use of org.apache.commons.math3.stat.Frequency in project narchy by automenta.
the class RouletteTest method testDecideRouletteFlat.
@Test
public void testDecideRouletteFlat() {
XorShift128PlusRandom rng = new XorShift128PlusRandom(1);
int uniques = 4;
int samples = 100;
Frequency f = new Frequency();
for (int i = 0; i < samples; i++) f.addValue(Roulette.decideRoulette(uniques, (k) -> 0.5f, rng));
// System.out.println(f);
assertEquals(f.getUniqueCount(), uniques);
float total = f.getSumFreq();
for (int i = 0; i < uniques; i++) assertEquals(f.getCount(i) / total, 1f / uniques, 1f / (4 * uniques));
}
use of org.apache.commons.math3.stat.Frequency in project narchy by automenta.
the class BaggieTest method testSampling.
@Test
public void testSampling() {
int cap = 8;
Baggie<String> s = new Baggie(cap);
for (int i = 0; i < cap; i++) {
s.put("x" + i, i / ((float) cap));
}
String t = Joiner.on(",").join(s.toList());
assertEquals("x7=0.87498856,x6=0.7500076,x5=0.6249962,x4=0.50001526,x3=0.3750038,x2=0.24999237,x1=0.12501144,x0=0.0", t);
Random rng = new XorShift128PlusRandom(1);
Frequency f = new Frequency();
final int[] num = { cap * 100 };
s.sample(rng, (x) -> {
f.addValue(x.get());
return num[0]-- > 0;
});
System.out.println(f);
assertTrue(f.getCount("x" + (cap - 1)) > f.getCount("x0"));
{
// change all to a new value (0.5)
final int[] resetNum = { cap * 100 };
// TODO use s.commit()
s.sample(rng, (x) -> {
x.set(0.5f);
return resetNum[0]-- > 0;
});
s.forEach((x, p) -> {
assertEquals(0.5f, p, 0.001f);
return true;
});
// effectively cleared
assertEquals(cap, s.size());
assertEquals(0.5f, s.priMax(), 0.001f);
assertEquals(0.5f, s.priMin(), 0.001f);
}
{
// remove everything
final int[] remNum = { 0 };
s.sample(rng, (x) -> {
// delete it
x.set(Float.NaN);
remNum[0]++;
return true;
});
// all removed during sampling
assertEquals(cap, remNum[0]);
// effectively cleared
assertEquals(0, s.size());
assertEquals(Float.NaN, s.priMax(), 0.001f);
assertEquals(Float.NaN, s.priMin(), 0.001f);
}
}
use of org.apache.commons.math3.stat.Frequency in project GDSC-SMLM by aherbert.
the class PCPALMMolecules method calculateAveragePrecision.
/**
* Calculate the average precision by fitting a skewed Gaussian to the histogram of the precision distribution.
* <p>
* A simple mean and SD of the histogram is computed. If the mean of the Skewed Gaussian does not fit within 3 SDs
* of the simple mean then the simple mean is returned.
