use of uk.ac.sussex.gdsc.test.utils.TimingResult in project GDSC-SMLM by aherbert.
the class JTransformsTest method jtransforms2DDhtIsFasterThanFht2.
@SpeedTag
@SeededTest
void jtransforms2DDhtIsFasterThanFht2(RandomSeed seed) {
Assumptions.assumeTrue(TestSettings.allow(TestComplexity.MEDIUM));
// Test the forward DHT of data. and reverse transform or the pre-computed correlation.
final int size = 256;
final int w = size / 4;
final UniformRandomProvider r = RngUtils.create(seed.getSeed());
// Blob in the centre
FloatProcessor fp = createProcessor(size, size / 2 - w / 2, size / 2 - w / 2, w, w, null);
final Fht fht2 = new Fht((float[]) fp.getPixels(), size, false);
fht2.transform();
fht2.initialiseFastMultiply();
// Random blobs, original and correlated
final int N = 40;
final float[][] data = new float[N * 2][];
final int lower = w;
final int upper = size - w;
final int range = upper - lower;
for (int i = 0, j = 0; i < N; i++) {
final int x = lower + r.nextInt(range);
final int y = lower + r.nextInt(range);
fp = createProcessor(size, x, y, w, w, r);
final float[] pixels = (float[]) fp.getPixels();
data[j++] = pixels.clone();
final Fht fht1 = new Fht(pixels, size, false);
fht1.copyTables(fht2);
fht2.transform();
final float[] pixels2 = new float[pixels.length];
fht2.conjugateMultiply(fht2, pixels2);
data[j++] = pixels2;
}
// CommonUtils.setThreadsBeginN_1D_FFT_2Threads(Long.MAX_VALUE);
// CommonUtils.setThreadsBeginN_1D_FFT_4Threads(Long.MAX_VALUE);
CommonUtils.setThreadsBeginN_2D(Long.MAX_VALUE);
final TimingService ts = new TimingService();
ts.execute(new ImageJFhtSpeedTask(size, data));
ts.execute(new ImageJFht2SpeedTask(size, data));
ts.execute(new JTransformsDhtSpeedTask(size, data));
ts.repeat();
if (logger.isLoggable(Level.INFO)) {
logger.info(ts.getReport());
}
// Assertions.assertTrue(ts.get(-1).getMean() < ts.get(-2).getMean());
final TimingResult slow = ts.get(-2);
final TimingResult fast = ts.get(-1);
logger.log(TestLogUtils.getTimingRecord(slow, fast));
}
use of uk.ac.sussex.gdsc.test.utils.TimingResult in project GDSC-SMLM by aherbert.
the class FrcTest method computeMirroredIsFaster.
@SeededTest
void computeMirroredIsFaster(RandomSeed seed) {
Assumptions.assumeTrue(TestSettings.allow(TestComplexity.MEDIUM));
// Sample lines through an image to create a structure.
