use of uk.ac.sussex.gdsc.core.ij.process.Fht in project GDSC-SMLM by aherbert.
the class JTransformsTest method jtransforms2DDhtIsFasterThanFht2.
@SpeedTag
@SeededTest
void jtransforms2DDhtIsFasterThanFht2(RandomSeed seed) {
Assumptions.assumeTrue(TestSettings.allow(TestComplexity.MEDIUM));
// Test the forward DHT of data. and reverse transform or the pre-computed correlation.
final int size = 256;
final int w = size / 4;
final UniformRandomProvider r = RngUtils.create(seed.getSeed());
// Blob in the centre
FloatProcessor fp = createProcessor(size, size / 2 - w / 2, size / 2 - w / 2, w, w, null);
final Fht fht2 = new Fht((float[]) fp.getPixels(), size, false);
fht2.transform();
fht2.initialiseFastMultiply();
// Random blobs, original and correlated
final int N = 40;
final float[][] data = new float[N * 2][];
final int lower = w;
final int upper = size - w;
final int range = upper - lower;
for (int i = 0, j = 0; i < N; i++) {
final int x = lower + r.nextInt(range);
final int y = lower + r.nextInt(range);
fp = createProcessor(size, x, y, w, w, r);
final float[] pixels = (float[]) fp.getPixels();
data[j++] = pixels.clone();
final Fht fht1 = new Fht(pixels, size, false);
fht1.copyTables(fht2);
fht2.transform();
final float[] pixels2 = new float[pixels.length];
fht2.conjugateMultiply(fht2, pixels2);
data[j++] = pixels2;
}
// CommonUtils.setThreadsBeginN_1D_FFT_2Threads(Long.MAX_VALUE);
// CommonUtils.setThreadsBeginN_1D_FFT_4Threads(Long.MAX_VALUE);
CommonUtils.setThreadsBeginN_2D(Long.MAX_VALUE);
final TimingService ts = new TimingService();
ts.execute(new ImageJFhtSpeedTask(size, data));
ts.execute(new ImageJFht2SpeedTask(size, data));
ts.execute(new JTransformsDhtSpeedTask(size, data));
ts.repeat();
if (logger.isLoggable(Level.INFO)) {
logger.info(ts.getReport());
}
// Assertions.assertTrue(ts.get(-1).getMean() < ts.get(-2).getMean());
final TimingResult slow = ts.get(-2);
final TimingResult fast = ts.get(-1);
logger.log(TestLogUtils.getTimingRecord(slow, fast));
}
use of uk.ac.sussex.gdsc.core.ij.process.Fht in project GDSC-SMLM by aherbert.
the class DriftCalculator method calculateUsingImageStack.
/**
* Calculates drift using images from a reference stack aligned to the overall z-projection.
*
* @param stack the stack
* @param limits the limits
* @return the drift { dx[], dy[] }
*/
@Nullable
private double[][] calculateUsingImageStack(ImageStack stack, int[] limits) {
// Update the limits using the stack size
final int upperT = settings.startFrame + settings.frameSpacing * (stack.getSize() - 1);
limits[1] = Math.max(limits[1], upperT);
// TODO - Truncate the stack if there are far too many frames for the localisation limits
tracker.status("Constructing images");
executor = Executors.newFixedThreadPool(Prefs.getThreads());
// Built an image and FHT image for each slice
final ImageProcessor[] images = new ImageProcessor[stack.getSize()];
final Fht[] fhtImages = new Fht[stack.getSize()];
final List<Future<?>> futures = new LinkedList<>();
final Ticker ticker = Ticker.createStarted(tracker, images.length, true);
final int imagesPerThread = getImagesPerThread(images);
final AlignImagesFft aligner = new AlignImagesFft();
final FloatProcessor referenceIp = stack.getProcessor(1).toFloat(0, null);
// We do not care about the window method because this processor will not
// actually be used for alignment, it is a reference for the FHT size
aligner.initialiseReference(referenceIp, WindowMethod.NONE, false);
for (int i = 0; i < images.length; i += imagesPerThread) {
futures.add(executor.submit(new ImageFhtInitialiser(stack, images, aligner, fhtImages, i, i + imagesPerThread, ticker)));
}
ConcurrencyUtils.waitForCompletionUnchecked(futures);
tracker.progress(1);
if (tracker.isEnded()) {
return null;
}
final double[] dx = new double[limits[1] + 1];
final double[] dy = new double[dx.length];
final double[] originalDriftTimePoints = new double[dx.length];
final int[] blockT = new int[stack.getSize()];
for (int i = 0, t = settings.startFrame; i < stack.getSize(); i++, t += settings.frameSpacing) {
originalDriftTimePoints[t] = 1;
blockT[i] = t;
}
final double smoothing = updateSmoothingParameter(originalDriftTimePoints);
lastdx = null;
// For the first iteration calculate drift to the first image in the stack
// (since the average projection may have a large drift blurring the image)
double change = calculateDriftUsingImageStack(referenceIp, images, fhtImages, blockT, dx, dy, originalDriftTimePoints, smoothing, settings.iterations);
if (Double.isNaN(change) || tracker.isEnded()) {
return null;
}
plotDrift(limits, dx, dy);
ImageJUtils.log("Drift Calculator : Initial drift " + MathUtils.rounded(change));
for (int i = 1; i <= settings.maxIterations; i++) {
change = calculateDriftUsingImageStack(null, images, fhtImages, blockT, dx, dy, originalDriftTimePoints, smoothing, settings.iterations);
if (Double.isNaN(change)) {
return null;
}
plotDrift(limits, dx, dy);
if (converged(i, change, getTotalDrift(dx, dy, originalDriftTimePoints))) {
break;
}
}
if (tracker.isEnded()) {
return null;
}
plotDrift(limits, dx, dy);
return new double[][] { dx, dy };
}
use of uk.ac.sussex.gdsc.core.ij.process.Fht in project GDSC-SMLM by aherbert.