*
* @param molecules
* @param title
* the plot title (null if no plot should be displayed)
* @param histogramBins
* @param logFitParameters
* Record the fit parameters to the ImageJ log
* @param removeOutliers
* The distribution is created using all values within 1.5x the inter-quartile range (IQR) of the data
* @return The average precision
*/
public double calculateAveragePrecision(ArrayList<Molecule> molecules, String title, int histogramBins, boolean logFitParameters, boolean removeOutliers) {
// Plot histogram of the precision
float[] data = new float[molecules.size()];
DescriptiveStatistics stats = new DescriptiveStatistics();
double yMin = Double.NEGATIVE_INFINITY, yMax = 0;
for (int i = 0; i < data.length; i++) {
data[i] = (float) molecules.get(i).precision;
stats.addValue(data[i]);
}
// Set the min and max y-values using 1.5 x IQR
if (removeOutliers) {
double lower = stats.getPercentile(25);
double upper = stats.getPercentile(75);
if (Double.isNaN(lower) || Double.isNaN(upper)) {
if (logFitParameters)
Utils.log("Error computing IQR: %f - %f", lower, upper);
} else {
double iqr = upper - lower;
yMin = FastMath.max(lower - iqr, stats.getMin());
yMax = FastMath.min(upper + iqr, stats.getMax());
if (logFitParameters)
Utils.log(" Data range: %f - %f. Plotting 1.5x IQR: %f - %f", stats.getMin(), stats.getMax(), yMin, yMax);
}
}
if (yMin == Double.NEGATIVE_INFINITY) {
yMin = stats.getMin();
yMax = stats.getMax();
if (logFitParameters)
Utils.log(" Data range: %f - %f", yMin, yMax);
}
float[][] hist = Utils.calcHistogram(data, yMin, yMax, histogramBins);
Plot2 plot = null;
if (title != null) {
plot = new Plot2(title, "Precision", "Frequency");
float[] xValues = hist[0];
float[] yValues = hist[1];
if (xValues.length > 0) {
double xPadding = 0.05 * (xValues[xValues.length - 1] - xValues[0]);
plot.setLimits(xValues[0] - xPadding, xValues[xValues.length - 1] + xPadding, 0, Maths.max(yValues) * 1.05);
}
plot.addPoints(xValues, yValues, Plot2.BAR);
Utils.display(title, plot);
}
// Extract non-zero data
float[] x = Arrays.copyOf(hist[0], hist[0].length);
float[] y = hist[1];
int count = 0;
float dx = (x[1] - x[0]) * 0.5f;
for (int i = 0; i < y.length; i++) if (y[i] > 0) {
x[count] = x[i] + dx;
y[count] = y[i];
count++;
}
x = Arrays.copyOf(x, count);
y = Arrays.copyOf(y, count);
// Sense check to fitted data. Get mean and SD of histogram
double[] stats2 = Utils.getHistogramStatistics(x, y);
double mean = stats2[0];
if (logFitParameters)
log(" Initial Statistics: %f +/- %f", stats2[0], stats2[1]);
// Standard Gaussian fit
double[] parameters = fitGaussian(x, y);
if (parameters == null) {
log(" Failed to fit initial Gaussian");
return mean;
}
double newMean = parameters[1];
double error = Math.abs(stats2[0] - newMean) / stats2[1];
if (error > 3) {
log(" Failed to fit Gaussian: %f standard deviations from histogram mean", error);
return mean;
}
if (newMean < yMin || newMean > yMax) {
log(" Failed to fit Gaussian: %f outside data range %f - %f", newMean, yMin, yMax);
return mean;
}
mean = newMean;
if (logFitParameters)
log(" Initial Gaussian: %f @ %f +/- %f", parameters[0], parameters[1], parameters[2]);
double[] initialSolution = new double[] { parameters[0], parameters[1], parameters[2], -1 };
// Fit to a skewed Gaussian (or appropriate function)
double[] skewParameters = fitSkewGaussian(x, y, initialSolution);
if (skewParameters == null) {
log(" Failed to fit Skewed Gaussian");
return mean;
}
SkewNormalFunction sn = new SkewNormalFunction(skewParameters);
if (logFitParameters)
log(" Skewed Gaussian: %f @ %f +/- %f (a = %f) => %f +/- %f", skewParameters[0], skewParameters[1], skewParameters[2], skewParameters[3], sn.getMean(), Math.sqrt(sn.getVariance()));
newMean = sn.getMean();
error = Math.abs(stats2[0] - newMean) / stats2[1];
if (error > 3) {
log(" Failed to fit Skewed Gaussian: %f standard deviations from histogram mean", error);
return mean;
}
if (newMean < yMin || newMean > yMax) {
log(" Failed to fit Skewed Gaussian: %f outside data range %f - %f", newMean, yMin, yMax);
return mean;
}
// Use original histogram x-axis to maintain all the bins
if (plot != null) {
x = hist[0];
for (int i = 0; i < y.length; i++) x[i] += dx;
plot.setColor(Color.red);
addToPlot(plot, x, skewParameters, Plot2.LINE);
plot.setColor(Color.black);
Utils.display(title, plot);
}
// Return the average precision from the fitted curve
return newMean;
}
use of org.apache.commons.math3.stat.Frequency in project GDSC-SMLM by aherbert.
the class FIRE method runQEstimation.
private void runQEstimation() {
IJ.showStatus(TITLE + " ...");
if (!showQEstimationInputDialog())
return;
MemoryPeakResults results = ResultsManager.loadInputResults(inputOption, false);
if (results == null || results.size() == 0) {
IJ.error(TITLE, "No results could be loaded");
return;
}
if (results.getCalibration() == null) {
IJ.error(TITLE, "The results are not calibrated");
return;
}
results = cropToRoi(results);
if (results.size() < 2) {
IJ.error(TITLE, "No results within the crop region");
return;
}
initialise(results, null);
// We need localisation precision.
