use of org.apache.commons.math3.fitting.WeightedObservedPoints in project GDSC-SMLM by aherbert.
the class MeanVarianceTest method run.
/*
* (non-Javadoc)
*
* @see ij.plugin.PlugIn#run(java.lang.String)
*/
public void run(String arg) {
SMLMUsageTracker.recordPlugin(this.getClass(), arg);
if (Utils.isExtraOptions()) {
ImagePlus imp = WindowManager.getCurrentImage();
if (imp.getStackSize() > 1) {
GenericDialog gd = new GenericDialog(TITLE);
gd.addMessage("Perform single image analysis on the current image?");
gd.addNumericField("Bias", _bias, 0);
gd.showDialog();
if (gd.wasCanceled())
return;
singleImage = true;
_bias = Math.abs(gd.getNextNumber());
} else {
IJ.error(TITLE, "Single-image mode requires a stack");
return;
}
}
List<ImageSample> images;
String inputDirectory = "";
if (singleImage) {
IJ.showStatus("Loading images...");
images = getImages();
if (images.size() == 0) {
IJ.error(TITLE, "Not enough images for analysis");
return;
}
} else {
inputDirectory = IJ.getDirectory("Select image series ...");
if (inputDirectory == null)
return;
SeriesOpener series = new SeriesOpener(inputDirectory, false, 0);
series.setVariableSize(true);
if (series.getNumberOfImages() < 3) {
IJ.error(TITLE, "Not enough images in the selected directory");
return;
}
if (!IJ.showMessageWithCancel(TITLE, String.format("Analyse %d images, first image:\n%s", series.getNumberOfImages(), series.getImageList()[0]))) {
return;
}
IJ.showStatus("Loading images");
images = getImages(series);
if (images.size() < 3) {
IJ.error(TITLE, "Not enough images for analysis");
return;
}
if (images.get(0).exposure != 0) {
IJ.error(TITLE, "First image in series must have exposure 0 (Bias image)");
return;
}
}
boolean emMode = (arg != null && arg.contains("em"));
GenericDialog gd = new GenericDialog(TITLE);
gd.addMessage("Set the output options:");
gd.addCheckbox("Show_table", showTable);
gd.addCheckbox("Show_charts", showCharts);
if (emMode) {
// Ask the user for the camera gain ...
gd.addMessage("Estimating the EM-gain requires the camera gain without EM readout enabled");
gd.addNumericField("Camera_gain (ADU/e-)", cameraGain, 4);
}
gd.showDialog();
if (gd.wasCanceled())
return;
showTable = gd.getNextBoolean();
showCharts = gd.getNextBoolean();
if (emMode) {
cameraGain = gd.getNextNumber();
}
IJ.showStatus("Computing mean & variance");
final double nImages = images.size();
for (int i = 0; i < images.size(); i++) {
IJ.showStatus(String.format("Computing mean & variance %d/%d", i + 1, images.size()));
images.get(i).compute(singleImage, i / nImages, (i + 1) / nImages);
}
IJ.showProgress(1);
IJ.showStatus("Computing results");
// Allow user to input multiple bias images
int start = 0;
Statistics biasStats = new Statistics();
Statistics noiseStats = new Statistics();
final double bias;
if (singleImage) {
bias = _bias;
} else {
while (start < images.size()) {
ImageSample sample = images.get(start);
if (sample.exposure == 0) {
biasStats.add(sample.means);
for (PairSample pair : sample.samples) {
noiseStats.add(pair.variance);
}
start++;
} else
break;
}
bias = biasStats.getMean();
}
// Get the mean-variance data
int total = 0;
for (int i = start; i < images.size(); i++) total += images.get(i).samples.size();
if (showTable && total > 2000) {
gd = new GenericDialog(TITLE);
gd.addMessage("Table output requires " + total + " entries.\n \nYou may want to disable the table.");
