use of org.apache.hyracks.storage.am.common.tuples.TypeAwareTupleWriter in project asterixdb by apache.
the class FieldPrefixCompressor method getKeyPartitions.
// we perform an analysis pass over the tuples to determine the costs and
// benefits of different compression options
// a "keypartition" is a range of tuples that has an identical first field
// for each keypartition we chose a prefix length to use for compression
// i.e., all tuples in a keypartition will be compressed based on the same
// prefix length (number of fields)
// the prefix length may be different for different keypartitions
// the occurrenceThreshold determines the minimum number of tuples that must
// share a common prefix in order for us to consider compressing them
private ArrayList<KeyPartition> getKeyPartitions(BTreeFieldPrefixNSMLeafFrame frame, MultiComparator cmp, int occurrenceThreshold) throws HyracksDataException {
IBinaryComparator[] cmps = cmp.getComparators();
int fieldCount = typeTraits.length;
int maxCmps = cmps.length - 1;
ByteBuffer buf = frame.getBuffer();
byte[] pageArray = buf.array();
IPrefixSlotManager slotManager = (IPrefixSlotManager) frame.getSlotManager();
ArrayList<KeyPartition> keyPartitions = new ArrayList<KeyPartition>();
KeyPartition kp = new KeyPartition(maxCmps);
keyPartitions.add(kp);
TypeAwareTupleWriter tupleWriter = new TypeAwareTupleWriter(typeTraits);
FieldPrefixTupleReference prevTuple = new FieldPrefixTupleReference(tupleWriter.createTupleReference());
prevTuple.setFieldCount(fieldCount);
FieldPrefixTupleReference tuple = new FieldPrefixTupleReference(tupleWriter.createTupleReference());
tuple.setFieldCount(fieldCount);
kp.firstTupleIndex = 0;
int tupleCount = frame.getTupleCount();
for (int i = 1; i < tupleCount; i++) {
prevTuple.resetByTupleIndex(frame, i - 1);
tuple.resetByTupleIndex(frame, i);
int prefixFieldsMatch = 0;
for (int j = 0; j < maxCmps; j++) {
if (cmps[j].compare(pageArray, prevTuple.getFieldStart(j), prevTuple.getFieldLength(j), pageArray, tuple.getFieldStart(j), prevTuple.getFieldLength(j)) == 0) {
prefixFieldsMatch++;
kp.pmi[j].matches++;
int prefixBytes = tupleWriter.bytesRequired(tuple, 0, prefixFieldsMatch);
int spaceBenefit = tupleWriter.bytesRequired(tuple) - tupleWriter.bytesRequired(tuple, prefixFieldsMatch, tuple.getFieldCount() - prefixFieldsMatch);
if (kp.pmi[j].matches == occurrenceThreshold) {
// if we compress this prefix, we pay the cost of storing it once, plus
// the size for one prefix slot
kp.pmi[j].prefixBytes += prefixBytes;
kp.pmi[j].spaceCost += prefixBytes + slotManager.getSlotSize();
kp.pmi[j].prefixSlotsNeeded++;
kp.pmi[j].spaceBenefit += occurrenceThreshold * spaceBenefit;
} else if (kp.pmi[j].matches > occurrenceThreshold) {
// we are beyond the occurrence threshold, every additional tuple with a
// matching prefix increases the benefit
kp.pmi[j].spaceBenefit += spaceBenefit;
}
} else {
kp.pmi[j].matches = 1;
break;
}
}
// this means not even the first field matched, so we start to consider a new "key partition"
if (maxCmps > 0 && prefixFieldsMatch == 0) {
kp.lastTupleIndex = i - 1;
// remove keyPartitions that don't have enough tuples
if ((kp.lastTupleIndex - kp.firstTupleIndex) + 1 < occurrenceThreshold)
keyPartitions.remove(keyPartitions.size() - 1);
kp = new KeyPartition(maxCmps);
keyPartitions.add(kp);
kp.firstTupleIndex = i;
}
}
kp.lastTupleIndex = tupleCount - 1;
// remove keyPartitions that don't have enough tuples
if ((kp.lastTupleIndex - kp.firstTupleIndex) + 1 < occurrenceThreshold)
keyPartitions.remove(keyPartitions.size() - 1);
return keyPartitions;
}
use of org.apache.hyracks.storage.am.common.tuples.TypeAwareTupleWriter in project asterixdb by apache.
the class FieldPrefixCompressor method compress.
