Search in sources :

Example 1 with FisherInformationMatrix

use of gdsc.smlm.fitting.FisherInformationMatrix in project GDSC-SMLM by aherbert.

the class ApacheLVMFitter method computeFit.

public FitStatus computeFit(double[] y, final double[] y_fit, double[] a, double[] a_dev) {
    int n = y.length;
    try {
        // Different convergence thresholds seem to have no effect on the resulting fit, only the number of
        // iterations for convergence
        final double initialStepBoundFactor = 100;
        final double costRelativeTolerance = 1e-10;
        final double parRelativeTolerance = 1e-10;
        final double orthoTolerance = 1e-10;
        final double threshold = Precision.SAFE_MIN;
        // Extract the parameters to be fitted
        final double[] initialSolution = getInitialSolution(a);
        // TODO - Pass in more advanced stopping criteria.
        // Create the target and weight arrays
        final double[] yd = new double[n];
        final double[] w = new double[n];
        for (int i = 0; i < n; i++) {
            yd[i] = y[i];
            w[i] = 1;
        }
        LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(initialStepBoundFactor, costRelativeTolerance, parRelativeTolerance, orthoTolerance, threshold);
        //@formatter:off
        LeastSquaresBuilder builder = new LeastSquaresBuilder().maxEvaluations(Integer.MAX_VALUE).maxIterations(getMaxEvaluations()).start(initialSolution).target(yd).weight(new DiagonalMatrix(w));
        if (f instanceof ExtendedNonLinearFunction && ((ExtendedNonLinearFunction) f).canComputeValuesAndJacobian()) {
            // Compute together, or each individually
            builder.model(new ValueAndJacobianFunction() {

                final ExtendedNonLinearFunction fun = (ExtendedNonLinearFunction) f;

                public Pair<RealVector, RealMatrix> value(RealVector point) {
                    final double[] p = point.toArray();
                    final Pair<double[], double[][]> result = fun.computeValuesAndJacobian(p);
                    return new Pair<RealVector, RealMatrix>(new ArrayRealVector(result.getFirst(), false), new Array2DRowRealMatrix(result.getSecond(), false));
                }

                public RealVector computeValue(double[] params) {
                    return new ArrayRealVector(fun.computeValues(params), false);
                }

                public RealMatrix computeJacobian(double[] params) {
                    return new Array2DRowRealMatrix(fun.computeJacobian(params), false);
                }
            });
        } else {
            // Compute separately
            builder.model(new MultivariateVectorFunctionWrapper((NonLinearFunction) f, a, n), new MultivariateMatrixFunctionWrapper((NonLinearFunction) f, a, n));
        }
        LeastSquaresProblem problem = builder.build();
        Optimum optimum = optimizer.optimize(problem);
        final double[] parameters = optimum.getPoint().toArray();
        setSolution(a, parameters);
        iterations = optimum.getIterations();
        evaluations = optimum.getEvaluations();
        if (a_dev != null) {
            try {
                double[][] covar = optimum.getCovariances(threshold).getData();
                setDeviationsFromMatrix(a_dev, covar);
            } catch (SingularMatrixException e) {
                // Matrix inversion failed. In order to return a solution 
                // return the reciprocal of the diagonal of the Fisher information 
                // for a loose bound on the limit 
                final int[] gradientIndices = f.gradientIndices();
                final int nparams = gradientIndices.length;
                GradientCalculator calculator = GradientCalculatorFactory.newCalculator(nparams);
                double[][] alpha = new double[nparams][nparams];
                double[] beta = new double[nparams];
                calculator.findLinearised(nparams, y, a, alpha, beta, (NonLinearFunction) f);
                FisherInformationMatrix m = new FisherInformationMatrix(alpha);
                setDeviations(a_dev, m.crlb(true));
            }
        }
        // Compute function value
        if (y_fit != null) {
            Gaussian2DFunction f = (Gaussian2DFunction) this.f;
            f.initialise0(a);
            f.forEach(new ValueProcedure() {

                int i = 0;