final int N = 2048;
final double[][] data = new double[N * 2][];
final UniformRandomProvider r = RngUtils.create(seed.getSeed());
final SharedStateContinuousSampler gs = SamplerUtils.createGaussianSampler(r, 0, 5);
for (int x = 0, y = 0, y2 = N, i = 0; x < N; x++, y++, y2--) {
data[i++] = new double[] { x + gs.sample(), y + gs.sample() };
data[i++] = new double[] { x + gs.sample(), y2 + gs.sample() };
}
// Create 2 images
final Rectangle bounds = new Rectangle(0, 0, N, N);
ImageJImagePeakResults i1 = createImage(bounds);
ImageJImagePeakResults i2 = createImage(bounds);
final int[] indices = SimpleArrayUtils.natural(data.length);
PermutationSampler.shuffle(r, indices);
for (final int i : indices) {
final ImageJImagePeakResults image = i1;
i1 = i2;
i2 = image;
image.add((float) data[i][0], (float) data[i][1], 1);
}
i1.end();
i2.end();
final ImageProcessor ip1 = i1.getImagePlus().getProcessor();
final ImageProcessor ip2 = i2.getImagePlus().getProcessor();
// Test
final Frc frc = new Frc();
FloatProcessor[] fft1;
FloatProcessor[] fft2;
fft1 = frc.getComplexFft(ip1);
fft2 = frc.getComplexFft(ip2);
final float[] dataA1 = (float[]) fft1[0].getPixels();
final float[] dataB1 = (float[]) fft1[1].getPixels();
final float[] dataA2 = (float[]) fft2[0].getPixels();
final float[] dataB2 = (float[]) fft2[1].getPixels();
final float[] numerator = new float[dataA1.length];
final float[] absFft1 = new float[dataA1.length];
final float[] absFft2 = new float[dataA1.length];
final TimingService ts = new TimingService(10);
ts.execute(new MyTimingTask("compute") {
@Override
public Object run(Object data) {
Frc.compute(numerator, absFft1, absFft2, dataA1, dataB1, dataA2, dataB2);
return null;
}
});
ts.execute(new MyTimingTask("computeMirrored") {
@Override
public Object run(Object data) {
Frc.computeMirrored(N, numerator, absFft1, absFft2, dataA1, dataB1, dataA2, dataB2);
return null;
}
});
ts.execute(new MyTimingTask("computeMirroredFast") {
@Override
public Object run(Object data) {
Frc.computeMirroredFast(N, numerator, absFft1, absFft2, dataA1, dataB1, dataA2, dataB2);
return null;
}
});
final int size = ts.getSize();
ts.repeat(size);
if (logger.isLoggable(Level.INFO)) {
logger.info(ts.getReport(size));
}
// The 'Fast' method may not always be faster so just log results
final TimingResult slow = ts.get(-3);
final TimingResult fast = ts.get(-2);
final TimingResult fastest = ts.get(-1);
logger.log(TestLogUtils.getTimingRecord(slow, fastest));
logger.log(TestLogUtils.getTimingRecord(fast, fastest));
// It should be faster than the non mirrored version
Assertions.assertTrue(ts.get(-1).getMean() <= ts.get(-3).getMean());
}
use of uk.ac.sussex.gdsc.test.utils.TimingResult in project GDSC-SMLM by aherbert.
the class LvmGradientProcedureTest method gradientProcedureIsNotSlowerThanGradientCalculator.
private void gradientProcedureIsNotSlowerThanGradientCalculator(RandomSeed seed, final int nparams, final Type type) {
Assumptions.assumeTrue(TestSettings.allow(TestComplexity.MEDIUM));
final int iter = 1000;
final double[][] alpha = new double[nparams][nparams];
final double[] beta = new double[nparams];
final ArrayList<double[]> paramsList = new ArrayList<>(iter);
final ArrayList<double[]> yList = new ArrayList<>(iter);
final int[] x = createFakeData(RngUtils.create(seed.getSeed()), nparams, iter, paramsList, yList);
final int n = x.length;
final FakeGradientFunction func = new FakeGradientFunction(blockWidth, nparams);
final boolean mle = type != Type.LSQ;
final FastLog fastLog = (type == Type.FAST_LOG_MLE) ? getFastLog() : null;
final GradientCalculator calc = GradientCalculatorUtils.newCalculator(nparams, mle);
for (int i = 0; i < paramsList.size(); i++) {
calc.findLinearised(n, yList.get(i), paramsList.get(i), alpha, beta, func);
}
for (int i = 0; i < paramsList.size(); i++) {
final LvmGradientProcedure p = LvmGradientProcedureUtils.create(yList.get(i), func, type, fastLog);
p.gradient(paramsList.get(i));
}
// Realistic loops for an optimisation
final int loops = 15;
// Run till stable timing
final Timer t1 = new Timer() {
@Override
void run() {
for (int i = 0, k = 0; i < iter; i++) {
final GradientCalculator calc = GradientCalculatorUtils.newCalculator(nparams, mle);
for (int j = loops; j-- > 0; ) {
calc.findLinearised(n, yList.get(i), paramsList.get(k++ % iter), alpha, beta, func);
}
}
}
};
final long time1 = t1.getTime();
final Timer t2 = new Timer(t1.loops) {
@Override
void run() {
for (int i = 0, k = 0; i < iter; i++) {
final LvmGradientProcedure p = LvmGradientProcedureUtils.create(yList.get(i), func, type, fastLog);
for (int j = loops; j-- > 0; ) {
p.gradient(paramsList.get(k++ % iter));
}
}
}
};
final long time2 = t2.getTime();
logger.log(TestLogUtils.getTimingRecord(new TimingResult("GradientCalculator", time1), new TimingResult(() -> String.format("LVMGradientProcedure %d %s", nparams, type), time2)));
}
use of uk.ac.sussex.gdsc.test.utils.TimingResult in project GDSC-SMLM by aherbert.
