use of org.apache.commons.math3.optim.nonlinear.scalar.GoalType in project GDSC-SMLM by aherbert.
the class BinomialFitter method fitBinomial.
/**
* Fit the binomial distribution (n,p) to the cumulative histogram. Performs fitting assuming a fixed n value and
* attempts to optimise p.
*
* @param histogram
* The input histogram
* @param mean
* The histogram mean (used to estimate p). Calculated if NaN.
* @param n
* The n to evaluate
* @param zeroTruncated
* True if the model should ignore n=0 (zero-truncated binomial)
* @return The best fit (n, p)
* @throws IllegalArgumentException
* If any of the input data values are negative
* @throws IllegalArgumentException
* If any fitting a zero truncated binomial and there are no values above zero
*/
public PointValuePair fitBinomial(double[] histogram, double mean, int n, boolean zeroTruncated) {
if (Double.isNaN(mean))
mean = getMean(histogram);
if (zeroTruncated && histogram[0] > 0) {
log("Fitting zero-truncated histogram but there are zero values - Renormalising to ignore zero");
double cumul = 0;
for (int i = 1; i < histogram.length; i++) cumul += histogram[i];
if (cumul == 0)
throw new IllegalArgumentException("Fitting zero-truncated histogram but there are no non-zero values");
histogram[0] = 0;
for (int i = 1; i < histogram.length; i++) histogram[i] /= cumul;
}
int nFittedPoints = Math.min(histogram.length, n + 1) - ((zeroTruncated) ? 1 : 0);
if (nFittedPoints < 1) {
log("No points to fit (%d): Histogram.length = %d, n = %d, zero-truncated = %b", nFittedPoints, histogram.length, n, zeroTruncated);
return null;
}
// The model is only fitting the probability p
// For a binomial n*p = mean => p = mean/n
double[] initialSolution = new double[] { FastMath.min(mean / n, 1) };
// Create the function
BinomialModelFunction function = new BinomialModelFunction(histogram, n, zeroTruncated);
double[] lB = new double[1];
double[] uB = new double[] { 1 };
SimpleBounds bounds = new SimpleBounds(lB, uB);
// Fit
// CMAESOptimizer or BOBYQAOptimizer support bounds
// CMAESOptimiser based on Matlab code:
// https://www.lri.fr/~hansen/cmaes.m
// Take the defaults from the Matlab documentation
int maxIterations = 2000;
//Double.NEGATIVE_INFINITY;
double stopFitness = 0;
boolean isActiveCMA = true;
int diagonalOnly = 0;
int checkFeasableCount = 1;
RandomGenerator random = new Well19937c();
boolean generateStatistics = false;
ConvergenceChecker<PointValuePair> checker = new SimpleValueChecker(1e-6, 1e-10);
// The sigma determines the search range for the variables. It should be 1/3 of the initial search region.
OptimizationData sigma = new CMAESOptimizer.Sigma(new double[] { (uB[0] - lB[0]) / 3 });
OptimizationData popSize = new CMAESOptimizer.PopulationSize((int) (4 + Math.floor(3 * Math.log(2))));
try {
PointValuePair solution = null;
boolean noRefit = maximumLikelihood;
if (n == 1 && zeroTruncated) {
// No need to fit
solution = new PointValuePair(new double[] { 1 }, 0);
noRefit = true;
} else {
GoalType goalType = (maximumLikelihood) ? GoalType.MAXIMIZE : GoalType.MINIMIZE;
// Iteratively fit
CMAESOptimizer opt = new CMAESOptimizer(maxIterations, stopFitness, isActiveCMA, diagonalOnly, checkFeasableCount, random, generateStatistics, checker);
for (int iteration = 0; iteration <= fitRestarts; iteration++) {
try {
// Start from the initial solution
PointValuePair result = opt.optimize(new InitialGuess(initialSolution), new ObjectiveFunction(function), goalType, bounds, sigma, popSize, new MaxIter(maxIterations), new MaxEval(maxIterations * 2));
// opt.getEvaluations());
if (solution == null || result.getValue() < solution.getValue()) {
solution = result;
}
} catch (TooManyEvaluationsException e) {
} catch (TooManyIterationsException e) {
}
if (solution == null)
continue;
try {
// Also restart from the current optimum
PointValuePair result = opt.optimize(new InitialGuess(solution.getPointRef()), new ObjectiveFunction(function), goalType, bounds, sigma, popSize, new MaxIter(maxIterations), new MaxEval(maxIterations * 2));
// opt.getEvaluations());
if (result.getValue() < solution.getValue()) {
solution = result;
}
} catch (TooManyEvaluationsException e) {
} catch (TooManyIterationsException e) {
}
}
if (solution == null)
return null;
}
if (noRefit) {
// Although we fit the log-likelihood, return the sum-of-squares to allow
// comparison across different n
double p = solution.getPointRef()[0];
double ss = 0;
double[] obs = function.p;
double[] exp = function.getP(p);
for (int i = 0; i < obs.length; i++) ss += (obs[i] - exp[i]) * (obs[i] - exp[i]);
return new PointValuePair(solution.getPointRef(), ss);
} else // We can do a LVM refit if the number of fitted points is more than 1
if (nFittedPoints > 1) {
// Improve SS fit with a gradient based LVM optimizer
LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer();
try {
final BinomialModelFunctionGradient gradientFunction = new BinomialModelFunctionGradient(histogram, n, zeroTruncated);
//@formatter:off
LeastSquaresProblem problem = new LeastSquaresBuilder().maxEvaluations(Integer.MAX_VALUE).maxIterations(3000).start(solution.getPointRef()).target(gradientFunction.p).weight(new DiagonalMatrix(gradientFunction.getWeights())).model(gradientFunction, new MultivariateMatrixFunction() {
public double[][] value(double[] point) throws IllegalArgumentException {
return gradientFunction.jacobian(point);
}
}).build();
//@formatter:on
Optimum lvmSolution = optimizer.optimize(problem);
// Check the pValue is valid since the LVM is not bounded.