                public void execute(double value) {
                    y_fit[i] = value;
                }
            });
        }
        // As this is unweighted then we can do this to get the sum of squared residuals
        // This is the same as optimum.getCost() * optimum.getCost(); The getCost() function
        // just computes the dot product anyway.
        value = optimum.getResiduals().dotProduct(optimum.getResiduals());
    } catch (TooManyEvaluationsException e) {
        return FitStatus.TOO_MANY_EVALUATIONS;
    } catch (TooManyIterationsException e) {
        return FitStatus.TOO_MANY_ITERATIONS;
    } catch (ConvergenceException e) {
        // Occurs when QR decomposition fails - mark as a singular non-linear model (no solution)
        return FitStatus.SINGULAR_NON_LINEAR_MODEL;
    } catch (Exception e) {
        // TODO - Find out the other exceptions from the fitter and add return values to match. 
        return FitStatus.UNKNOWN;
    }
    return FitStatus.OK;
}
Also used : ValueProcedure(gdsc.smlm.function.ValueProcedure) ExtendedNonLinearFunction(gdsc.smlm.function.ExtendedNonLinearFunction) NonLinearFunction(gdsc.smlm.function.NonLinearFunction) LeastSquaresBuilder(org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder) TooManyEvaluationsException(org.apache.commons.math3.exception.TooManyEvaluationsException) Array2DRowRealMatrix(org.apache.commons.math3.linear.Array2DRowRealMatrix) Gaussian2DFunction(gdsc.smlm.function.gaussian.Gaussian2DFunction) ValueAndJacobianFunction(org.apache.commons.math3.fitting.leastsquares.ValueAndJacobianFunction) DiagonalMatrix(org.apache.commons.math3.linear.DiagonalMatrix) RealVector(org.apache.commons.math3.linear.RealVector) ArrayRealVector(org.apache.commons.math3.linear.ArrayRealVector) ConvergenceException(org.apache.commons.math3.exception.ConvergenceException) SingularMatrixException(org.apache.commons.math3.linear.SingularMatrixException) TooManyIterationsException(org.apache.commons.math3.exception.TooManyIterationsException) LeastSquaresProblem(org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem) GradientCalculator(gdsc.smlm.fitting.nonlinear.gradient.GradientCalculator) Pair(org.apache.commons.math3.util.Pair) ArrayRealVector(org.apache.commons.math3.linear.ArrayRealVector) FisherInformationMatrix(gdsc.smlm.fitting.FisherInformationMatrix) MultivariateMatrixFunctionWrapper(gdsc.smlm.function.MultivariateMatrixFunctionWrapper) SingularMatrixException(org.apache.commons.math3.linear.SingularMatrixException) ConvergenceException(org.apache.commons.math3.exception.ConvergenceException) TooManyIterationsException(org.apache.commons.math3.exception.TooManyIterationsException) TooManyEvaluationsException(org.apache.commons.math3.exception.TooManyEvaluationsException) Optimum(org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer.Optimum) LevenbergMarquardtOptimizer(org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer) Array2DRowRealMatrix(org.apache.commons.math3.linear.Array2DRowRealMatrix) RealMatrix(org.apache.commons.math3.linear.RealMatrix) MultivariateVectorFunctionWrapper(gdsc.smlm.function.MultivariateVectorFunctionWrapper) ExtendedNonLinearFunction(gdsc.smlm.function.ExtendedNonLinearFunction)

Example 2 with FisherInformationMatrix

use of gdsc.smlm.fitting.FisherInformationMatrix in project GDSC-SMLM by aherbert.

the class FastMLESteppingFunctionSolver method computeFisherInformationMatrix.

/*
	 * (non-Javadoc)
	 * 
	 * @see gdsc.smlm.fitting.nonlinear.SteppingFunctionSolver#computeFisherInformationMatrix()
	 */
@Override
protected FisherInformationMatrix computeFisherInformationMatrix() {
    // The fisher information is that for a Poisson process
    PoissonGradientProcedure p = PoissonGradientProcedureFactory.create(f2);
    // Assume preinitialised function
    p.computeFisherInformation(null);
    return new FisherInformationMatrix(p.getLinear(), gradientProcedure.n);
}
Also used : PoissonGradientProcedure(gdsc.smlm.fitting.nonlinear.gradient.PoissonGradientProcedure) FisherInformationMatrix(gdsc.smlm.fitting.FisherInformationMatrix)

Example 3 with FisherInformationMatrix

use of gdsc.smlm.fitting.FisherInformationMatrix in project GDSC-SMLM by aherbert.

the class MLELVMSteppingFunctionSolver method computeFisherInformationMatrix.