// Build a histogram of the localisation precision.
// Get the initial mean and SD and plot as a Gaussian.
PrecisionHistogram histogram = calculatePrecisionHistogram();
if (histogram == null) {
IJ.error(TITLE, "No localisation precision available.\n \nPlease choose " + PrecisionMethod.FIXED + " and enter a precision mean and SD.");
return;
}
StoredDataStatistics precision = histogram.precision;
//String name = results.getName();
double fourierImageScale = SCALE_VALUES[imageScaleIndex];
int imageSize = IMAGE_SIZE_VALUES[imageSizeIndex];
// Create the image and compute the numerator of FRC.
// Do not use the signal so results.size() is the number of localisations.
IJ.showStatus("Computing FRC curve ...");
FireImages images = createImages(fourierImageScale, imageSize, false);
// DEBUGGING - Save the two images to disk. Load the images into the Matlab
// code that calculates the Q-estimation and make this plugin match the functionality.
//IJ.save(new ImagePlus("i1", images.ip1), "/scratch/i1.tif");
//IJ.save(new ImagePlus("i2", images.ip2), "/scratch/i2.tif");
FRC frc = new FRC();
frc.progress = progress;
frc.setFourierMethod(fourierMethod);
frc.setSamplingMethod(samplingMethod);
frc.setPerimeterSamplingFactor(perimeterSamplingFactor);
FRCCurve frcCurve = frc.calculateFrcCurve(images.ip1, images.ip2, images.nmPerPixel);
if (frcCurve == null) {
IJ.error(TITLE, "Failed to compute FRC curve");
return;
}
IJ.showStatus("Running Q-estimation ...");
// Note:
// The method implemented here is based on Matlab code provided by Bernd Rieger.
// The idea is to compute the spurious correlation component of the FRC Numerator
// using an initial estimate of distribution of the localisation precision (assumed
// to be Gaussian). This component is the contribution of repeat localisations of
// the same molecule to the numerator and is modelled as an exponential decay
// (exp_decay). The component is scaled by the Q-value which
// is the average number of times a molecule is seen in addition to the first time.
// At large spatial frequencies the scaled component should match the numerator,
// i.e. at high resolution (low FIRE number) the numerator is made up of repeat
// localisations of the same molecule and not actual structure in the image.
// The best fit is where the numerator equals the scaled component, i.e. num / (q*exp_decay) == 1.
// The FRC Numerator is plotted and Q can be determined by
// adjusting Q and the precision mean and SD to maximise the cost function.
// This can be done interactively by the user with the effect on the FRC curve
// dynamically updated and displayed.
// Compute the scaled FRC numerator
double qNorm = (1 / frcCurve.mean1 + 1 / frcCurve.mean2);
double[] frcnum = new double[frcCurve.getSize()];
for (int i = 0; i < frcnum.length; i++) {
FRCCurveResult r = frcCurve.get(i);
frcnum[i] = qNorm * r.getNumerator() / r.getNumberOfSamples();
}
// Compute the spatial frequency and the region for curve fitting
double[] q = FRC.computeQ(frcCurve, false);
int low = 0, high = q.length;
while (high > 0 && q[high - 1] > maxQ) high--;
while (low < q.length && q[low] < minQ) low++;
// Require we fit at least 10% of the curve
if (high - low < q.length * 0.1) {
IJ.error(TITLE, "Not enough points for Q estimation");
return;
}
// Obtain initial estimate of Q plateau height and decay.
// This can be done by fitting the precision histogram and then fixing the mean and sigma.
// Or it can be done by allowing the precision to be sampled and the mean and sigma
// become parameters for fitting.