gd.addCheckbox("Show_table", showTable);
gd.showDialog();
if (gd.wasCanceled())
return;
showTable = gd.getNextBoolean();
}
TextWindow results = (showTable) ? createResultsWindow() : null;
double[] mean = new double[total];
double[] variance = new double[mean.length];
Statistics gainStats = (singleImage) ? new StoredDataStatistics(total) : new Statistics();
final WeightedObservedPoints obs = new WeightedObservedPoints();
for (int i = (singleImage) ? 0 : start, j = 0; i < images.size(); i++) {
StringBuilder sb = (showTable) ? new StringBuilder() : null;
ImageSample sample = images.get(i);
for (PairSample pair : sample.samples) {
if (j % 16 == 0)
IJ.showProgress(j, total);
mean[j] = pair.getMean();
variance[j] = pair.variance;
// Gain is in ADU / e
double gain = variance[j] / (mean[j] - bias);
gainStats.add(gain);
obs.add(mean[j], variance[j]);
if (emMode) {
gain /= (2 * cameraGain);
}
if (showTable) {
sb.append(sample.title).append("\t");
sb.append(sample.exposure).append("\t");
sb.append(pair.slice1).append("\t");
sb.append(pair.slice2).append("\t");
sb.append(IJ.d2s(pair.mean1, 2)).append("\t");
sb.append(IJ.d2s(pair.mean2, 2)).append("\t");
sb.append(IJ.d2s(mean[j], 2)).append("\t");
sb.append(IJ.d2s(variance[j], 2)).append("\t");
sb.append(Utils.rounded(gain, 4)).append("\n");
}
j++;
}
if (showTable)
results.append(sb.toString());
}
IJ.showProgress(1);
if (singleImage) {
StoredDataStatistics stats = (StoredDataStatistics) gainStats;
Utils.log(TITLE);
if (emMode) {
double[] values = stats.getValues();
MathArrays.scaleInPlace(0.5, values);
stats = new StoredDataStatistics(values);
}
if (showCharts) {
// Plot the gain over time
String title = TITLE + " Gain vs Frame";
Plot2 plot = new Plot2(title, "Slice", "Gain", Utils.newArray(gainStats.getN(), 1, 1.0), stats.getValues());
PlotWindow pw = Utils.display(title, plot);
// Show a histogram
String label = String.format("Mean = %s, Median = %s", Utils.rounded(stats.getMean()), Utils.rounded(stats.getMedian()));
int id = Utils.showHistogram(TITLE, stats, "Gain", 0, 1, 100, true, label);
if (Utils.isNewWindow()) {
Point point = pw.getLocation();
point.x = pw.getLocation().x;
point.y += pw.getHeight();
WindowManager.getImage(id).getWindow().setLocation(point);
}
}
Utils.log("Single-image mode: %s camera", (emMode) ? "EM-CCD" : "Standard");
final double gain = stats.getMedian();
if (emMode) {
final double totalGain = gain;
final double emGain = totalGain / cameraGain;
Utils.log(" Gain = 1 / %s (ADU/e-)", Utils.rounded(cameraGain, 4));
Utils.log(" EM-Gain = %s", Utils.rounded(emGain, 4));
Utils.log(" Total Gain = %s (ADU/e-)", Utils.rounded(totalGain, 4));
} else {
cameraGain = gain;
Utils.log(" Gain = 1 / %s (ADU/e-)", Utils.rounded(cameraGain, 4));
}
} else {
IJ.showStatus("Computing fit");
// Sort
int[] indices = rank(mean);
mean = reorder(mean, indices);
variance = reorder(variance, indices);
// Compute optimal coefficients.
// a - b x
final double[] init = { 0, 1 / gainStats.getMean() };
final PolynomialCurveFitter fitter = PolynomialCurveFitter.create(2).withStartPoint(init);
final double[] best = fitter.fit(obs.toList());
// Construct the polynomial that best fits the data.
final PolynomialFunction fitted = new PolynomialFunction(best);
if (showCharts) {
// Plot mean verses variance. Gradient is gain in ADU/e.