double p = lvmSolution.getPoint().getEntry(0);
if (p <= 1 && p >= 0) {
// True if the weights are 1
double ss = lvmSolution.getResiduals().dotProduct(lvmSolution.getResiduals());
// ss += (obs[i] - exp[i]) * (obs[i] - exp[i]);
if (ss < solution.getValue()) {
// Utils.rounded(100 * (solution.getValue() - ss) / solution.getValue(), 4));
return new PointValuePair(lvmSolution.getPoint().toArray(), ss);
}
}
} catch (TooManyIterationsException e) {
log("Failed to re-fit: Too many iterations: %s", e.getMessage());
} catch (ConvergenceException e) {
log("Failed to re-fit: %s", e.getMessage());
} catch (Exception e) {
// Ignore this ...
}
}
return solution;
} catch (Exception e) {
log("Failed to fit Binomial distribution with N=%d : %s", n, e.getMessage());
}
return null;
}
use of org.apache.commons.math3.optim.nonlinear.scalar.GoalType in project GDSC-SMLM by aherbert.
the class CustomPowellOptimizer method doOptimize.
/** {@inheritDoc} */
@Override
protected PointValuePair doOptimize() {
final GoalType goal = getGoalType();
final double[] guess = getStartPoint();
final int n = guess.length;
// Mark when we have modified the basis vectors
boolean nonBasis = false;
double[][] direc = createBasisVectors(n);
final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker();
//int resets = 0;
//PointValuePair solution = null;
//PointValuePair finalSolution = null;
//int solutionIter = 0, solutionEval = 0;
//double startValue = 0;
//try
//{
double[] x = guess;
// Ensure the point is within bounds
applyBounds(x);
double fVal = computeObjectiveValue(x);
//startValue = fVal;
double[] x1 = x.clone();
while (true) {
incrementIterationCount();
final double fX = fVal;
double fX2 = 0;
double delta = 0;
int bigInd = 0;
for (int i = 0; i < n; i++) {
fX2 = fVal;
final UnivariatePointValuePair optimum = line.search(x, direc[i]);
fVal = optimum.getValue();
x = newPoint(x, direc[i], optimum.getPoint());
if ((fX2 - fVal) > delta) {
delta = fX2 - fVal;
bigInd = i;
}
}
boolean stop = false;
if (positionChecker != null) {
// Check for convergence on the position
stop = positionChecker.converged(x1, x);
}
if (!stop) {
// Check if we have improved from an impossible position
if (Double.isInfinite(fX) || Double.isNaN(fX)) {
if (Double.isInfinite(fVal) || Double.isNaN(fVal)) {
// Nowhere to go
stop = true;
}
// else: this is better as we now have a value, so continue
} else {
stop = DoubleEquality.almostEqualRelativeOrAbsolute(fX, fVal, relativeThreshold, absoluteThreshold);
}
}
final PointValuePair previous = new PointValuePair(x1, fX);
final PointValuePair current = new PointValuePair(x, fVal);
if (!stop && checker != null) {
// User-defined stopping criteria.