the class GaussianFilterTest method floatFilterInternalIsFasterThanDoubleFilterInternal.
@SpeedTag
@SeededTest
void floatFilterInternalIsFasterThanDoubleFilterInternal(RandomSeed seed) {
Assumptions.assumeTrue(TestSettings.allow(TestComplexity.HIGH));
final UniformRandomProvider rg = RngUtils.create(seed.getSeed());
final float[][] data = new float[10][];
for (int i = 0; i < data.length; i++) {
data[i] = createData(rg, size, size);
}
final TimingService ts = new TimingService();
for (final double sigma : sigmas) {
ts.execute(new MyTimingTask(new FloatFilter(true), data, sigma));
ts.execute(new MyTimingTask(new DpFilter(false), data, sigma));
ts.execute(new MyTimingTask(new DoubleFilter(true), data, sigma));
}
final int size = ts.getSize();
ts.repeat();
if (logger.isLoggable(Level.INFO)) {
logger.info(ts.getReport(size));
}
final int n = size / sigmas.length;
for (int i = 0, j = size; i < sigmas.length; i++, j += n) {
for (int k = 1; k < n; k++) {
final TimingResult slow = ts.get(j + k);
final TimingResult fast = ts.get(j);
logger.log(TestLogUtils.getTimingRecord(slow, fast));
}
}
}
use of uk.ac.sussex.gdsc.test.utils.TimingResult in project GDSC-SMLM by aherbert.
the class RampedSelectionStrategyTest method speedTest.
private static void speedTest(final int size, boolean faster, int runs) {
final long[] sum = RampedSelectionStrategy.createRampedSum(size);
final TimingService ts = new TimingService(runs);
ts.execute(new BaseTimingTask("search" + size) {
@Override
public Object getData(int index) {
return sum;
}
@Override
public Object run(Object data) {
for (int key = (int) sum[sum.length - 1]; key-- > 0; ) {
RampedSelectionStrategy.search(sum, key);
}
return null;
}
@Override
public int getSize() {
return 1;
}
});
ts.execute(new BaseTimingTask("binarySearch" + size) {
@Override
public Object getData(int index) {
return sum[index];
}
@Override
public Object run(Object data) {
for (int key = (int) sum[sum.length - 1]; key-- > 0; ) {
RampedSelectionStrategy.binarySearch(sum, key);
}
return null;
}
@Override
public int getSize() {
return 1;
}
});
final int n = ts.repeat();
ts.repeat(n);
if (logger.isLoggable(Level.INFO)) {
logger.info(ts.getReport());
}
final TimingResult slow = ts.get((faster) ? ts.getSize() - 2 : ts.getSize() - 1);
final TimingResult fast = ts.get((faster) ? ts.getSize() - 1 : ts.getSize() - 2);
logger.log(TestLogUtils.getTimingRecord(slow, fast));
}
Aggregations