// Check if we can sample precision values
boolean sampleDecay = precision != null && FIRE.sampleDecay;
double[] exp_decay;
if (sampleDecay) {
// Random sample of precision values from the distribution is used to
// construct the decay curve
int[] sample = Random.sample(10000, precision.getN(), new Well19937c());
final double four_pi2 = 4 * Math.PI * Math.PI;
double[] pre = new double[q.length];
for (int i = 1; i < q.length; i++) pre[i] = -four_pi2 * q[i] * q[i];
// Sample
final int n = sample.length;
double[] hq = new double[n];
for (int j = 0; j < n; j++) {
// Scale to SR pixels
double s2 = precision.getValue(sample[j]) / images.nmPerPixel;
s2 *= s2;
for (int i = 1; i < q.length; i++) hq[i] += FastMath.exp(pre[i] * s2);
}
for (int i = 1; i < q.length; i++) hq[i] /= n;
exp_decay = new double[q.length];
exp_decay[0] = 1;
for (int i = 1; i < q.length; i++) {
double sinc_q = sinc(Math.PI * q[i]);
exp_decay[i] = sinc_q * sinc_q * hq[i];
}
} else {
// Note: The sigma mean and std should be in the units of super-resolution
// pixels so scale to SR pixels
exp_decay = computeExpDecay(histogram.mean / images.nmPerPixel, histogram.sigma / images.nmPerPixel, q);
}
// Smoothing
double[] smooth;
if (loessSmoothing) {
// Note: This computes the log then smooths it
double bandwidth = 0.1;
int robustness = 0;
double[] l = new double[exp_decay.length];
for (int i = 0; i < l.length; i++) {
// Original Matlab code computes the log for each array.
// This is equivalent to a single log on the fraction of the two.
// Perhaps the two log method is more numerically stable.
//l[i] = Math.log(Math.abs(frcnum[i])) - Math.log(exp_decay[i]);
l[i] = Math.log(Math.abs(frcnum[i] / exp_decay[i]));
}
try {
LoessInterpolator loess = new LoessInterpolator(bandwidth, robustness);
smooth = loess.smooth(q, l);
} catch (Exception e) {
IJ.error(TITLE, "LOESS smoothing failed");
return;
}
} else {
// Note: This smooths the curve before computing the log
double[] norm = new double[exp_decay.length];
for (int i = 0; i < norm.length; i++) {
norm[i] = frcnum[i] / exp_decay[i];
}
// Median window of 5 == radius of 2
MedianWindow mw = new MedianWindow(norm, 2);
smooth = new double[exp_decay.length];
for (int i = 0; i < norm.length; i++) {
smooth[i] = Math.log(Math.abs(mw.getMedian()));
mw.increment();
}
}
// Fit with quadratic to find the initial guess.
// Note: example Matlab code frc_Qcorrection7.m identifies regions of the
// smoothed log curve with low derivative and only fits those. The fit is
// used for the final estimate. Fitting a subset with low derivative is not
// implemented here since the initial estimate is subsequently optimised
// to maximise a cost function.
Quadratic curve = new Quadratic();
SimpleCurveFitter fit = SimpleCurveFitter.create(curve, new double[2]);
WeightedObservedPoints points = new WeightedObservedPoints();
for (int i = low; i < high; i++) points.add(q[i], smooth[i]);
double[] estimate = fit.fit(points.toList());
double qValue = FastMath.exp(estimate[0]);
//System.out.printf("Initial q-estimate = %s => %.3f\n", Arrays.toString(estimate), qValue);
// This could be made an option. Just use for debugging
boolean debug = false;
if (debug) {
// Plot the initial fit and the fit curve
double[] qScaled = FRC.computeQ(frcCurve, true);
double[] line = new double[q.length];
for (int i = 0; i < q.length; i++) line[i] = curve.value(q[i], estimate);
String title = TITLE + " Initial fit";
Plot2 plot = new Plot2(title, "Spatial Frequency (nm^-1)", "FRC Numerator");
String label = String.format("Q = %.3f", qValue);
plot.addPoints(qScaled, smooth, Plot.LINE);
plot.setColor(Color.red);
plot.addPoints(qScaled, line, Plot.LINE);
plot.setColor(Color.black);
plot.addLabel(0, 0, label);
Utils.display(title, plot, Utils.NO_TO_FRONT);
}
if (fitPrecision) {
// Q - Should this be optional?