stop = checker.converged(getIterations(), previous, current);
}
boolean reset = false;
if (stop) {
// Only allow convergence using the basis vectors, i.e. we cannot move along any dimension
if (basisConvergence && nonBasis) {
// Reset to the basis vectors and continue
reset = true;
//resets++;
} else {
//System.out.printf("Resets = %d\n", resets);
final PointValuePair answer;
if (goal == GoalType.MINIMIZE) {
answer = (fVal < fX) ? current : previous;
} else {
answer = (fVal > fX) ? current : previous;
}
return answer;
// XXX Debugging
// Continue the algorithm to see how far it goes
//if (solution == null)
//{
// solution = answer;
// solutionIter = getIterations();
// solutionEval = getEvaluations();
//}
//finalSolution = answer;
}
}
if (reset) {
direc = createBasisVectors(n);
nonBasis = false;
}
final double[] d = new double[n];
final double[] x2 = new double[n];
for (int i = 0; i < n; i++) {
d[i] = x[i] - x1[i];
x2[i] = x[i] + d[i];
}
applyBounds(x2);
x1 = x.clone();
fX2 = computeObjectiveValue(x2);
// See if we can continue along the overall search direction to find a better value
if (fX > fX2) {
// Check if:
// 1. The decrease along the average direction was not due to any single direction's decrease
// 2. There is a substantial second derivative along the average direction and we are close to
// it minimum
double t = 2 * (fX + fX2 - 2 * fVal);
double temp = fX - fVal - delta;
t *= temp * temp;
temp = fX - fX2;
t -= delta * temp * temp;
if (t < 0.0) {
final UnivariatePointValuePair optimum = line.search(x, d);
fVal = optimum.getValue();
if (reset) {
x = newPoint(x, d, optimum.getPoint());
continue;
} else {
final double[][] result = newPointAndDirection(x, d, optimum.getPoint());
x = result[0];
final int lastInd = n - 1;
direc[bigInd] = direc[lastInd];
direc[lastInd] = result[1];
nonBasis = true;
}
}
}
}
//}
//catch (RuntimeException e)
//{
// if (solution != null)
// {
// System.out.printf("Start %f : Initial %f (%d,%d) : Final %f (%d,%d) : %f\n", startValue,
// solution.getValue(), solutionIter, solutionEval, finalSolution.getValue(), getIterations(),
// getEvaluations(), DoubleEquality.relativeError(finalSolution.getValue(), solution.getValue()));
// return finalSolution;
// }
// throw e;
//}
}
use of org.apache.commons.math3.optim.nonlinear.scalar.GoalType in project GDSC-SMLM by aherbert.
the class MaximumLikelihoodFitter method computeFit.
/*
* (non-Javadoc)
*
* @see gdsc.smlm.fitting.nonlinear.BaseFunctionSolver#computeFit(double[], double[], double[], double[])
*/
public FitStatus computeFit(double[] y, double[] y_fit, double[] a, double[] a_dev) {
final int n = y.length;
LikelihoodWrapper maximumLikelihoodFunction = createLikelihoodWrapper((NonLinearFunction) f, n, y, a);
@SuppressWarnings("rawtypes") BaseOptimizer baseOptimiser = null;
try {
double[] startPoint = getInitialSolution(a);
PointValuePair optimum = null;
if (searchMethod == SearchMethod.POWELL || searchMethod == SearchMethod.POWELL_BOUNDED || searchMethod == SearchMethod.POWELL_ADAPTER) {
// Non-differentiable version using Powell Optimiser
// This is as per the method in Numerical Recipes 10.5 (Direction Set (Powell's) method)
// I could extend the optimiser and implement bounds on the directions moved. However the mapping
// adapter seems to work OK.
final boolean basisConvergence = false;
// Perhaps these thresholds should be tighter?
// The default is to use the sqrt() of the overall tolerance
//final double lineRel = FastMath.sqrt(relativeThreshold);
//final double lineAbs = FastMath.sqrt(absoluteThreshold);
//final double lineRel = relativeThreshold * 1e2;
//final double lineAbs = absoluteThreshold * 1e2;
// Since we are fitting only a small number of parameters then just use the same tolerance
// for each search direction
final double lineRel = relativeThreshold;
final double lineAbs = absoluteThreshold;
CustomPowellOptimizer o = new CustomPowellOptimizer(relativeThreshold, absoluteThreshold, lineRel, lineAbs, null, basisConvergence);
baseOptimiser = o;
OptimizationData maxIterationData = null;
if (getMaxIterations() > 0)
maxIterationData = new MaxIter(getMaxIterations());
if (searchMethod == SearchMethod.POWELL_ADAPTER) {
// Try using the mapping adapter for a bounded Powell search
MultivariateFunctionMappingAdapter adapter = new MultivariateFunctionMappingAdapter(new MultivariateLikelihood(maximumLikelihoodFunction), lower, upper);
optimum = o.optimize(maxIterationData, new MaxEval(getMaxEvaluations()), new ObjectiveFunction(adapter), GoalType.MINIMIZE, new InitialGuess(adapter.boundedToUnbounded(startPoint)));
double[] solution = adapter.unboundedToBounded(optimum.getPointRef());
optimum = new PointValuePair(solution, optimum.getValue());
} else {
if (powellFunction == null) {
// Python code by using the sqrt of the number of photons and background.