String title = TITLE + " results";
Plot2 plot = new Plot2(title, "Mean", "Variance");
double[] xlimits = Maths.limits(mean);
double[] ylimits = Maths.limits(variance);
double xrange = (xlimits[1] - xlimits[0]) * 0.05;
if (xrange == 0)
xrange = 0.05;
double yrange = (ylimits[1] - ylimits[0]) * 0.05;
if (yrange == 0)
yrange = 0.05;
plot.setLimits(xlimits[0] - xrange, xlimits[1] + xrange, ylimits[0] - yrange, ylimits[1] + yrange);
plot.setColor(Color.blue);
plot.addPoints(mean, variance, Plot2.CROSS);
plot.setColor(Color.red);
plot.addPoints(new double[] { mean[0], mean[mean.length - 1] }, new double[] { fitted.value(mean[0]), fitted.value(mean[mean.length - 1]) }, Plot2.LINE);
Utils.display(title, plot);
}
final double avBiasNoise = Math.sqrt(noiseStats.getMean());
Utils.log(TITLE);
Utils.log(" Directory = %s", inputDirectory);
Utils.log(" Bias = %s +/- %s (ADU)", Utils.rounded(bias, 4), Utils.rounded(avBiasNoise, 4));
Utils.log(" Variance = %s + %s * mean", Utils.rounded(best[0], 4), Utils.rounded(best[1], 4));
if (emMode) {
final double emGain = best[1] / (2 * cameraGain);
// Noise is standard deviation of the bias image divided by the total gain (in ADU/e-)
final double totalGain = emGain * cameraGain;
Utils.log(" Read Noise = %s (e-) [%s (ADU)]", Utils.rounded(avBiasNoise / totalGain, 4), Utils.rounded(avBiasNoise, 4));
Utils.log(" Gain = 1 / %s (ADU/e-)", Utils.rounded(1 / cameraGain, 4));
Utils.log(" EM-Gain = %s", Utils.rounded(emGain, 4));
Utils.log(" Total Gain = %s (ADU/e-)", Utils.rounded(totalGain, 4));
} else {
// Noise is standard deviation of the bias image divided by the gain (in ADU/e-)
cameraGain = best[1];
final double readNoise = avBiasNoise / cameraGain;
Utils.log(" Read Noise = %s (e-) [%s (ADU)]", Utils.rounded(readNoise, 4), Utils.rounded(readNoise * cameraGain, 4));
Utils.log(" Gain = 1 / %s (ADU/e-)", Utils.rounded(1 / cameraGain, 4));
}
}
IJ.showStatus("");
}
use of org.apache.commons.math3.fitting.WeightedObservedPoints in project GDSC-SMLM by aherbert.
the class FIRE method runQEstimation.
private void runQEstimation() {
IJ.showStatus(TITLE + " ...");
if (!showQEstimationInputDialog())
return;
MemoryPeakResults results = ResultsManager.loadInputResults(inputOption, false);
if (results == null || results.size() == 0) {
IJ.error(TITLE, "No results could be loaded");
return;
}
if (results.getCalibration() == null) {
IJ.error(TITLE, "The results are not calibrated");
return;
}
results = cropToRoi(results);
if (results.size() < 2) {
IJ.error(TITLE, "No results within the crop region");
return;
}
initialise(results, null);
// We need localisation precision.
// Build a histogram of the localisation precision.
// Get the initial mean and SD and plot as a Gaussian.
PrecisionHistogram histogram = calculatePrecisionHistogram();
if (histogram == null) {
IJ.error(TITLE, "No localisation precision available.\n \nPlease choose " + PrecisionMethod.FIXED + " and enter a precision mean and SD.");
return;
}
StoredDataStatistics precision = histogram.precision;
//String name = results.getName();
double fourierImageScale = SCALE_VALUES[imageScaleIndex];
int imageSize = IMAGE_SIZE_VALUES[imageSizeIndex];
// Create the image and compute the numerator of FRC.
// Do not use the signal so results.size() is the number of localisations.
IJ.showStatus("Computing FRC curve ...");
FireImages images = createImages(fourierImageScale, imageSize, false);
// DEBUGGING - Save the two images to disk. Load the images into the Matlab
// code that calculates the Q-estimation and make this plugin match the functionality.
