use of org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer.Optimum in project GDSC-SMLM by aherbert.
the class PCPALMFitting method runBoundedOptimiser.
private PointValuePair runBoundedOptimiser(double[][] gr, double[] initialSolution, double[] lB, double[] uB, SumOfSquaresModelFunction function) {
// Create the functions to optimise
ObjectiveFunction objective = new ObjectiveFunction(new SumOfSquaresMultivariateFunction(function));
ObjectiveFunctionGradient gradient = new ObjectiveFunctionGradient(new SumOfSquaresMultivariateVectorFunction(function));
final boolean debug = false;
// Try a BFGS optimiser since this will produce a deterministic solution and can respect bounds.
PointValuePair optimum = null;
boundedEvaluations = 0;
final MaxEval maxEvaluations = new MaxEval(2000);
MultivariateOptimizer opt = null;
for (int iteration = 0; iteration <= fitRestarts; iteration++) {
try {
opt = new BFGSOptimizer();
final double relativeThreshold = 1e-6;
// Configure maximum step length for each dimension using the bounds
double[] stepLength = new double[lB.length];
for (int i = 0; i < stepLength.length; i++) stepLength[i] = (uB[i] - lB[i]) * 0.3333333;
// The GoalType is always minimise so no need to pass this in
optimum = opt.optimize(maxEvaluations, gradient, objective, new InitialGuess((optimum == null) ? initialSolution : optimum.getPointRef()), new SimpleBounds(lB, uB), new BFGSOptimizer.GradientTolerance(relativeThreshold), new BFGSOptimizer.StepLength(stepLength));
if (debug)
System.out.printf("BFGS Iter %d = %g (%d)\n", iteration, optimum.getValue(), opt.getEvaluations());
} catch (TooManyEvaluationsException e) {
// No need to restart
break;
} catch (RuntimeException e) {
// No need to restart
break;
} finally {
boundedEvaluations += opt.getEvaluations();
}
}
// Try a CMAES optimiser which is non-deterministic. To overcome this we perform restarts.
// CMAESOptimiser based on Matlab code:
// https://www.lri.fr/~hansen/cmaes.m
// Take the defaults from the Matlab documentation
//Double.NEGATIVE_INFINITY;
double stopFitness = 0;
boolean isActiveCMA = true;
int diagonalOnly = 0;
int checkFeasableCount = 1;
//Well19937c();
RandomGenerator random = new Well44497b();
boolean generateStatistics = false;
ConvergenceChecker<PointValuePair> checker = new SimpleValueChecker(1e-6, 1e-10);
// The sigma determines the search range for the variables. It should be 1/3 of the initial search region.
double[] range = new double[lB.length];
for (int i = 0; i < lB.length; i++) range[i] = (uB[i] - lB[i]) / 3;
OptimizationData sigma = new CMAESOptimizer.Sigma(range);
OptimizationData popSize = new CMAESOptimizer.PopulationSize((int) (4 + Math.floor(3 * Math.log(initialSolution.length))));
SimpleBounds bounds = new SimpleBounds(lB, uB);
opt = new CMAESOptimizer(maxEvaluations.getMaxEval(), stopFitness, isActiveCMA, diagonalOnly, checkFeasableCount, random, generateStatistics, checker);
// Restart the optimiser several times and take the best answer.
for (int iteration = 0; iteration <= fitRestarts; iteration++) {
try {
// Start from the initial solution
PointValuePair constrainedSolution = opt.optimize(new InitialGuess(initialSolution), objective, GoalType.MINIMIZE, bounds, sigma, popSize, maxEvaluations);
if (debug)
System.out.printf("CMAES Iter %d initial = %g (%d)\n", iteration, constrainedSolution.getValue(), opt.getEvaluations());
boundedEvaluations += opt.getEvaluations();
if (optimum == null || constrainedSolution.getValue() < optimum.getValue()) {
optimum = constrainedSolution;
}
} catch (TooManyEvaluationsException e) {
} catch (TooManyIterationsException e) {
} finally {
boundedEvaluations += maxEvaluations.getMaxEval();
}
if (optimum == null)
continue;
try {
// Also restart from the current optimum
PointValuePair constrainedSolution = opt.optimize(new InitialGuess(optimum.getPointRef()), objective, GoalType.MINIMIZE, bounds, sigma, popSize, maxEvaluations);
if (debug)
System.out.printf("CMAES Iter %d restart = %g (%d)\n", iteration, constrainedSolution.getValue(), opt.getEvaluations());
if (constrainedSolution.getValue() < optimum.getValue()) {
optimum = constrainedSolution;
}
} catch (TooManyEvaluationsException e) {
} catch (TooManyIterationsException e) {
} finally {
boundedEvaluations += maxEvaluations.getMaxEval();
}
}
return optimum;
}
use of org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer.Optimum in project GDSC-SMLM by aherbert.
the class PCPALMMolecules method optimiseLeastSquares.
private double[] optimiseLeastSquares(float[] x, float[] y, double[] initialSolution) {
// Least-squares optimisation using numerical gradients
final SkewNormalDifferentiableFunction function = new SkewNormalDifferentiableFunction(initialSolution);
function.addData(x, y);
LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer();
//@formatter:off
LeastSquaresProblem problem = new LeastSquaresBuilder().maxEvaluations(Integer.MAX_VALUE).maxIterations(3000).start(initialSolution).target(function.calculateTarget()).weight(new DiagonalMatrix(function.calculateWeights())).model(function, new MultivariateMatrixFunction() {
public double[][] value(double[] point) throws IllegalArgumentException {
return function.jacobian(point);
}
}).build();
//@formatter:on
Optimum optimum = optimizer.optimize(problem);
double[] skewParameters = optimum.getPoint().toArray();
return skewParameters;
}
use of org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer.Optimum in project GDSC-SMLM by aherbert.
the class BFGSOptimizer method doOptimize.