if (mapGaussian) {
Gaussian2DFunction gf = (Gaussian2DFunction) f;
// Re-map signal and background using the sqrt
int[] indices = gf.gradientIndices();
int[] map = new int[indices.length];
int count = 0;
// Background is always first
if (indices[0] == Gaussian2DFunction.BACKGROUND) {
map[count++] = 0;
}
// Look for the Signal in multiple peak 2D Gaussians
for (int i = 1; i < indices.length; i++) if (indices[i] % 6 == Gaussian2DFunction.SIGNAL) {
map[count++] = i;
}
if (count > 0) {
powellFunction = new MappedMultivariateLikelihood(maximumLikelihoodFunction, Arrays.copyOf(map, count));
}
}
if (powellFunction == null) {
powellFunction = new MultivariateLikelihood(maximumLikelihoodFunction);
}
}
// Update the maximum likelihood function in the Powell function wrapper
powellFunction.fun = maximumLikelihoodFunction;
OptimizationData positionChecker = null;
// new org.apache.commons.math3.optim.PositionChecker(relativeThreshold, absoluteThreshold);
SimpleBounds simpleBounds = null;
if (powellFunction.isMapped()) {
MappedMultivariateLikelihood adapter = (MappedMultivariateLikelihood) powellFunction;
if (searchMethod == SearchMethod.POWELL_BOUNDED)
simpleBounds = new SimpleBounds(adapter.map(lower), adapter.map(upper));
optimum = o.optimize(maxIterationData, new MaxEval(getMaxEvaluations()), new ObjectiveFunction(powellFunction), GoalType.MINIMIZE, new InitialGuess(adapter.map(startPoint)), positionChecker, simpleBounds);
double[] solution = adapter.unmap(optimum.getPointRef());
optimum = new PointValuePair(solution, optimum.getValue());
} else {
if (searchMethod == SearchMethod.POWELL_BOUNDED)
simpleBounds = new SimpleBounds(lower, upper);
optimum = o.optimize(maxIterationData, new MaxEval(getMaxEvaluations()), new ObjectiveFunction(powellFunction), GoalType.MINIMIZE, new InitialGuess(startPoint), positionChecker, simpleBounds);
}
}
} else if (searchMethod == SearchMethod.BOBYQA) {
// Differentiable approximation using Powell's BOBYQA algorithm.
// This is slower than the Powell optimiser and requires a high number of evaluations.
int numberOfInterpolationPoints = this.getNumberOfFittedParameters() + 2;
BOBYQAOptimizer o = new BOBYQAOptimizer(numberOfInterpolationPoints);
baseOptimiser = o;
optimum = o.optimize(new MaxEval(getMaxEvaluations()), new ObjectiveFunction(new MultivariateLikelihood(maximumLikelihoodFunction)), GoalType.MINIMIZE, new InitialGuess(startPoint), new SimpleBounds(lower, upper));
} else if (searchMethod == SearchMethod.CMAES) {
// TODO - Understand why the CMAES optimiser does not fit very well on test data. It appears
// to converge too early and the likelihood scores are not as low as the other optimisers.
// CMAESOptimiser based on Matlab code:
// https://www.lri.fr/~hansen/cmaes.m
// Take the defaults from the Matlab documentation
//Double.NEGATIVE_INFINITY;
double stopFitness = 0;
boolean isActiveCMA = true;
int diagonalOnly = 0;
int checkFeasableCount = 1;
RandomGenerator random = new Well19937c();
boolean generateStatistics = false;
// The sigma determines the search range for the variables. It should be 1/3 of the initial search region.
double[] sigma = new double[lower.length];
for (int i = 0; i < sigma.length; i++) sigma[i] = (upper[i] - lower[i]) / 3;
int popSize = (int) (4 + Math.floor(3 * Math.log(sigma.length)));
// The CMAES optimiser is random and restarting can overcome problems with quick convergence.