//IJ.save(new ImagePlus("i1", images.ip1), "/scratch/i1.tif");
//IJ.save(new ImagePlus("i2", images.ip2), "/scratch/i2.tif");
FRC frc = new FRC();
frc.progress = progress;
frc.setFourierMethod(fourierMethod);
frc.setSamplingMethod(samplingMethod);
frc.setPerimeterSamplingFactor(perimeterSamplingFactor);
FRCCurve frcCurve = frc.calculateFrcCurve(images.ip1, images.ip2, images.nmPerPixel);
if (frcCurve == null) {
IJ.error(TITLE, "Failed to compute FRC curve");
return;
}
IJ.showStatus("Running Q-estimation ...");
// Note:
// The method implemented here is based on Matlab code provided by Bernd Rieger.
// The idea is to compute the spurious correlation component of the FRC Numerator
// using an initial estimate of distribution of the localisation precision (assumed
// to be Gaussian). This component is the contribution of repeat localisations of
// the same molecule to the numerator and is modelled as an exponential decay
// (exp_decay). The component is scaled by the Q-value which
// is the average number of times a molecule is seen in addition to the first time.
// At large spatial frequencies the scaled component should match the numerator,
// i.e. at high resolution (low FIRE number) the numerator is made up of repeat
// localisations of the same molecule and not actual structure in the image.
// The best fit is where the numerator equals the scaled component, i.e. num / (q*exp_decay) == 1.
// The FRC Numerator is plotted and Q can be determined by
// adjusting Q and the precision mean and SD to maximise the cost function.
// This can be done interactively by the user with the effect on the FRC curve
// dynamically updated and displayed.
// Compute the scaled FRC numerator
double qNorm = (1 / frcCurve.mean1 + 1 / frcCurve.mean2);
double[] frcnum = new double[frcCurve.getSize()];
for (int i = 0; i < frcnum.length; i++) {
FRCCurveResult r = frcCurve.get(i);
frcnum[i] = qNorm * r.getNumerator() / r.getNumberOfSamples();
}
// Compute the spatial frequency and the region for curve fitting
double[] q = FRC.computeQ(frcCurve, false);
int low = 0, high = q.length;
while (high > 0 && q[high - 1] > maxQ) high--;
while (low < q.length && q[low] < minQ) low++;
// Require we fit at least 10% of the curve
if (high - low < q.length * 0.1) {
IJ.error(TITLE, "Not enough points for Q estimation");
return;
}
// Obtain initial estimate of Q plateau height and decay.
// This can be done by fitting the precision histogram and then fixing the mean and sigma.
// Or it can be done by allowing the precision to be sampled and the mean and sigma
// become parameters for fitting.
// Check if we can sample precision values
boolean sampleDecay = precision != null && FIRE.sampleDecay;
double[] exp_decay;
if (sampleDecay) {
// Random sample of precision values from the distribution is used to
// construct the decay curve
int[] sample = Random.sample(10000, precision.getN(), new Well19937c());
final double four_pi2 = 4 * Math.PI * Math.PI;
double[] pre = new double[q.length];
for (int i = 1; i < q.length; i++) pre[i] = -four_pi2 * q[i] * q[i];
// Sample
final int n = sample.length;
double[] hq = new double[n];
for (int j = 0; j < n; j++) {
// Scale to SR pixels
double s2 = precision.getValue(sample[j]) / images.nmPerPixel;
s2 *= s2;
for (int i = 1; i < q.length; i++) hq[i] += FastMath.exp(pre[i] * s2);
}
for (int i = 1; i < q.length; i++) hq[i] /= n;
exp_decay = new double[q.length];
exp_decay[0] = 1;
for (int i = 1; i < q.length; i++) {
double sinc_q = sinc(Math.PI * q[i]);
exp_decay[i] = sinc_q * sinc_q * hq[i];
}
} else {
// Note: The sigma mean and std should be in the units of super-resolution
// pixels so scale to SR pixels
exp_decay = computeExpDecay(histogram.mean / images.nmPerPixel, histogram.sigma / images.nmPerPixel, q);
}
// Smoothing
double[] smooth;
if (loessSmoothing) {
// Note: This computes the log then smooths it
double bandwidth = 0.1;
int robustness = 0;
double[] l = new double[exp_decay.length];
for (int i = 0; i < l.length; i++) {
// Original Matlab code computes the log for each array.