/*
	 * (non-Javadoc)
	 * 
	 * @see gdsc.smlm.fitting.nonlinear.SteppingFunctionSolver#computeFisherInformationMatrix()
	 */
@Override
protected FisherInformationMatrix computeFisherInformationMatrix() {
    // The Hessian matrix refers to the log-likelihood ratio.
    // Compute and invert a matrix related to the Poisson log-likelihood.
    // This assumes this does achieve the maximum likelihood estimate for a 
    // Poisson process.
    PoissonGradientProcedure p = PoissonGradientProcedureFactory.create(f1);
    p.computeFisherInformation(lastA);
    p.getLinear(walpha);
    return new FisherInformationMatrix(walpha, beta.length);
}
Also used : PoissonGradientProcedure(gdsc.smlm.fitting.nonlinear.gradient.PoissonGradientProcedure) FisherInformationMatrix(gdsc.smlm.fitting.FisherInformationMatrix)

Example 4 with FisherInformationMatrix

use of gdsc.smlm.fitting.FisherInformationMatrix in project GDSC-SMLM by aherbert.

the class MaximumLikelihoodFitter method computeFit.

/*
	 * (non-Javadoc)
	 * 
	 * @see gdsc.smlm.fitting.nonlinear.BaseFunctionSolver#computeFit(double[], double[], double[], double[])
	 */
public FitStatus computeFit(double[] y, double[] y_fit, double[] a, double[] a_dev) {
    final int n = y.length;
    LikelihoodWrapper maximumLikelihoodFunction = createLikelihoodWrapper((NonLinearFunction) f, n, y, a);
    @SuppressWarnings("rawtypes") BaseOptimizer baseOptimiser = null;
    try {
        double[] startPoint = getInitialSolution(a);
        PointValuePair optimum = null;
        if (searchMethod == SearchMethod.POWELL || searchMethod == SearchMethod.POWELL_BOUNDED || searchMethod == SearchMethod.POWELL_ADAPTER) {
            // Non-differentiable version using Powell Optimiser
            // This is as per the method in Numerical Recipes 10.5 (Direction Set (Powell's) method)
            // I could extend the optimiser and implement bounds on the directions moved. However the mapping
            // adapter seems to work OK.
            final boolean basisConvergence = false;
            // Perhaps these thresholds should be tighter?
            // The default is to use the sqrt() of the overall tolerance
            //final double lineRel = FastMath.sqrt(relativeThreshold);
            //final double lineAbs = FastMath.sqrt(absoluteThreshold);
            //final double lineRel = relativeThreshold * 1e2;
            //final double lineAbs = absoluteThreshold * 1e2;
            // Since we are fitting only a small number of parameters then just use the same tolerance 
            // for each search direction
            final double lineRel = relativeThreshold;
            final double lineAbs = absoluteThreshold;
            CustomPowellOptimizer o = new CustomPowellOptimizer(relativeThreshold, absoluteThreshold, lineRel, lineAbs, null, basisConvergence);
            baseOptimiser = o;
            OptimizationData maxIterationData = null;
            if (getMaxIterations() > 0)
                maxIterationData = new MaxIter(getMaxIterations());
            if (searchMethod == SearchMethod.POWELL_ADAPTER) {
                // Try using the mapping adapter for a bounded Powell search
                MultivariateFunctionMappingAdapter adapter = new MultivariateFunctionMappingAdapter(new MultivariateLikelihood(maximumLikelihoodFunction), lower, upper);
                optimum = o.optimize(maxIterationData, new MaxEval(getMaxEvaluations()), new ObjectiveFunction(adapter), GoalType.MINIMIZE, new InitialGuess(adapter.boundedToUnbounded(startPoint)));
                double[] solution = adapter.unboundedToBounded(optimum.getPointRef());
                optimum = new PointValuePair(solution, optimum.getValue());
            } else {
                if (powellFunction == null) {
                    // Python code by using the sqrt of the number of photons and background.
                    if (mapGaussian) {
                        Gaussian2DFunction gf = (Gaussian2DFunction) f;
                        // Re-map signal and background using the sqrt
                        int[] indices = gf.gradientIndices();
                        int[] map = new int[indices.length];
                        int count = 0;
                        // Background is always first
                        if (indices[0] == Gaussian2DFunction.BACKGROUND) {
                            map[count++] = 0;
                        }