if (sampleDecay) {
// If a sample of the precision was used to construct the data for the initial fit
// then update the estimate using the fit result since it will be a better start point.
histogram.sigma = precision.getStandardDeviation();
// Normalise sum-of-squares to the SR pixel size
double meanSumOfSquares = (precision.getSumOfSquares() / (images.nmPerPixel * images.nmPerPixel)) / precision.getN();
histogram.mean = images.nmPerPixel * Math.sqrt(meanSumOfSquares - estimate[1] / (4 * Math.PI * Math.PI));
}
// Do a multivariate fit ...
SimplexOptimizer opt = new SimplexOptimizer(1e-6, 1e-10);
PointValuePair p = null;
MultiPlateauness f = new MultiPlateauness(frcnum, q, low, high);
double[] initial = new double[] { histogram.mean / images.nmPerPixel, histogram.sigma / images.nmPerPixel, qValue };
p = findMin(p, opt, f, scale(initial, 0.1));
p = findMin(p, opt, f, scale(initial, 0.5));
p = findMin(p, opt, f, initial);
p = findMin(p, opt, f, scale(initial, 2));
p = findMin(p, opt, f, scale(initial, 10));
if (p != null) {
double[] point = p.getPointRef();
histogram.mean = point[0] * images.nmPerPixel;
histogram.sigma = point[1] * images.nmPerPixel;
qValue = point[2];
}
} else {
// If so then this should be optional.
if (sampleDecay) {
if (precisionMethod != PrecisionMethod.FIXED) {
histogram.sigma = precision.getStandardDeviation();
// Normalise sum-of-squares to the SR pixel size
double meanSumOfSquares = (precision.getSumOfSquares() / (images.nmPerPixel * images.nmPerPixel)) / precision.getN();
histogram.mean = images.nmPerPixel * Math.sqrt(meanSumOfSquares - estimate[1] / (4 * Math.PI * Math.PI));
}
exp_decay = computeExpDecay(histogram.mean / images.nmPerPixel, histogram.sigma / images.nmPerPixel, q);
}
// Estimate spurious component by promoting plateauness.
// The Matlab code used random initial points for a Simplex optimiser.
// A Brent line search should be pretty deterministic so do simple repeats.
// However it will proceed downhill so if the initial point is wrong then
// it will find a sub-optimal result.
UnivariateOptimizer o = new BrentOptimizer(1e-3, 1e-6);
Plateauness f = new Plateauness(frcnum, exp_decay, low, high);
UnivariatePointValuePair p = null;
p = findMin(p, o, f, qValue, 0.1);
p = findMin(p, o, f, qValue, 0.2);
p = findMin(p, o, f, qValue, 0.333);
p = findMin(p, o, f, qValue, 0.5);
// Do some Simplex repeats as well
SimplexOptimizer opt = new SimplexOptimizer(1e-6, 1e-10);
p = findMin(p, opt, f, qValue * 0.1);
p = findMin(p, opt, f, qValue * 0.5);
p = findMin(p, opt, f, qValue);
p = findMin(p, opt, f, qValue * 2);
p = findMin(p, opt, f, qValue * 10);
if (p != null)
qValue = p.getPoint();
}
QPlot qplot = new QPlot(frcCurve, qValue, low, high);
// Interactive dialog to estimate Q (blinking events per flourophore) using
// sliders for the mean and standard deviation of the localisation precision.
showQEstimationDialog(histogram, qplot, frcCurve, images.nmPerPixel);
IJ.showStatus(TITLE + " complete");
}
use of org.apache.commons.math3.stat.Frequency in project GDSC-SMLM by aherbert.
the class BenchmarkSpotFit method showDoubleHistogram.