the class Frc method getComplexFft.
/**
* Convert an image into a Fourier image with real and imaginary parts.
*
* @param ip The image
* @return the real and imaginary parts
*/
public FloatProcessor[] getComplexFft(ImageProcessor ip) {
final FloatProcessor taperedDataImage = getSquareTaperedImage(ip);
final Fht fht = new Fht(taperedDataImage);
fht.transform();
return fht.getComplexTransformProcessors();
}
use of uk.ac.sussex.gdsc.core.ij.process.Fht in project GDSC-SMLM by aherbert.
the class Frc method calculateFrcCurve.
/**
* Calculate the Fourier Ring Correlation curve for two images.
*
* @param ip1 The first image
* @param ip2 The second image
* @param nmPerPixel the nm per pixel for the super-resolution images
* @return the FRC curve
*/
public FrcCurve calculateFrcCurve(ImageProcessor ip1, ImageProcessor ip2, double nmPerPixel) {
// Allow a progress tracker to be input
final TrackProgress progess = getTrackProgress();
progess.incrementProgress(0);
progess.status("Calculating complex FFT images...");
// Pad images to the same size if different
final int maxWidth = Math.max(ip1.getWidth(), ip2.getWidth());
final int maxHeight = Math.max(ip1.getHeight(), ip2.getHeight());
if (Math.max(maxWidth, maxHeight) > MAX_SIZE) {
progess.status("Error calculating FRC curve...");
progess.incrementProgress(1);
return null;
}
final int fieldOfView = Math.max(maxWidth, maxHeight);
ip1 = pad(ip1, maxWidth, maxHeight);
ip2 = pad(ip2, maxWidth, maxHeight);
// The mean of each image after applying the taper
double mean1;
double mean2;
// Real and imaginary components
float[] re1 = null;
float[] im1;
float[] re2;
float[] im2;
// Do the first image
ip1 = getSquareTaperedImage(ip1);
mean1 = taperedImageMean;
final int size = ip1.getWidth();
if (fourierMethod == FourierMethod.JTRANSFORMS && JTransformsLoader.JTRANSFORMS_AVAILABLE) {
// Speed up by reusing the FFT object which performs pre-computation
final float[] data = new float[size * size * 2];
final FloatFFT_2D fft = new FloatFFT_2D(size, size);
float[] pixels = (float[]) ip1.getPixels();
System.arraycopy(pixels, 0, data, 0, pixels.length);
fft.realForwardFull(data);
// Get the data
re1 = pixels;
im1 = new float[pixels.length];
for (int i = 0, j = 0; i < data.length; j++) {
re1[j] = data[i++];
im1[j] = data[i++];
}
Fht.swapQuadrants(new FloatProcessor(size, size, re1));
Fht.swapQuadrants(new FloatProcessor(size, size, im1));
progess.incrementProgress(THIRD);
ip2 = getSquareTaperedImage(ip2);
mean2 = taperedImageMean;
pixels = (float[]) ip2.getPixels();
System.arraycopy(pixels, 0, data, 0, pixels.length);
for (int i = pixels.length; i < data.length; i++) {
data[i] = 0;
}
fft.realForwardFull(data);
// Get the data
re2 = pixels;
im2 = new float[pixels.length];
for (int i = 0, j = 0; i < data.length; j++) {
re2[j] = data[i++];
im2[j] = data[i++];
}
Fht.swapQuadrants(new FloatProcessor(size, size, re2));
Fht.swapQuadrants(new FloatProcessor(size, size, im2));
progess.incrementProgress(THIRD);
} else {
// Simple implementation. This is left for testing.