                        // Look for the Signal in multiple peak 2D Gaussians
                        for (int i = 1; i < indices.length; i++) if (indices[i] % 6 == Gaussian2DFunction.SIGNAL) {
                            map[count++] = i;
                        }
                        if (count > 0) {
                            powellFunction = new MappedMultivariateLikelihood(maximumLikelihoodFunction, Arrays.copyOf(map, count));
                        }
                    }
                    if (powellFunction == null) {
                        powellFunction = new MultivariateLikelihood(maximumLikelihoodFunction);
                    }
                }
                // Update the maximum likelihood function in the Powell function wrapper
                powellFunction.fun = maximumLikelihoodFunction;
                OptimizationData positionChecker = null;
                // new org.apache.commons.math3.optim.PositionChecker(relativeThreshold, absoluteThreshold);
                SimpleBounds simpleBounds = null;
                if (powellFunction.isMapped()) {
                    MappedMultivariateLikelihood adapter = (MappedMultivariateLikelihood) powellFunction;
                    if (searchMethod == SearchMethod.POWELL_BOUNDED)
                        simpleBounds = new SimpleBounds(adapter.map(lower), adapter.map(upper));
                    optimum = o.optimize(maxIterationData, new MaxEval(getMaxEvaluations()), new ObjectiveFunction(powellFunction), GoalType.MINIMIZE, new InitialGuess(adapter.map(startPoint)), positionChecker, simpleBounds);
                    double[] solution = adapter.unmap(optimum.getPointRef());
                    optimum = new PointValuePair(solution, optimum.getValue());
                } else {
                    if (searchMethod == SearchMethod.POWELL_BOUNDED)
                        simpleBounds = new SimpleBounds(lower, upper);
                    optimum = o.optimize(maxIterationData, new MaxEval(getMaxEvaluations()), new ObjectiveFunction(powellFunction), GoalType.MINIMIZE, new InitialGuess(startPoint), positionChecker, simpleBounds);
                }
            }
        } else if (searchMethod == SearchMethod.BOBYQA) {
            // Differentiable approximation using Powell's BOBYQA algorithm.
            // This is slower than the Powell optimiser and requires a high number of evaluations.
            int numberOfInterpolationPoints = this.getNumberOfFittedParameters() + 2;
            BOBYQAOptimizer o = new BOBYQAOptimizer(numberOfInterpolationPoints);
            baseOptimiser = o;
            optimum = o.optimize(new MaxEval(getMaxEvaluations()), new ObjectiveFunction(new MultivariateLikelihood(maximumLikelihoodFunction)), GoalType.MINIMIZE, new InitialGuess(startPoint), new SimpleBounds(lower, upper));
        } else if (searchMethod == SearchMethod.CMAES) {
            // TODO - Understand why the CMAES optimiser does not fit very well on test data. It appears 
            // to converge too early and the likelihood scores are not as low as the other optimisers.
            // CMAESOptimiser based on Matlab code:
            // https://www.lri.fr/~hansen/cmaes.m
            // Take the defaults from the Matlab documentation
            //Double.NEGATIVE_INFINITY;
            double stopFitness = 0;
            boolean isActiveCMA = true;
            int diagonalOnly = 0;
            int checkFeasableCount = 1;
            RandomGenerator random = new Well19937c();
            boolean generateStatistics = false;
            // The sigma determines the search range for the variables. It should be 1/3 of the initial search region.
            double[] sigma = new double[lower.length];
            for (int i = 0; i < sigma.length; i++) sigma[i] = (upper[i] - lower[i]) / 3;
            int popSize = (int) (4 + Math.floor(3 * Math.log(sigma.length)));
            // The CMAES optimiser is random and restarting can overcome problems with quick convergence.
            // The Apache commons documentations states that convergence should occur between 30N and 300N^2
            // function evaluations
            final int n30 = FastMath.min(sigma.length * sigma.length * 30, getMaxEvaluations() / 2);
            evaluations = 0;