// This is equivalent to a single log on the fraction of the two.
// Perhaps the two log method is more numerically stable.
//l[i] = Math.log(Math.abs(frcnum[i])) - Math.log(exp_decay[i]);
l[i] = Math.log(Math.abs(frcnum[i] / exp_decay[i]));
}
try {
LoessInterpolator loess = new LoessInterpolator(bandwidth, robustness);
smooth = loess.smooth(q, l);
} catch (Exception e) {
IJ.error(TITLE, "LOESS smoothing failed");
return;
}
} else {
// Note: This smooths the curve before computing the log
double[] norm = new double[exp_decay.length];
for (int i = 0; i < norm.length; i++) {
norm[i] = frcnum[i] / exp_decay[i];
}
// Median window of 5 == radius of 2
MedianWindow mw = new MedianWindow(norm, 2);
smooth = new double[exp_decay.length];
for (int i = 0; i < norm.length; i++) {
smooth[i] = Math.log(Math.abs(mw.getMedian()));
mw.increment();
}
}
// Fit with quadratic to find the initial guess.
// Note: example Matlab code frc_Qcorrection7.m identifies regions of the
// smoothed log curve with low derivative and only fits those. The fit is
// used for the final estimate. Fitting a subset with low derivative is not
// implemented here since the initial estimate is subsequently optimised
// to maximise a cost function.
Quadratic curve = new Quadratic();
SimpleCurveFitter fit = SimpleCurveFitter.create(curve, new double[2]);
WeightedObservedPoints points = new WeightedObservedPoints();
for (int i = low; i < high; i++) points.add(q[i], smooth[i]);
double[] estimate = fit.fit(points.toList());
double qValue = FastMath.exp(estimate[0]);
//System.out.printf("Initial q-estimate = %s => %.3f\n", Arrays.toString(estimate), qValue);
// This could be made an option. Just use for debugging
boolean debug = false;
if (debug) {
// Plot the initial fit and the fit curve
double[] qScaled = FRC.computeQ(frcCurve, true);
double[] line = new double[q.length];
for (int i = 0; i < q.length; i++) line[i] = curve.value(q[i], estimate);
String title = TITLE + " Initial fit";
Plot2 plot = new Plot2(title, "Spatial Frequency (nm^-1)", "FRC Numerator");
String label = String.format("Q = %.3f", qValue);
plot.addPoints(qScaled, smooth, Plot.LINE);
plot.setColor(Color.red);
plot.addPoints(qScaled, line, Plot.LINE);
plot.setColor(Color.black);
plot.addLabel(0, 0, label);
Utils.display(title, plot, Utils.NO_TO_FRONT);
}
if (fitPrecision) {
// Q - Should this be optional?
if (sampleDecay) {
// If a sample of the precision was used to construct the data for the initial fit
// then update the estimate using the fit result since it will be a better start point.
histogram.sigma = precision.getStandardDeviation();
// Normalise sum-of-squares to the SR pixel size
double meanSumOfSquares = (precision.getSumOfSquares() / (images.nmPerPixel * images.nmPerPixel)) / precision.getN();
histogram.mean = images.nmPerPixel * Math.sqrt(meanSumOfSquares - estimate[1] / (4 * Math.PI * Math.PI));
}
// Do a multivariate fit ...
SimplexOptimizer opt = new SimplexOptimizer(1e-6, 1e-10);
PointValuePair p = null;
MultiPlateauness f = new MultiPlateauness(frcnum, q, low, high);
double[] initial = new double[] { histogram.mean / images.nmPerPixel, histogram.sigma / images.nmPerPixel, qValue };
p = findMin(p, opt, f, scale(initial, 0.1));
p = findMin(p, opt, f, scale(initial, 0.5));
p = findMin(p, opt, f, initial);
p = findMin(p, opt, f, scale(initial, 2));
p = findMin(p, opt, f, scale(initial, 10));
if (p != null) {
double[] point = p.getPointRef();
histogram.mean = point[0] * images.nmPerPixel;
histogram.sigma = point[1] * images.nmPerPixel;
qValue = point[2];
}
} else {
// If so then this should be optional.
