use of org.apache.commons.rng.UniformRandomProvider in project GDSC-SMLM by aherbert.
the class FastLogTest method canTestDoubleErrorRange.
@SeededTest
void canTestDoubleErrorRange(RandomSeed seed) {
Assumptions.assumeTrue(logger.isLoggable(Level.INFO));
Assumptions.assumeTrue(TestSettings.allow(TestComplexity.HIGH));
final UniformRandomProvider rng = RngUtils.create(seed.getSeed());
final LocalList<TestFastLog> test = new LocalList<>();
final int n = 13;
test.add(new TestFastLog(IcsiFastLog.create(n, DataType.DOUBLE)));
test.add(new TestFastLog(new FFastLog(n)));
test.add(new TestFastLog(new DFastLog(n)));
test.add(new TestFastLog(new TurboLog(n)));
// Full range in blocks.
// Only when the number is around 1 or min value are there significant errors
final double[] d = new double[10000000];
final double[] logD = null;
// All
// testDoubleErrorRange(test, n, d, logD, 0, 255, 0);
// Only a problem around min value and x==1
// testDoubleErrorRange(rng, test, n, d, logD, 0, 2, 0);
testDoubleErrorRange(rng, test, n, d, logD, 1021, 1026, 0);
testDoubleErrorRange(rng, test, n, d, logD, 2045, 2047, 0);
}
use of org.apache.commons.rng.UniformRandomProvider in project GDSC-SMLM by aherbert.
the class FastLogTest method canTestDoubleErrorLog1P.
@SeededTest
void canTestDoubleErrorLog1P(RandomSeed seed) {
Assumptions.assumeTrue(logger.isLoggable(Level.INFO));
Assumptions.assumeTrue(TestSettings.allow(TestComplexity.HIGH));
// All float values is a lot so we do a representative set
final UniformRandomProvider rng = RngUtils.create(seed.getSeed());
final double lower = Double.MIN_VALUE;
final double upper = Double.MAX_VALUE;
final double[] d = new double[100000];
final double[] logD = new double[d.length];
for (int i = 0; i < d.length; i++) {
final double v = nextUniformDouble(rng);
d[i] = v;
logD[i] = Math.log1p(v);
}
runCanTestDoubleError(new Test1PLog(new MathLog()), d, logD);
runCanTestDoubleError(new TestLog1P(new MathLog()), d, logD);
}
use of org.apache.commons.rng.UniformRandomProvider in project GDSC-SMLM by aherbert.
the class FastLogTest method canTestFloatSpeed.
@SpeedTag
@SeededTest
void canTestFloatSpeed(RandomSeed seed) {
// No assertions, this is just a report
Assumptions.assumeTrue(logger.isLoggable(Level.INFO));
Assumptions.assumeTrue(TestSettings.allow(TestComplexity.MEDIUM));
final UniformRandomProvider rng = RngUtils.create(seed.getSeed());
final float[] x = new float[1000000];
for (int i = 0; i < x.length; i++) {
x[i] = nextUniformFloat(rng);
}
final TimingService ts = new TimingService(5);
ts.execute(new FloatTimingTask(new TestLog(new MathLog()), 0, x));
ts.execute(new FloatTimingTask(new TestLog(new FastMathLog()), 0, x));
for (final int q : new int[] { 11 }) {
final int n = 23 - q;
final IcsiFastLog fl = IcsiFastLog.create(n, DataType.FLOAT);
ts.execute(new FloatTimingTask(new TestLog(fl), q, x));
ts.execute(new FloatTimingTask(new TestFastLog(fl), q, x));
final FFastLog ff = new FFastLog(n);
ts.execute(new FloatTimingTask(new TestLog(ff), q, x));
ts.execute(new FloatTimingTask(new TestFastLog(ff), q, x));
final DFastLog df = new DFastLog(n);
ts.execute(new FloatTimingTask(new TestLog(df), q, x));
ts.execute(new FloatTimingTask(new TestFastLog(df), q, x));
final TurboLog tf = new TurboLog(n);
ts.execute(new FloatTimingTask(new TestLog(tf), q, x));
ts.execute(new FloatTimingTask(new TestFastLog(tf), q, x));
// TurboLog2 tf2 = new TurboLog2(n);
// ts.execute(new FloatTimingTask(new TestLog(tf2), q, x));
// ts.execute(new FloatTimingTask(new TestFastLog(tf2), q, x));
// For the same precision we can reduce n
final TurboLog2 tf3 = new TurboLog2(n - 1);
ts.execute(new FloatTimingTask(new TestLog(tf3), q + 1, x));
ts.execute(new FloatTimingTask(new TestFastLog(tf3), q + 1, x));
}
final int size = ts.getSize();
ts.repeat(size);
logger.info(ts.getReport(size));
}
use of org.apache.commons.rng.UniformRandomProvider in project GDSC-SMLM by aherbert.