// The Apache commons documentations states that convergence should occur between 30N and 300N^2
// function evaluations
final int n30 = FastMath.min(sigma.length * sigma.length * 30, getMaxEvaluations() / 2);
evaluations = 0;
OptimizationData[] data = new OptimizationData[] { new InitialGuess(startPoint), new CMAESOptimizer.PopulationSize(popSize), new MaxEval(getMaxEvaluations()), new CMAESOptimizer.Sigma(sigma), new ObjectiveFunction(new MultivariateLikelihood(maximumLikelihoodFunction)), GoalType.MINIMIZE, new SimpleBounds(lower, upper) };
// Iterate to prevent early convergence
int repeat = 0;
while (evaluations < n30) {
if (repeat++ > 1) {
// Update the start point and population size
data[0] = new InitialGuess(optimum.getPointRef());
popSize *= 2;
data[1] = new CMAESOptimizer.PopulationSize(popSize);
}
CMAESOptimizer o = new CMAESOptimizer(getMaxIterations(), stopFitness, isActiveCMA, diagonalOnly, checkFeasableCount, random, generateStatistics, new SimpleValueChecker(relativeThreshold, absoluteThreshold));
baseOptimiser = o;
PointValuePair result = o.optimize(data);
iterations += o.getIterations();
evaluations += o.getEvaluations();
// o.getEvaluations(), totalEvaluations);
if (optimum == null || result.getValue() < optimum.getValue()) {
optimum = result;
}
}
// Prevent incrementing the iterations again
baseOptimiser = null;
} else if (searchMethod == SearchMethod.BFGS) {
// BFGS can use an approximate line search minimisation where as Powell and conjugate gradient
// methods require a more accurate line minimisation. The BFGS search does not do a full
// minimisation but takes appropriate steps in the direction of the current gradient.
// Do not use the convergence checker on the value of the function. Use the convergence on the
// point coordinate and gradient
//BFGSOptimizer o = new BFGSOptimizer(new SimpleValueChecker(rel, abs));
BFGSOptimizer o = new BFGSOptimizer();
baseOptimiser = o;
// Configure maximum step length for each dimension using the bounds
double[] stepLength = new double[lower.length];
for (int i = 0; i < stepLength.length; i++) {
stepLength[i] = (upper[i] - lower[i]) * 0.3333333;
if (stepLength[i] <= 0)
stepLength[i] = Double.POSITIVE_INFINITY;
}
// The GoalType is always minimise so no need to pass this in
OptimizationData positionChecker = null;
//new org.apache.commons.math3.optim.PositionChecker(relativeThreshold, absoluteThreshold);
optimum = o.optimize(new MaxEval(getMaxEvaluations()), new ObjectiveFunctionGradient(new MultivariateVectorLikelihood(maximumLikelihoodFunction)), new ObjectiveFunction(new MultivariateLikelihood(maximumLikelihoodFunction)), new InitialGuess(startPoint), new SimpleBounds(lowerConstraint, upperConstraint), new BFGSOptimizer.GradientTolerance(relativeThreshold), positionChecker, new BFGSOptimizer.StepLength(stepLength));
} else {
// The line search algorithm often fails. This is due to searching into a region where the
// function evaluates to a negative so has been clipped. This means the upper bound of the line
// cannot be found.
// Note that running it on an easy problem (200 photons with fixed fitting (no background)) the algorithm
// does sometimes produces results better than the Powell algorithm but it is slower.
BoundedNonLinearConjugateGradientOptimizer o = new BoundedNonLinearConjugateGradientOptimizer((searchMethod == SearchMethod.CONJUGATE_GRADIENT_FR) ? Formula.FLETCHER_REEVES : Formula.POLAK_RIBIERE, new SimpleValueChecker(relativeThreshold, absoluteThreshold));
baseOptimiser = o;
// Note: The gradients may become unstable at the edge of the bounds. Or they will not change
// direction if the true solution is on the bounds since the gradient will always continue
// towards the bounds. This is key to the conjugate gradient method. It searches along a vector
// until the direction of the gradient is in the opposite direction (using dot products, i.e.
// cosine of angle between them)
// NR 10.7 states there is no advantage of the variable metric DFP or BFGS methods over
// conjugate gradient methods. So I will try these first.
// Try this:
// Adapt the conjugate gradient optimiser to use the gradient to pick the search direction
// and then for the line minimisation. However if the function is out of bounds then clip the
// variables at the bounds and continue.
// If the current point is at the bounds and the gradient is to continue out of bounds then
// clip the gradient too.
// Or: just use the gradient for the search direction then use the line minimisation/rest
// as per the Powell optimiser. The bounds should limit the search.
// I tried a Bounded conjugate gradient optimiser with clipped variables:
// This sometimes works. However when the variables go a long way out of the expected range the gradients
// can have vastly different magnitudes. This results in the algorithm stalling since the gradients
// can be close to zero and the some of the parameters are no longer adjusted.
// Perhaps this can be looked for and the algorithm then gives up and resorts to a Powell optimiser from
// the current point.
// Changed the bracketing step to very small (default is 1, changed to 0.001). This improves the
// performance. The gradient direction is very sensitive to small changes in the coordinates so a
// tighter bracketing of the line search helps.