            OptimizationData[] data = new OptimizationData[] { new InitialGuess(startPoint), new CMAESOptimizer.PopulationSize(popSize), new MaxEval(getMaxEvaluations()), new CMAESOptimizer.Sigma(sigma), new ObjectiveFunction(new MultivariateLikelihood(maximumLikelihoodFunction)), GoalType.MINIMIZE, new SimpleBounds(lower, upper) };
            // Iterate to prevent early convergence
            int repeat = 0;
            while (evaluations < n30) {
                if (repeat++ > 1) {
                    // Update the start point and population size
                    data[0] = new InitialGuess(optimum.getPointRef());
                    popSize *= 2;
                    data[1] = new CMAESOptimizer.PopulationSize(popSize);
                }
                CMAESOptimizer o = new CMAESOptimizer(getMaxIterations(), stopFitness, isActiveCMA, diagonalOnly, checkFeasableCount, random, generateStatistics, new SimpleValueChecker(relativeThreshold, absoluteThreshold));
                baseOptimiser = o;
                PointValuePair result = o.optimize(data);
                iterations += o.getIterations();
                evaluations += o.getEvaluations();
                //		o.getEvaluations(), totalEvaluations);
                if (optimum == null || result.getValue() < optimum.getValue()) {
                    optimum = result;
                }
            }
            // Prevent incrementing the iterations again
            baseOptimiser = null;
        } else if (searchMethod == SearchMethod.BFGS) {
            // BFGS can use an approximate line search minimisation where as Powell and conjugate gradient
            // methods require a more accurate line minimisation. The BFGS search does not do a full 
            // minimisation but takes appropriate steps in the direction of the current gradient.
            // Do not use the convergence checker on the value of the function. Use the convergence on the 
            // point coordinate and gradient
            //BFGSOptimizer o = new BFGSOptimizer(new SimpleValueChecker(rel, abs));
            BFGSOptimizer o = new BFGSOptimizer();
            baseOptimiser = o;
            // Configure maximum step length for each dimension using the bounds
            double[] stepLength = new double[lower.length];
            for (int i = 0; i < stepLength.length; i++) {
                stepLength[i] = (upper[i] - lower[i]) * 0.3333333;
                if (stepLength[i] <= 0)
                    stepLength[i] = Double.POSITIVE_INFINITY;
            }
            // The GoalType is always minimise so no need to pass this in
            OptimizationData positionChecker = null;
            //new org.apache.commons.math3.optim.PositionChecker(relativeThreshold, absoluteThreshold);
            optimum = o.optimize(new MaxEval(getMaxEvaluations()), new ObjectiveFunctionGradient(new MultivariateVectorLikelihood(maximumLikelihoodFunction)), new ObjectiveFunction(new MultivariateLikelihood(maximumLikelihoodFunction)), new InitialGuess(startPoint), new SimpleBounds(lowerConstraint, upperConstraint), new BFGSOptimizer.GradientTolerance(relativeThreshold), positionChecker, new BFGSOptimizer.StepLength(stepLength));
        } else {
            // The line search algorithm often fails. This is due to searching into a region where the 
            // function evaluates to a negative so has been clipped. This means the upper bound of the line
            // cannot be found.
            // Note that running it on an easy problem (200 photons with fixed fitting (no background)) the algorithm
            // does sometimes produces results better than the Powell algorithm but it is slower.
            BoundedNonLinearConjugateGradientOptimizer o = new BoundedNonLinearConjugateGradientOptimizer((searchMethod == SearchMethod.CONJUGATE_GRADIENT_FR) ? Formula.FLETCHER_REEVES : Formula.POLAK_RIBIERE, new SimpleValueChecker(relativeThreshold, absoluteThreshold));
            baseOptimiser = o;
            // Note: The gradients may become unstable at the edge of the bounds. Or they will not change 
            // direction if the true solution is on the bounds since the gradient will always continue 
            // towards the bounds. This is key to the conjugate gradient method. It searches along a vector 
            // until the direction of the gradient is in the opposite direction (using dot products, i.e. 
            // cosine of angle between them)
            // NR 10.7 states there is no advantage of the variable metric DFP or BFGS methods over