the class CmosAnalysis method simulate.
private void simulate() throws IOException {
// Create the offset, variance and gain for each pixel
final int n = settings.size * settings.size;
final float[] pixelOffset = new float[n];
final float[] pixelVariance = new float[n];
final float[] pixelGain = new float[n];
IJ.showStatus("Creating random per-pixel readout");
final long start = System.currentTimeMillis();
final UniformRandomProvider rg = UniformRandomProviders.create();
final DiscreteSampler pd = PoissonSamplerUtils.createPoissonSampler(rg, settings.offset);
final ContinuousSampler ed = SamplerUtils.createExponentialSampler(rg, settings.variance);
final SharedStateContinuousSampler gauss = SamplerUtils.createGaussianSampler(rg, settings.gain, settings.gainStdDev);
Ticker ticker = ImageJUtils.createTicker(n, 0);
for (int i = 0; i < n; i++) {
// Q. Should these be clipped to a sensible range?
pixelOffset[i] = pd.sample();
pixelVariance[i] = (float) ed.sample();
pixelGain[i] = (float) gauss.sample();
ticker.tick();
}
IJ.showProgress(1);
// Save to the directory as a stack
final ImageStack simulationStack = new ImageStack(settings.size, settings.size);
simulationStack.addSlice("Offset", pixelOffset);
simulationStack.addSlice("Variance", pixelVariance);
simulationStack.addSlice("Gain", pixelGain);
simulationImp = new ImagePlus("PerPixel", simulationStack);
// Only the info property is saved to the TIFF file
simulationImp.setProperty("Info", String.format("Offset=%s; Variance=%s; Gain=%s +/- %s", MathUtils.rounded(settings.offset), MathUtils.rounded(settings.variance), MathUtils.rounded(settings.gain), MathUtils.rounded(settings.gainStdDev)));
IJ.save(simulationImp, new File(settings.directory, "perPixelSimulation.tif").getPath());
// Create thread pool and workers
final int threadCount = getThreads();
final ExecutorService executor = Executors.newFixedThreadPool(threadCount);
final LocalList<Future<?>> futures = new LocalList<>(numberOfThreads);
// Simulate the exposure input.
final int[] photons = settings.getPhotons();
// For saving stacks
final int blockSize = 10;
int numberPerThread = (int) Math.ceil((double) settings.frames / numberOfThreads);
// Convert to fit the block size
numberPerThread = (int) Math.ceil((double) numberPerThread / blockSize) * blockSize;
final Pcg32 rng = Pcg32.xshrs(start);
// Note the bias is increased by 3-fold so add 2 to the length
ticker = Ticker.createStarted(new ImageJTrackProgress(true), (long) (photons.length + 2) * settings.frames, threadCount > 1);
for (final int p : photons) {
ImageJUtils.showStatus(() -> "Simulating " + TextUtils.pleural(p, "photon"));
// Create the directory
final Path out = Paths.get(settings.directory, String.format("photon%03d", p));
Files.createDirectories(out);
// Increase frames for bias image
final int frames = settings.frames * (p == 0 ? 3 : 1);
for (int from = 0; from < frames; ) {
final int to = Math.min(from + numberPerThread, frames);
futures.add(executor.submit(new SimulationWorker(ticker, rng.split(), out.toString(), simulationStack, from, to, blockSize, p)));
from = to;
}
ConcurrencyUtils.waitForCompletionUnchecked(futures);
futures.clear();
}
final String msg = "Simulation time = " + TextUtils.millisToString(System.currentTimeMillis() - start);
IJ.showStatus(msg);
ImageJUtils.clearSlowProgress();
executor.shutdown();
ImageJUtils.log(msg);
}
use of org.apache.commons.rng.UniformRandomProvider in project GDSC-SMLM by aherbert.
the class AreaAverageFilterTest method areaAverageUsingSumsInternalCorrectlyInterpolatesBetweenBlocks.
@SeededTest
void areaAverageUsingSumsInternalCorrectlyInterpolatesBetweenBlocks(RandomSeed seed) {
final UniformRandomProvider rg = RngUtils.create(seed.getSeed());
final int max = 50;
final float[] data = createData(rg, max, max);
final AreaAverageFilter filter = new AreaAverageFilter();
filter.setSimpleInterpolation(false);
final int n = 30;
final float[][] results = new float[n + 1][];
final double[] w = new double[n + 1];
int count = 0;
for (int i = 0; i <= n; i++) {
w[count] = i / 10.0;
results[count] = data.clone();
filter.areaAverageUsingSumsInternal(results[count], max, max, w[count]);
count++;
}
checkInterpolation(max, n, results, count);
}
Aggregations