// Tried using a non-gradient method for the line search copied from the Powell optimiser:
// This also works when the bracketing step is small but the number of iterations is higher.
// 24.10.2014: I have tried to get conjugate gradient to work but the gradient function
// must not behave suitably for the optimiser. In the current state both methods of using a
// Bounded Conjugate Gradient Optimiser perform poorly relative to other optimisers:
// Simulated : n=1000, signal=200, x=0.53, y=0.47
// LVM : n=1000, signal=171, x=0.537, y=0.471 (1.003s)
// Powell : n=1000, signal=187, x=0.537, y=0.48 (1.238s)
// Gradient based PR (constrained): n=858, signal=161, x=0.533, y=0.474 (2.54s)
// Gradient based PR (bounded): n=948, signal=161, x=0.533, y=0.473 (2.67s)
// Non-gradient based : n=1000, signal=151.47, x=0.535, y=0.474 (1.626s)
// The conjugate optimisers are slower, under predict the signal by the most and in the case of
// the gradient based optimiser, fail to converge on some problems. This is worse when constrained
// fitting is used and not tightly bounded fitting.
// I will leave the code in as an option but would not recommend using it. I may remove it in the
// future.
// Note: It is strange that the non-gradient based line minimisation is more successful.
// It may be that the gradient function is not accurate (due to round off error) or that it is
// simply wrong when far from the optimum. My JUnit tests only evaluate the function within the
// expected range of the answer.
// Note the default step size on the Powell optimiser is 1 but the initial directions are unit vectors.
// So our bracketing step should be a minimum of 1 / average length of the first gradient vector to prevent
// the first step being too large when bracketing.
final double[] gradient = new double[startPoint.length];
maximumLikelihoodFunction.likelihood(startPoint, gradient);
double l = 0;
for (double d : gradient) l += d * d;
final double bracketingStep = FastMath.min(0.001, ((l > 1) ? 1.0 / l : 1));
//System.out.printf("Bracketing step = %f (length=%f)\n", bracketingStep, l);
o.setUseGradientLineSearch(gradientLineMinimisation);
optimum = o.optimize(new MaxEval(getMaxEvaluations()), new ObjectiveFunctionGradient(new MultivariateVectorLikelihood(maximumLikelihoodFunction)), new ObjectiveFunction(new MultivariateLikelihood(maximumLikelihoodFunction)), GoalType.MINIMIZE, new InitialGuess(startPoint), new SimpleBounds(lowerConstraint, upperConstraint), new BoundedNonLinearConjugateGradientOptimizer.BracketingStep(bracketingStep));
//maximumLikelihoodFunction.value(solution, gradient);
//System.out.printf("Iter = %d, %g @ %s : %s\n", iterations, ll, Arrays.toString(solution),
// Arrays.toString(gradient));
}
final double[] solution = optimum.getPointRef();
setSolution(a, solution);
if (a_dev != null) {
// Assume the Maximum Likelihood estimator returns the optimum fit (achieves the Cramer Roa
// lower bounds) and so the covariance can be obtained from the Fisher Information Matrix.
FisherInformationMatrix m = new FisherInformationMatrix(maximumLikelihoodFunction.fisherInformation(a));
setDeviations(a_dev, m.crlb(true));
}
// Reverse negative log likelihood for maximum likelihood score
value = -optimum.getValue();
} catch (TooManyIterationsException e) {
//e.printStackTrace();
return FitStatus.TOO_MANY_ITERATIONS;
} catch (TooManyEvaluationsException e) {
//e.printStackTrace();
return FitStatus.TOO_MANY_EVALUATIONS;
} catch (ConvergenceException e) {
//System.out.printf("Singular non linear model = %s\n", e.getMessage());
return FitStatus.SINGULAR_NON_LINEAR_MODEL;
} catch (BFGSOptimizer.LineSearchRoundoffException e) {
//e.printStackTrace();
return FitStatus.FAILED_TO_CONVERGE;
} catch (Exception e) {
//System.out.printf("Unknown error = %s\n", e.getMessage());
e.printStackTrace();
return FitStatus.UNKNOWN;
} finally {
if (baseOptimiser != null) {
iterations += baseOptimiser.getIterations();
evaluations += baseOptimiser.getEvaluations();
}
}
// Check this as likelihood functions can go wrong
if (Double.isInfinite(value) || Double.isNaN(value))
return FitStatus.INVALID_LIKELIHOOD;
return FitStatus.OK;
}
use of org.apache.commons.math3.optim.nonlinear.scalar.GoalType in project GDSC-SMLM by aherbert.
the class BoundedNonLinearConjugateGradientOptimizer method doOptimize.