private double[] showDoubleHistogram(StoredDataStatistics[][] stats, final int i, WindowOrganiser wo, double[][] matchScores, double nPredicted) {
String xLabel = filterCriteria[i].name;
LowerLimit lower = filterCriteria[i].lower;
UpperLimit upper = filterCriteria[i].upper;
double[] j = null;
double[] metric = null;
double maxJ = 0;
if (i <= FILTER_PRECISION && (showFilterScoreHistograms || upper.requiresJaccard || lower.requiresJaccard)) {
// Jaccard score verses the range of the metric
Arrays.sort(matchScores, new Comparator<double[]>() {
public int compare(double[] o1, double[] o2) {
if (o1[i] < o2[i])
return -1;
if (o1[i] > o2[i])
return 1;
return 0;
}
});
final int scoreIndex = FILTER_PRECISION + 1;
int n = results.size();
double tp = 0;
double fp = 0;
j = new double[matchScores.length + 1];
metric = new double[j.length];
for (int k = 0; k < matchScores.length; k++) {
final double score = matchScores[k][scoreIndex];
tp += score;
fp += (1 - score);
j[k + 1] = tp / (fp + n);
metric[k + 1] = matchScores[k][i];
}
metric[0] = metric[1];
maxJ = Maths.max(j);
if (showFilterScoreHistograms) {
String title = TITLE + " Jaccard " + xLabel;
Plot plot = new Plot(title, xLabel, "Jaccard", metric, j);
// Remove outliers
double[] limitsx = Maths.limits(metric);
Percentile p = new Percentile();
double l = p.evaluate(metric, 25);
double u = p.evaluate(metric, 75);
double iqr = 1.5 * (u - l);
limitsx[1] = Math.min(limitsx[1], u + iqr);
plot.setLimits(limitsx[0], limitsx[1], 0, Maths.max(j));
PlotWindow pw = Utils.display(title, plot);
if (Utils.isNewWindow())
wo.add(pw);
}
}
// [0] is all
// [1] is matches
// [2] is no match
StoredDataStatistics s1 = stats[0][i];
StoredDataStatistics s2 = stats[1][i];
StoredDataStatistics s3 = stats[2][i];
if (s1.getN() == 0)
return new double[4];
DescriptiveStatistics d = s1.getStatistics();
double median = 0;
Plot2 plot = null;
String title = null;
if (showFilterScoreHistograms) {
median = d.getPercentile(50);
String label = String.format("n = %d. Median = %s nm", s1.getN(), Utils.rounded(median));
int id = Utils.showHistogram(TITLE, s1, xLabel, filterCriteria[i].minBinWidth, (filterCriteria[i].restrictRange) ? 1 : 0, 0, label);
if (id == 0) {
IJ.log("Failed to show the histogram: " + xLabel);
return new double[4];
}
if (Utils.isNewWindow())
wo.add(id);
title = WindowManager.getImage(id).getTitle();
// Reverse engineer the histogram settings
plot = Utils.plot;
double[] xValues = Utils.xValues;
int bins = xValues.length;
double yMin = xValues[0];
double binSize = xValues[1] - xValues[0];
double yMax = xValues[0] + (bins - 1) * binSize;
if (s2.getN() > 0) {
double[] values = s2.getValues();
double[][] hist = Utils.calcHistogram(values, yMin, yMax, bins);
if (hist[0].length > 0) {
plot.setColor(Color.red);
plot.addPoints(hist[0], hist[1], Plot2.BAR);
Utils.display(title, plot);
}
}
if (s3.getN() > 0) {
double[] values = s3.getValues();
double[][] hist = Utils.calcHistogram(values, yMin, yMax, bins);
if (hist[0].length > 0) {
plot.setColor(Color.blue);
plot.addPoints(hist[0], hist[1], Plot2.BAR);
Utils.display(title, plot);
}
}
}
// Do cumulative histogram
double[][] h1 = Maths.cumulativeHistogram(s1.getValues(), true);
double[][] h2 = Maths.cumulativeHistogram(s2.getValues(), true);
double[][] h3 = Maths.cumulativeHistogram(s3.getValues(), true);
if (showFilterScoreHistograms) {
title = TITLE + " Cumul " + xLabel;