// FloatProcessor[] fft = getComplexFFT(ip1);
// mean1 = taperedImageMean;
// re1 = (float[]) fft[0].getPixels();
// im1 = (float[]) fft[1].getPixels();
// progess.incrementProgress(THIRD);
//
// fft = getComplexFFT(ip2);
// mean2 = taperedImageMean;
// re2 = (float[]) fft[0].getPixels();
// im2 = (float[]) fft[1].getPixels();
// progess.incrementProgress(THIRD);
// Speed up by reusing the FHT object which performs pre-computation
final float[] f1 = (float[]) ip1.getPixels();
final Fht fht1 = new Fht(f1, ip1.getWidth(), false);
fht1.transform();
FloatProcessor[] fft = fht1.getComplexTransformProcessors();
re1 = (float[]) fft[0].getPixels();
im1 = (float[]) fft[1].getPixels();
progess.incrementProgress(THIRD);
ip2 = getSquareTaperedImage(ip2);
mean2 = taperedImageMean;
final float[] f2 = (float[]) ip2.getPixels();
final Fht fht2 = new Fht(f2, ip2.getWidth(), false);
fht2.copyTables(fht1);
fft = fht2.getComplexTransformProcessors();
re2 = (float[]) fft[0].getPixels();
im2 = (float[]) fft[1].getPixels();
progess.incrementProgress(THIRD);
}
progess.status("Preparing FRC curve calculation...");
final int centre = size / 2;
// In-line for speed
final float[] conjMult = new float[re1.length];
final float[] absFft1 = new float[re1.length];
final float[] absFft2 = new float[re1.length];
// Normalise the FFT to the field of view, i.e. normalise by 1/sqrt(N) for each dimension
final double norm = 1.0 / fieldOfView;
for (int i = 0; i < re1.length; i++) {
re1[i] *= norm;
im1[i] *= norm;
re2[i] *= norm;
im2[i] *= norm;
}
final boolean basic = false;
if (basic) {
compute(conjMult, absFft1, absFft2, re1, im1, re2, im2);
} else {
computeMirroredFast(size, conjMult, absFft1, absFft2, re1, im1, re2, im2);
}
progess.status("Calculating FRC curve...");
final int max = centre - 1;
final FrcCurveResult[] results = new FrcCurveResult[max];
if (samplingMethod == SamplingMethod.INTERPOLATED_CIRCLE) {
// Set the results for the centre pixel
final int cx = size * centre + centre;
results[0] = new FrcCurveResult(0, 1, conjMult[cx], absFft1[cx], absFft2[cx]);
final float[][] images = new float[][] { conjMult, absFft1, absFft2 };
for (int radius = 1; radius < max; radius++) {
// Inline the calculation for speed
double sum0 = 0;
double sum1 = 0;
double sum2 = 0;
// Note: The image has 2-fold radial symmetry. So we only need to sample
// angles from 0-pi. To sample the perimeter at pixel intervals we need
// pi*r samples. So the angle step is max_angle / samples == pi / (pi*r) == 1 / r.
// The number of samples is increased using the sampling factor.
final double angleStep = 1 / (perimeterSamplingFactor * radius);
double angle = 0;
int numSum = 0;
while (angle < Math.PI) {
final double cosA = Math.cos(angle);
final double x = centre + radius * cosA;
final double sinA = getSine(angle, cosA);
final double y = centre + radius * sinA;
final double[] values = getInterpolatedValues(x, y, images, size);
sum0 += values[0];
sum1 += values[1];
sum2 += values[2];
numSum++;
angle += angleStep;
}
results[radius] = new FrcCurveResult(radius, numSum, sum0, sum1, sum2);
}
} else {
// Compute the radial sum as per the DIP image Matlab toolbox
final double[][] sum = RadialStatisticsUtils.radialSumAndCount(size, conjMult, absFft1, absFft2);
for (int radius = 0; radius < max; radius++) {
results[radius] = new FrcCurveResult(radius, (int) sum[3][radius], sum[0][radius], sum[1][radius], sum[2][radius]);
}
}
progess.incrementProgress(LAST_THIRD);
progess.status("Finished calculating FRC curve...");
return new FrcCurve(nmPerPixel, fieldOfView, mean1, mean2, results);
}
use of uk.ac.sussex.gdsc.core.ij.process.Fht in project GDSC-SMLM by aherbert.
the class FhtFilter method filterInternal.
/**
* Compute the filter.
*
* <p>Note: the input data is destructively modified
*
* @param data the data
* @param maxx the maxx
* @param maxy the maxy
* @param border the border
*/
private void filterInternal(float[] data, final int maxx, final int maxy, int border) {
initialiseKernel(maxx, maxy);
final Fht dataFht = createFht(data, maxx, maxy, border);
final int maxN = kernelFht.getWidth();
final Fht result = compute(dataFht);
// Do the transform using JTransforms as it is faster
dht.inverse(result.getData(), true);
result.swapQuadrants();
if (maxx < maxN || maxy < maxN) {
final int x = getInsert(maxN, maxx);
final int y = getInsert(maxN, maxy);
for (int to = 0, from = y * maxN + x; to < data.length; to += maxx, from += maxN) {
System.arraycopy(tmp, from, data, to, maxx);
}
} else {
System.arraycopy(tmp, 0, data, 0, tmp.length);
}
}
Aggregations