/** {@inheritDoc} */
@Override
protected PointValuePair doOptimize() {
final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker();
final double[] point = getStartPoint();
final GoalType goal = getGoalType();
final int n = point.length;
sign = (goal == GoalType.MINIMIZE) ? -1 : 1;
double[] unbounded = point.clone();
applyBounds(point);
double[] r = computeObjectiveGradient(point);
checkGradients(r, unbounded);
if (goal == GoalType.MINIMIZE) {
for (int i = 0; i < n; i++) {
r[i] = -r[i];
}
}
// Initial search direction.
double[] steepestDescent = preconditioner.precondition(point, r);
double[] searchDirection = steepestDescent.clone();
double delta = 0;
for (int i = 0; i < n; ++i) {
delta += r[i] * searchDirection[i];
}
// Used for non-gradient based line search
LineSearch line = null;
double rel = 1e-6;
double abs = 1e-10;
if (getConvergenceChecker() instanceof SimpleValueChecker) {
rel = ((SimpleValueChecker) getConvergenceChecker()).getRelativeThreshold();
abs = ((SimpleValueChecker) getConvergenceChecker()).getRelativeThreshold();
}
line = new LineSearch(Math.sqrt(rel), Math.sqrt(abs));
PointValuePair current = null;
int maxEval = getMaxEvaluations();
while (true) {
incrementIterationCount();
final double objective = computeObjectiveValue(point);
PointValuePair previous = current;
current = new PointValuePair(point, objective);
if (previous != null && checker.converged(getIterations(), previous, current)) {
// We have found an optimum.
return current;
}
double step;
if (useGradientLineSearch) {
// Classic code using the gradient function for the line search:
// Find the optimal step in the search direction.
final UnivariateFunction lsf = new LineSearchFunction(point, searchDirection);
final double uB;
try {
uB = findUpperBound(lsf, 0, initialStep);
// Check if the bracket found a minimum. Otherwise just move to the new point.
if (noBracket)
step = uB;
else {
// XXX Last parameters is set to a value close to zero in order to
// work around the divergence problem in the "testCircleFitting"
// unit test (see MATH-439).
//System.out.printf("Bracket %f - %f - %f\n", 0., 1e-15, uB);
step = solver.solve(maxEval, lsf, 0, uB, 1e-15);
// Subtract used up evaluations.
maxEval -= solver.getEvaluations();
}
} catch (MathIllegalStateException e) {
//System.out.printf("Failed to bracket %s @ %s\n", Arrays.toString(point), Arrays.toString(searchDirection));
// Line search without gradient (as per Powell optimiser)
final UnivariatePointValuePair optimum = line.search(point, searchDirection);
step = optimum.getPoint();
//throw e;
}
} else {
// Line search without gradient (as per Powell optimiser)
final UnivariatePointValuePair optimum = line.search(point, searchDirection);
step = optimum.getPoint();
}
//System.out.printf("Step = %f x %s\n", step, Arrays.toString(searchDirection));
for (int i = 0; i < point.length; ++i) {
point[i] += step * searchDirection[i];
}
unbounded = point.clone();
applyBounds(point);
r = computeObjectiveGradient(point);
checkGradients(r, unbounded);
if (goal == GoalType.MINIMIZE) {
for (int i = 0; i < n; ++i) {
r[i] = -r[i];
}
}
// Compute beta.
final double deltaOld = delta;
final double[] newSteepestDescent = preconditioner.precondition(point, r);
delta = 0;
for (int i = 0; i < n; ++i) {
delta += r[i] * newSteepestDescent[i];
}
if (delta == 0)
return new PointValuePair(point, computeObjectiveValue(point));
final double beta;
switch(updateFormula) {
case FLETCHER_REEVES:
beta = delta / deltaOld;
break;
case POLAK_RIBIERE:
double deltaMid = 0;
for (int i = 0; i < r.length; ++i) {
deltaMid += r[i] * steepestDescent[i];
}
beta = (delta - deltaMid) / deltaOld;
break;
default:
// Should never happen.
throw new MathInternalError();
}
steepestDescent = newSteepestDescent;
// Compute conjugate search direction.
if (getIterations() % n == 0 || beta < 0) {
// Break conjugation: reset search direction.
searchDirection = steepestDescent.clone();
} else {
// Compute new conjugate search direction.
for (int i = 0; i < n; ++i) {
searchDirection[i] = steepestDescent[i] + beta * searchDirection[i];
}
}
// The gradient has already been adjusted for the search direction
checkGradients(searchDirection, unbounded, -sign);
}
}
use of org.apache.commons.math3.optim.nonlinear.scalar.GoalType in project GDSC-SMLM by aherbert.
the class PCPALMFitting method runBoundedOptimiser.
private PointValuePair runBoundedOptimiser(double[][] gr, double[] initialSolution, double[] lB, double[] uB, SumOfSquaresModelFunction function) {
// Create the functions to optimise
ObjectiveFunction objective = new ObjectiveFunction(new SumOfSquaresMultivariateFunction(function));
ObjectiveFunctionGradient gradient = new ObjectiveFunctionGradient(new SumOfSquaresMultivariateVectorFunction(function));
final boolean debug = false;
// Try a BFGS optimiser since this will produce a deterministic solution and can respect bounds.
