexBuilder, simplify, mq, compensationColumnsEquiPred, otherCompensationPred, topProject, node, queryToViewTableMapping, queryBasedVEC, currQEC);
if (unionInputQuery == null) {
// Skip it
continue;
}
// c. Generate union branch (view).
// We trigger the unifying method. This method will either create a Project
// or an Aggregate operator on top of the view. It will also compute the
// output expressions for the query.
final RelNode unionInputView = rewriteView(call.builder(), rexBuilder, simplify, mq, matchModality, true, view, topProject, node, topViewProject, viewNode, queryToViewTableMapping, currQEC);
if (unionInputView == null) {
// Skip it
continue;
}
// d. Generate final rewriting (union).
final RelNode result = createUnion(call.builder(), rexBuilder, topProject, unionInputQuery, unionInputView);
if (result == null) {
// Skip it
continue;
}
call.transformTo(result);
} else if (compensationPreds != null) {
RexNode compensationColumnsEquiPred = compensationPreds.getLeft();
RexNode otherCompensationPred = RexUtil.composeConjunction(rexBuilder, ImmutableList.of(compensationPreds.getMiddle(), compensationPreds.getRight()), false);
// a. Compute final compensation predicate.
if (!compensationColumnsEquiPred.isAlwaysTrue() || !otherCompensationPred.isAlwaysTrue()) {
// All columns required by compensating predicates must be contained
// in the view output (condition 2).
List<RexNode> viewExprs = topViewProject == null ? extractReferences(rexBuilder, view) : topViewProject.getChildExps();
// since we want to enforce the rest
if (!compensationColumnsEquiPred.isAlwaysTrue()) {
compensationColumnsEquiPred = rewriteExpression(rexBuilder, mq, view, viewNode, viewExprs, queryToViewTableMapping.inverse(), queryBasedVEC, false, compensationColumnsEquiPred);
if (compensationColumnsEquiPred == null) {
// Skip it
continue;
}
}
// For the rest, we use the query equivalence classes
if (!otherCompensationPred.isAlwaysTrue()) {
otherCompensationPred = rewriteExpression(rexBuilder, mq, view, viewNode, viewExprs, queryToViewTableMapping.inverse(), currQEC, true, otherCompensationPred);
if (otherCompensationPred == null) {
// Skip it
continue;
}
}
}
final RexNode viewCompensationPred = RexUtil.composeConjunction(rexBuilder, ImmutableList.of(compensationColumnsEquiPred, otherCompensationPred), false);
// b. Generate final rewriting if possible.
// First, we add the compensation predicate (if any) on top of the view.
// Then, we trigger the unifying method. This method will either create a
// Project or an Aggregate operator on top of the view. It will also compute
// the output expressions for the query.
RelBuilder builder = call.builder();
RelNode viewWithFilter;
if (!viewCompensationPred.isAlwaysTrue()) {
RexNode newPred = simplify.simplify(viewCompensationPred);
viewWithFilter = builder.push(view).filter(newPred).build();
// We add (and push) the filter to the view plan before triggering the rewriting.
// This is useful in case some of the columns can be folded to same value after
// filter is added.
Pair<RelNode, RelNode> pushedNodes = pushFilterToOriginalViewPlan(builder, topViewProject, viewNode, newPred);
topViewProject = (Project) pushedNodes.left;
viewNode = pushedNodes.right;
} else {
viewWithFilter = builder.push(view).build();
}
final RelNode result = rewriteView(builder, rexBuilder, simplify, mq, matchModality, false, viewWithFilter, topProject, node, topViewProject, viewNode, queryToViewTableMapping, currQEC);
if (result == null) {
// Skip it
continue;
}
call.transformTo(result);
}
// end else
}
}
}
}
}
Aggregations