/** {@inheritDoc} */
@Override
protected PointValuePair doOptimize() {
final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker();
double[] p = getStartPoint();
// Assume minimisation
sign = -1;
LineStepSearch lineSearch = new LineStepSearch();
// In case there are no restarts
if (restarts <= 0)
return bfgsWithRoundoffCheck(checker, p, lineSearch);
PointValuePair lastResult = null;
PointValuePair result = null;
//int lastConverge = 0;
int iteration = 0;
//int[] count = new int[3];
while (iteration <= restarts) {
iteration++;
result = bfgsWithRoundoffCheck(checker, p, lineSearch);
if (converged == GRADIENT) {
// If no gradient remains then we cannot move anywhere so return
break;
}
if (lastResult != null) {
// Check if the optimum was improved using the convergence criteria
if (checker != null && checker.converged(getIterations(), lastResult, result)) {
break;
}
if (positionChecker.converged(lastResult.getPointRef(), result.getPointRef())) {
break;
}
}
// Store the new optimum and repeat
lastResult = result;
//lastConverge = converged;
p = lastResult.getPointRef();
}
return result;
}
use of org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer.Optimum in project GDSC-SMLM by aherbert.
the class BFGSOptimizer method bfgs.
protected PointValuePair bfgs(ConvergenceChecker<PointValuePair> checker, double[] p, LineStepSearch lineSearch) {
final int n = p.length;
final double EPS = epsilon;
double[] hdg = new double[n];
double[] xi = new double[n];
double[][] hessian = new double[n][n];
// Get the gradient for the the bounded point
applyBounds(p);
double[] g = computeObjectiveGradient(p);
checkGradients(g, p);
// Initialise the hessian and search direction
for (int i = 0; i < n; i++) {
hessian[i][i] = 1.0;
xi[i] = -g[i];
}
PointValuePair current = null;
while (true) {
incrementIterationCount();
// Get the value of the point
double fp = computeObjectiveValue(p);
if (checker != null) {
PointValuePair previous = current;
current = new PointValuePair(p, fp);
if (previous != null && checker.converged(getIterations(), previous, current)) {
// We have found an optimum.
converged = CHECKER;
return current;
}
}
// Move along the search direction.
final double[] pnew;
try {
pnew = lineSearch.lineSearch(p, fp, g, xi);
} catch (LineSearchRoundoffException e) {
// This can happen if the Hessian is nearly singular or non-positive-definite.
// In this case the algorithm should be restarted.
converged = ROUNDOFF_ERROR;
//System.out.printf("Roundoff error, iter=%d\n", getIterations());
return new PointValuePair(p, fp);
}
// We assume the new point is on/within the bounds since the line search is constrained
double fret = lineSearch.f;
// Test for convergence on change in position
if (positionChecker.converged(p, pnew)) {
converged = POSITION;
return new PointValuePair(pnew, fret);
}
// Update the line direction
for (int i = 0; i < n; i++) {
xi[i] = pnew[i] - p[i];
}
p = pnew;
// Save the old gradient
double[] dg = g;
// Get the gradient for the new point
g = computeObjectiveGradient(p);
checkGradients(g, p);
// If necessary recompute the function value.
// Doing this after the gradient evaluation allows the value to be cached when
// computing the objective gradient
fp = fret;
// Test for convergence on zero gradient.
double test = 0;
for (int i = 0; i < n; i++) {
final double temp = Math.abs(g[i]) * FastMath.max(Math.abs(p[i]), 1);
//final double temp = Math.abs(g[i]);
if (test < temp)
test = temp;
}
// Compute the biggest gradient relative to the objective function
test /= FastMath.max(Math.abs(fp), 1);
if (test < gradientTolerance) {
converged = GRADIENT;
return new PointValuePair(p, fp);
}
for (int i = 0; i < n; i++) dg[i] = g[i] - dg[i];
for (int i = 0; i < n; i++) {
hdg[i] = 0.0;
for (int j = 0; j < n; j++) hdg[i] += hessian[i][j] * dg[j];
}
double fac = 0, fae = 0, sumdg = 0, sumxi = 0;
for (int i = 0; i < n; i++) {
fac += dg[i] * xi[i];
fae += dg[i] * hdg[i];
sumdg += dg[i] * dg[i];
sumxi += xi[i] * xi[i];
}
if (fac > Math.sqrt(EPS * sumdg * sumxi)) {
fac = 1.0 / fac;
final double fad = 1.0 / fae;
for (int i = 0; i < n; i++) dg[i] = fac * xi[i] - fad * hdg[i];
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
hessian[i][j] += fac * xi[i] * xi[j] - fad * hdg[i] * hdg[j] + fae * dg[i] * dg[j];
hessian[j][i] = hessian[i][j];
}
}
}
for (int i = 0; i < n; i++) {
xi[i] = 0.0;
for (int j = 0; j < n; j++) xi[i] -= hessian[i][j] * g[j];
}
}
}
Aggregations