            // conjugate gradient methods. So I will try these first.
            // Try this:
            // Adapt the conjugate gradient optimiser to use the gradient to pick the search direction
            // and then for the line minimisation. However if the function is out of bounds then clip the 
            // variables at the bounds and continue. 
            // If the current point is at the bounds and the gradient is to continue out of bounds then 
            // clip the gradient too.
            // Or: just use the gradient for the search direction then use the line minimisation/rest
            // as per the Powell optimiser. The bounds should limit the search.
            // I tried a Bounded conjugate gradient optimiser with clipped variables:
            // This sometimes works. However when the variables go a long way out of the expected range the gradients
            // can have vastly different magnitudes. This results in the algorithm stalling since the gradients
            // can be close to zero and the some of the parameters are no longer adjusted.
            // Perhaps this can be looked for and the algorithm then gives up and resorts to a Powell optimiser from 
            // the current point.
            // Changed the bracketing step to very small (default is 1, changed to 0.001). This improves the 
            // performance. The gradient direction is very sensitive to small changes in the coordinates so a 
            // tighter bracketing of the line search helps.
            // Tried using a non-gradient method for the line search copied from the Powell optimiser:
            // This also works when the bracketing step is small but the number of iterations is higher.
            // 24.10.2014: I have tried to get conjugate gradient to work but the gradient function 
            // must not behave suitably for the optimiser. In the current state both methods of using a 
            // Bounded Conjugate Gradient Optimiser perform poorly relative to other optimisers:
            // Simulated : n=1000, signal=200, x=0.53, y=0.47
            // LVM : n=1000, signal=171, x=0.537, y=0.471 (1.003s)
            // Powell : n=1000, signal=187, x=0.537, y=0.48 (1.238s)
            // Gradient based PR (constrained): n=858, signal=161, x=0.533, y=0.474 (2.54s)
            // Gradient based PR (bounded): n=948, signal=161, x=0.533, y=0.473 (2.67s)
            // Non-gradient based : n=1000, signal=151.47, x=0.535, y=0.474 (1.626s)
            // The conjugate optimisers are slower, under predict the signal by the most and in the case of 
            // the gradient based optimiser, fail to converge on some problems. This is worse when constrained
            // fitting is used and not tightly bounded fitting.
            // I will leave the code in as an option but would not recommend using it. I may remove it in the 
            // future.
            // Note: It is strange that the non-gradient based line minimisation is more successful.
            // It may be that the gradient function is not accurate (due to round off error) or that it is
            // simply wrong when far from the optimum. My JUnit tests only evaluate the function within the 
            // expected range of the answer.
            // Note the default step size on the Powell optimiser is 1 but the initial directions are unit vectors.
            // So our bracketing step should be a minimum of 1 / average length of the first gradient vector to prevent
            // the first step being too large when bracketing.
            final double[] gradient = new double[startPoint.length];
            maximumLikelihoodFunction.likelihood(startPoint, gradient);
            double l = 0;
            for (double d : gradient) l += d * d;
            final double bracketingStep = FastMath.min(0.001, ((l > 1) ? 1.0 / l : 1));
            //System.out.printf("Bracketing step = %f (length=%f)\n", bracketingStep, l);
            o.setUseGradientLineSearch(gradientLineMinimisation);
            optimum = o.optimize(new MaxEval(getMaxEvaluations()), new ObjectiveFunctionGradient(new MultivariateVectorLikelihood(maximumLikelihoodFunction)), new ObjectiveFunction(new MultivariateLikelihood(maximumLikelihoodFunction)), GoalType.MINIMIZE, new InitialGuess(startPoint), new SimpleBounds(lowerConstraint, upperConstraint), new BoundedNonLinearConjugateGradientOptimizer.BracketingStep(bracketingStep));