PointValuePair optimum = null;
boundedEvaluations = 0;
final MaxEval maxEvaluations = new MaxEval(2000);
MultivariateOptimizer opt = null;
for (int iteration = 0; iteration <= fitRestarts; iteration++) {
try {
opt = new BFGSOptimizer();
final double relativeThreshold = 1e-6;
// Configure maximum step length for each dimension using the bounds
double[] stepLength = new double[lB.length];
for (int i = 0; i < stepLength.length; i++) stepLength[i] = (uB[i] - lB[i]) * 0.3333333;
// The GoalType is always minimise so no need to pass this in
optimum = opt.optimize(maxEvaluations, gradient, objective, new InitialGuess((optimum == null) ? initialSolution : optimum.getPointRef()), new SimpleBounds(lB, uB), new BFGSOptimizer.GradientTolerance(relativeThreshold), new BFGSOptimizer.StepLength(stepLength));
if (debug)
System.out.printf("BFGS Iter %d = %g (%d)\n", iteration, optimum.getValue(), opt.getEvaluations());
} catch (TooManyEvaluationsException e) {
// No need to restart
break;
} catch (RuntimeException e) {
// No need to restart
break;
} finally {
boundedEvaluations += opt.getEvaluations();
}
}
// Try a CMAES optimiser which is non-deterministic. To overcome this we perform restarts.
// CMAESOptimiser based on Matlab code:
// https://www.lri.fr/~hansen/cmaes.m
// Take the defaults from the Matlab documentation
//Double.NEGATIVE_INFINITY;
double stopFitness = 0;
boolean isActiveCMA = true;
int diagonalOnly = 0;
int checkFeasableCount = 1;
//Well19937c();
RandomGenerator random = new Well44497b();
boolean generateStatistics = false;
ConvergenceChecker<PointValuePair> checker = new SimpleValueChecker(1e-6, 1e-10);
// The sigma determines the search range for the variables. It should be 1/3 of the initial search region.
double[] range = new double[lB.length];
for (int i = 0; i < lB.length; i++) range[i] = (uB[i] - lB[i]) / 3;
OptimizationData sigma = new CMAESOptimizer.Sigma(range);
OptimizationData popSize = new CMAESOptimizer.PopulationSize((int) (4 + Math.floor(3 * Math.log(initialSolution.length))));
SimpleBounds bounds = new SimpleBounds(lB, uB);
opt = new CMAESOptimizer(maxEvaluations.getMaxEval(), stopFitness, isActiveCMA, diagonalOnly, checkFeasableCount, random, generateStatistics, checker);
// Restart the optimiser several times and take the best answer.
for (int iteration = 0; iteration <= fitRestarts; iteration++) {
try {
// Start from the initial solution
PointValuePair constrainedSolution = opt.optimize(new InitialGuess(initialSolution), objective, GoalType.MINIMIZE, bounds, sigma, popSize, maxEvaluations);
if (debug)
System.out.printf("CMAES Iter %d initial = %g (%d)\n", iteration, constrainedSolution.getValue(), opt.getEvaluations());
boundedEvaluations += opt.getEvaluations();
if (optimum == null || constrainedSolution.getValue() < optimum.getValue()) {
optimum = constrainedSolution;
}
} catch (TooManyEvaluationsException e) {
} catch (TooManyIterationsException e) {
} finally {
boundedEvaluations += maxEvaluations.getMaxEval();
}
if (optimum == null)
continue;
try {
// Also restart from the current optimum
PointValuePair constrainedSolution = opt.optimize(new InitialGuess(optimum.getPointRef()), objective, GoalType.MINIMIZE, bounds, sigma, popSize, maxEvaluations);
if (debug)
System.out.printf("CMAES Iter %d restart = %g (%d)\n", iteration, constrainedSolution.getValue(), opt.getEvaluations());
if (constrainedSolution.getValue() < optimum.getValue()) {
optimum = constrainedSolution;
}
} catch (TooManyEvaluationsException e) {
} catch (TooManyIterationsException e) {
} finally {
boundedEvaluations += maxEvaluations.getMaxEval();
}
}
return optimum;
}
Aggregations