plot = new Plot2(title, xLabel, "Frequency");
// Find limits
double[] xlimit = Maths.limits(h1[0]);
xlimit = Maths.limits(xlimit, h2[0]);
xlimit = Maths.limits(xlimit, h3[0]);
// Restrict using the inter-quartile range
if (filterCriteria[i].restrictRange) {
double q1 = d.getPercentile(25);
double q2 = d.getPercentile(75);
double iqr = (q2 - q1) * 2.5;
xlimit[0] = Maths.max(xlimit[0], median - iqr);
xlimit[1] = Maths.min(xlimit[1], median + iqr);
}
plot.setLimits(xlimit[0], xlimit[1], 0, 1.05);
plot.addPoints(h1[0], h1[1], Plot.LINE);
plot.setColor(Color.red);
plot.addPoints(h2[0], h2[1], Plot.LINE);
plot.setColor(Color.blue);
plot.addPoints(h3[0], h3[1], Plot.LINE);
}
// Determine the maximum difference between the TP and FP
double maxx1 = 0;
double maxx2 = 0;
double max1 = 0;
double max2 = 0;
// We cannot compute the delta histogram, or use percentiles
if (s2.getN() == 0) {
upper = UpperLimit.ZERO;
lower = LowerLimit.ZERO;
}
final boolean requireLabel = (showFilterScoreHistograms && filterCriteria[i].requireLabel);
if (requireLabel || upper.requiresDeltaHistogram() || lower.requiresDeltaHistogram()) {
if (s2.getN() != 0 && s3.getN() != 0) {
LinearInterpolator li = new LinearInterpolator();
PolynomialSplineFunction f1 = li.interpolate(h2[0], h2[1]);
PolynomialSplineFunction f2 = li.interpolate(h3[0], h3[1]);
for (double x : h1[0]) {
if (x < h2[0][0] || x < h3[0][0])
continue;
try {
double v1 = f1.value(x);
double v2 = f2.value(x);
double diff = v2 - v1;
if (diff > 0) {
if (max1 < diff) {
max1 = diff;
maxx1 = x;
}
} else {
if (max2 > diff) {
max2 = diff;
maxx2 = x;
}
}
} catch (OutOfRangeException e) {
// Because we reached the end
break;
}
}
} else {
// Switch to percentiles if we have no delta histogram
if (upper.requiresDeltaHistogram())
upper = UpperLimit.NINETY_NINE_PERCENT;
if (lower.requiresDeltaHistogram())
lower = LowerLimit.ONE_PERCENT;
}
// System.out.printf("Bounds %s : %s, pos %s, neg %s, %s\n", xLabel, Utils.rounded(getPercentile(h2, 0.01)),
// Utils.rounded(maxx1), Utils.rounded(maxx2), Utils.rounded(getPercentile(h1, 0.99)));
}
if (showFilterScoreHistograms) {
// We use bins=1 on charts where we do not need a label
if (requireLabel) {
String label = String.format("Max+ %s @ %s, Max- %s @ %s", Utils.rounded(max1), Utils.rounded(maxx1), Utils.rounded(max2), Utils.rounded(maxx2));
plot.setColor(Color.black);
plot.addLabel(0, 0, label);
}
PlotWindow pw = Utils.display(title, plot);
if (Utils.isNewWindow())
wo.add(pw.getImagePlus().getID());
}
// Now compute the bounds using the desired limit
double l, u;
switch(lower) {
case ONE_PERCENT:
l = getPercentile(h2, 0.01);
break;
case MAX_NEGATIVE_CUMUL_DELTA:
l = maxx2;
break;
case ZERO:
l = 0;
break;
case HALF_MAX_JACCARD_VALUE:
l = getValue(metric, j, maxJ * 0.5);
break;
default:
throw new RuntimeException("Missing lower limit method");
}
switch(upper) {
case MAX_POSITIVE_CUMUL_DELTA:
u = maxx1;
break;
case NINETY_NINE_PERCENT:
u = getPercentile(h2, 0.99);
break;
case NINETY_NINE_NINE_PERCENT:
u = getPercentile(h2, 0.999);
break;
case ZERO:
u = 0;
break;
case MAX_JACCARD2:
u = getValue(metric, j, maxJ) * 2;
//System.out.printf("MaxJ = %.4f @ %.3f\n", maxJ, u / 2);
break;
default:
throw new RuntimeException("Missing upper limit method");
}
double min = getPercentile(h1, 0);
double max = getPercentile(h1, 1);
return new double[] { l, u, min, max };
}
Aggregations