        //maximumLikelihoodFunction.value(solution, gradient);
        //System.out.printf("Iter = %d, %g @ %s : %s\n", iterations, ll, Arrays.toString(solution),
        //		Arrays.toString(gradient));
        }
        final double[] solution = optimum.getPointRef();
        setSolution(a, solution);
        if (a_dev != null) {
            // Assume the Maximum Likelihood estimator returns the optimum fit (achieves the Cramer Roa
            // lower bounds) and so the covariance can be obtained from the Fisher Information Matrix.
            FisherInformationMatrix m = new FisherInformationMatrix(maximumLikelihoodFunction.fisherInformation(a));
            setDeviations(a_dev, m.crlb(true));
        }
        // Reverse negative log likelihood for maximum likelihood score
        value = -optimum.getValue();
    } catch (TooManyIterationsException e) {
        //e.printStackTrace();
        return FitStatus.TOO_MANY_ITERATIONS;
    } catch (TooManyEvaluationsException e) {
        //e.printStackTrace();
        return FitStatus.TOO_MANY_EVALUATIONS;
    } catch (ConvergenceException e) {
        //System.out.printf("Singular non linear model = %s\n", e.getMessage());
        return FitStatus.SINGULAR_NON_LINEAR_MODEL;
    } catch (BFGSOptimizer.LineSearchRoundoffException e) {
        //e.printStackTrace();
        return FitStatus.FAILED_TO_CONVERGE;
    } catch (Exception e) {
        //System.out.printf("Unknown error = %s\n", e.getMessage());
        e.printStackTrace();
        return FitStatus.UNKNOWN;
    } finally {
        if (baseOptimiser != null) {
            iterations += baseOptimiser.getIterations();
            evaluations += baseOptimiser.getEvaluations();
        }
    }
    // Check this as likelihood functions can go wrong
    if (Double.isInfinite(value) || Double.isNaN(value))
        return FitStatus.INVALID_LIKELIHOOD;
    return FitStatus.OK;
}
Also used : MaxEval(org.apache.commons.math3.optim.MaxEval) InitialGuess(org.apache.commons.math3.optim.InitialGuess) BOBYQAOptimizer(org.apache.commons.math3.optim.nonlinear.scalar.noderiv.BOBYQAOptimizer) SimpleBounds(org.apache.commons.math3.optim.SimpleBounds) ObjectiveFunction(org.apache.commons.math3.optim.nonlinear.scalar.ObjectiveFunction) Well19937c(org.apache.commons.math3.random.Well19937c) SimpleValueChecker(org.apache.commons.math3.optim.SimpleValueChecker) RandomGenerator(org.apache.commons.math3.random.RandomGenerator) BFGSOptimizer(org.apache.commons.math3.optim.nonlinear.scalar.gradient.BFGSOptimizer) PointValuePair(org.apache.commons.math3.optim.PointValuePair) TooManyEvaluationsException(org.apache.commons.math3.exception.TooManyEvaluationsException) Gaussian2DFunction(gdsc.smlm.function.gaussian.Gaussian2DFunction) ConvergenceException(org.apache.commons.math3.exception.ConvergenceException) BoundedNonLinearConjugateGradientOptimizer(org.apache.commons.math3.optim.nonlinear.scalar.gradient.BoundedNonLinearConjugateGradientOptimizer) TooManyIterationsException(org.apache.commons.math3.exception.TooManyIterationsException) BaseOptimizer(org.apache.commons.math3.optim.BaseOptimizer) CMAESOptimizer(org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CMAESOptimizer) FisherInformationMatrix(gdsc.smlm.fitting.FisherInformationMatrix) PoissonGammaGaussianLikelihoodWrapper(gdsc.smlm.function.PoissonGammaGaussianLikelihoodWrapper) PoissonGaussianLikelihoodWrapper(gdsc.smlm.function.PoissonGaussianLikelihoodWrapper) PoissonLikelihoodWrapper(gdsc.smlm.function.PoissonLikelihoodWrapper) LikelihoodWrapper(gdsc.smlm.function.LikelihoodWrapper) ConvergenceException(org.apache.commons.math3.exception.ConvergenceException) TooManyIterationsException(org.apache.commons.math3.exception.TooManyIterationsException) TooManyEvaluationsException(org.apache.commons.math3.exception.TooManyEvaluationsException) ObjectiveFunctionGradient(org.apache.commons.math3.optim.nonlinear.scalar.ObjectiveFunctionGradient) MultivariateFunctionMappingAdapter(org.apache.commons.math3.optim.nonlinear.scalar.MultivariateFunctionMappingAdapter) OptimizationData(org.apache.commons.math3.optim.OptimizationData) CustomPowellOptimizer(org.apache.commons.math3.optim.nonlinear.scalar.noderiv.CustomPowellOptimizer) MaxIter(org.apache.commons.math3.optim.MaxIter)