if (sampleDecay) {
if (precisionMethod != PrecisionMethod.FIXED) {
histogram.sigma = precision.getStandardDeviation();
// Normalise sum-of-squares to the SR pixel size
double meanSumOfSquares = (precision.getSumOfSquares() / (images.nmPerPixel * images.nmPerPixel)) / precision.getN();
histogram.mean = images.nmPerPixel * Math.sqrt(meanSumOfSquares - estimate[1] / (4 * Math.PI * Math.PI));
}
exp_decay = computeExpDecay(histogram.mean / images.nmPerPixel, histogram.sigma / images.nmPerPixel, q);
}
// Estimate spurious component by promoting plateauness.
// The Matlab code used random initial points for a Simplex optimiser.
// A Brent line search should be pretty deterministic so do simple repeats.
// However it will proceed downhill so if the initial point is wrong then
// it will find a sub-optimal result.
UnivariateOptimizer o = new BrentOptimizer(1e-3, 1e-6);
Plateauness f = new Plateauness(frcnum, exp_decay, low, high);
UnivariatePointValuePair p = null;
p = findMin(p, o, f, qValue, 0.1);
p = findMin(p, o, f, qValue, 0.2);
p = findMin(p, o, f, qValue, 0.333);
p = findMin(p, o, f, qValue, 0.5);
// Do some Simplex repeats as well
SimplexOptimizer opt = new SimplexOptimizer(1e-6, 1e-10);
p = findMin(p, opt, f, qValue * 0.1);
p = findMin(p, opt, f, qValue * 0.5);
p = findMin(p, opt, f, qValue);
p = findMin(p, opt, f, qValue * 2);
p = findMin(p, opt, f, qValue * 10);
if (p != null)
qValue = p.getPoint();
}
QPlot qplot = new QPlot(frcCurve, qValue, low, high);
// Interactive dialog to estimate Q (blinking events per flourophore) using
// sliders for the mean and standard deviation of the localisation precision.
showQEstimationDialog(histogram, qplot, frcCurve, images.nmPerPixel);
IJ.showStatus(TITLE + " complete");
}
use of org.apache.commons.math3.fitting.WeightedObservedPoints in project GDSC-SMLM by aherbert.
the class FIRE method fitGaussian.
/**
* Fit gaussian.
*
* @param x
* the x
* @param y
* the y
* @return new double[] { norm, mean, sigma }
*/
private double[] fitGaussian(float[] x, float[] y) {
WeightedObservedPoints obs = new WeightedObservedPoints();
for (int i = 0; i < x.length; i++) obs.add(x[i], y[i]);
Collection<WeightedObservedPoint> observations = obs.toList();
GaussianCurveFitter fitter = GaussianCurveFitter.create().withMaxIterations(2000);
GaussianCurveFitter.ParameterGuesser guess = new GaussianCurveFitter.ParameterGuesser(observations);
double[] initialGuess = null;
try {
initialGuess = guess.guess();
return fitter.withStartPoint(initialGuess).fit(observations);
} catch (TooManyEvaluationsException e) {
// Use the initial estimate
return initialGuess;
} catch (Exception e) {
// Just in case there is another exception type, or the initial estimate failed
return null;
}
}
use of org.apache.commons.math3.fitting.WeightedObservedPoints in project GDSC-SMLM by aherbert.
the class PCPALMMolecules method fitGaussian.
private double[] fitGaussian(float[] x, float[] y) {
WeightedObservedPoints obs = new WeightedObservedPoints();
for (int i = 0; i < x.length; i++) obs.add(x[i], y[i]);
Collection<WeightedObservedPoint> observations = obs.toList();
GaussianCurveFitter fitter = GaussianCurveFitter.create().withMaxIterations(2000);
GaussianCurveFitter.ParameterGuesser guess = new GaussianCurveFitter.ParameterGuesser(observations);
double[] initialGuess = null;
try {
initialGuess = guess.guess();
return fitter.withStartPoint(initialGuess).fit(observations);
} catch (TooManyEvaluationsException e) {
// Use the initial estimate
return initialGuess;
} catch (Exception e) {
// Just in case there is another exception type, or the initial estimate failed
return null;
}
}
Aggregations