Example 5 with FisherInformationMatrix

use of gdsc.smlm.fitting.FisherInformationMatrix in project GDSC-SMLM by aherbert.

the class NonLinearFit method computeDeviations.

/**
	 * Compute the parameter deviations using the covariance matrix of the solution
	 *
	 * @param a_dev
	 *            the a dev
	 * @return true, if successful
	 */
private boolean computeDeviations(double[] a_dev) {
    if (isMLE()) {
        // The Hessian matrix refers to the log-likelihood ratio.
        // Compute and invert a matrix related to the Poisson log-likelihood.
        // This assumes this does achieve the maximum likelihood estimate for a 
        // Poisson process.
        MLEGradientCalculator c = (MLEGradientCalculator) calculator;
        double[][] I = c.fisherInformationMatrix(lastY.length, null, func);
        // Use a dedicated solver optimised for inverting the matrix diagonal 
        FisherInformationMatrix m = new FisherInformationMatrix(I);
        setDeviations(a_dev, m.crlb(true));
    } else {
        // Use a dedicated solver optimised for inverting the matrix diagonal. 
        FisherInformationMatrix m = new FisherInformationMatrix(alpha);
        setDeviations(a_dev, m.crlb(true));
    }
    return true;
}
Also used : FisherInformationMatrix(gdsc.smlm.fitting.FisherInformationMatrix) MLEGradientCalculator(gdsc.smlm.fitting.nonlinear.gradient.MLEGradientCalculator)

Aggregations

FisherInformationMatrix (gdsc.smlm.fitting.FisherInformationMatrix)8 PoissonGradientProcedure (gdsc.smlm.fitting.nonlinear.gradient.PoissonGradientProcedure)3 Gaussian2DFunction (gdsc.smlm.function.gaussian.Gaussian2DFunction)2 ConvergenceException (org.apache.commons.math3.exception.ConvergenceException)2 TooManyEvaluationsException (org.apache.commons.math3.exception.TooManyEvaluationsException)2 TooManyIterationsException (org.apache.commons.math3.exception.TooManyIterationsException)2 SimpleArrayMoment (gdsc.core.math.SimpleArrayMoment)1 GradientCalculator (gdsc.smlm.fitting.nonlinear.gradient.GradientCalculator)1 MLEGradientCalculator (gdsc.smlm.fitting.nonlinear.gradient.MLEGradientCalculator)1 ExtendedNonLinearFunction (gdsc.smlm.function.ExtendedNonLinearFunction)1 LikelihoodWrapper (gdsc.smlm.function.LikelihoodWrapper)1 MultivariateMatrixFunctionWrapper (gdsc.smlm.function.MultivariateMatrixFunctionWrapper)1 MultivariateVectorFunctionWrapper (gdsc.smlm.function.MultivariateVectorFunctionWrapper)1 NonLinearFunction (gdsc.smlm.function.NonLinearFunction)1 PoissonGammaGaussianLikelihoodWrapper (gdsc.smlm.function.PoissonGammaGaussianLikelihoodWrapper)1 PoissonGaussianLikelihoodWrapper (gdsc.smlm.function.PoissonGaussianLikelihoodWrapper)1 PoissonLikelihoodWrapper (gdsc.smlm.function.PoissonLikelihoodWrapper)1 ValueProcedure (gdsc.smlm.function.ValueProcedure)1 ErfGaussian2DFunction (gdsc.smlm.function.gaussian.erf.ErfGaussian2DFunction)1 LeastSquaresBuilder (org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder)1