@Override
public boolean compress(ITreeIndexFrame indexFrame, MultiComparator cmp) throws Exception {
BTreeFieldPrefixNSMLeafFrame frame = (BTreeFieldPrefixNSMLeafFrame) indexFrame;
int tupleCount = frame.getTupleCount();
if (tupleCount <= 0) {
frame.setPrefixTupleCount(0);
frame.setFreeSpaceOff(frame.getOrigFreeSpaceOff());
frame.setTotalFreeSpace(frame.getOrigTotalFreeSpace());
return false;
}
if (cmp.getKeyFieldCount() == 1) {
return false;
}
int uncompressedTupleCount = frame.getUncompressedTupleCount();
float ratio = (float) uncompressedTupleCount / (float) tupleCount;
if (ratio < ratioThreshold)
return false;
IBinaryComparator[] cmps = cmp.getComparators();
int fieldCount = typeTraits.length;
ByteBuffer buf = frame.getBuffer();
byte[] pageArray = buf.array();
IPrefixSlotManager slotManager = (IPrefixSlotManager) frame.getSlotManager();
// perform analysis pass
ArrayList<KeyPartition> keyPartitions = getKeyPartitions(frame, cmp, occurrenceThreshold);
if (keyPartitions.size() == 0)
return false;
// for each keyPartition, determine the best prefix length for
// compression, and count how many prefix tuple we would need in total
int totalSlotsNeeded = 0;
int totalPrefixBytes = 0;
for (KeyPartition kp : keyPartitions) {
for (int j = 0; j < kp.pmi.length; j++) {
int benefitMinusCost = kp.pmi[j].spaceBenefit - kp.pmi[j].spaceCost;
if (benefitMinusCost > kp.maxBenefitMinusCost) {
kp.maxBenefitMinusCost = benefitMinusCost;
kp.maxPmiIndex = j;
}
}
// ignore keyPartitions with no benefit and don't count bytes and slots needed
if (kp.maxBenefitMinusCost <= 0)
continue;
totalPrefixBytes += kp.pmi[kp.maxPmiIndex].prefixBytes;
totalSlotsNeeded += kp.pmi[kp.maxPmiIndex].prefixSlotsNeeded;
}
// we use a greedy heuristic to solve this "knapsack"-like problem
// (every keyPartition has a space savings and a number of slots
// required, but the number of slots are constrained by MAX_PREFIX_SLOTS)
// we sort the keyPartitions by maxBenefitMinusCost / prefixSlotsNeeded
// and later choose the top MAX_PREFIX_SLOTS
int[] newPrefixSlots;
if (totalSlotsNeeded > FieldPrefixSlotManager.MAX_PREFIX_SLOTS) {
// order keyPartitions by the heuristic function
SortByHeuristic heuristicComparator = new SortByHeuristic();
Collections.sort(keyPartitions, heuristicComparator);
int slotsUsed = 0;
int numberKeyPartitions = -1;
for (int i = 0; i < keyPartitions.size(); i++) {
KeyPartition kp = keyPartitions.get(i);
slotsUsed += kp.pmi[kp.maxPmiIndex].prefixSlotsNeeded;
if (slotsUsed > FieldPrefixSlotManager.MAX_PREFIX_SLOTS) {
numberKeyPartitions = i + 1;
slotsUsed -= kp.pmi[kp.maxPmiIndex].prefixSlotsNeeded;
break;
}
}
newPrefixSlots = new int[slotsUsed];
// remove irrelevant keyPartitions and adjust total prefix bytes
while (keyPartitions.size() >= numberKeyPartitions) {
int lastIndex = keyPartitions.size() - 1;
KeyPartition kp = keyPartitions.get(lastIndex);
if (kp.maxBenefitMinusCost > 0)
totalPrefixBytes -= kp.pmi[kp.maxPmiIndex].prefixBytes;
keyPartitions.remove(lastIndex);
}
// re-order keyPartitions by prefix (corresponding to original order)
SortByOriginalRank originalRankComparator = new SortByOriginalRank();
Collections.sort(keyPartitions, originalRankComparator);
} else {
newPrefixSlots = new int[totalSlotsNeeded];
}
int[] newTupleSlots = new int[tupleCount];
// WARNING: our hope is that compression is infrequent
// here we allocate a big chunk of memory to temporary hold the new, re-compressed tuple
// in general it is very hard to avoid this step
int prefixFreeSpace = frame.getOrigFreeSpaceOff();
int tupleFreeSpace = prefixFreeSpace + totalPrefixBytes;
byte[] buffer = new byte[buf.capacity()];
ByteBuffer byteBuffer = ByteBuffer.wrap(buffer);
// perform compression, and reorg
// we assume that the keyPartitions are sorted by the prefixes
// (i.e., in the logical target order)
int kpIndex = 0;
int tupleIndex = 0;
int prefixTupleIndex = 0;
uncompressedTupleCount = 0;
TypeAwareTupleWriter tupleWriter = new TypeAwareTupleWriter(typeTraits);
FieldPrefixTupleReference tupleToWrite = new FieldPrefixTupleReference(tupleWriter.createTupleReference());
tupleToWrite.setFieldCount(fieldCount);
while (tupleIndex < tupleCount) {
if (kpIndex < keyPartitions.size()) {
// beginning of keyPartition found, compress entire keyPartition
if (tupleIndex == keyPartitions.get(kpIndex).firstTupleIndex) {
// number of fields we decided to use for compression of this keyPartition
int fieldCountToCompress = keyPartitions.get(kpIndex).maxPmiIndex + 1;
int segmentStart = keyPartitions.get(kpIndex).firstTupleIndex;
int tuplesInSegment = 1;
FieldPrefixTupleReference prevTuple = new FieldPrefixTupleReference(tupleWriter.createTupleReference());
prevTuple.setFieldCount(fieldCount);
FieldPrefixTupleReference tuple = new FieldPrefixTupleReference(tupleWriter.createTupleReference());
tuple.setFieldCount(fieldCount);
for (int i = tupleIndex + 1; i <= keyPartitions.get(kpIndex).lastTupleIndex; i++) {
prevTuple.resetByTupleIndex(frame, i - 1);
tuple.resetByTupleIndex(frame, i);
// check if tuples match in fieldCountToCompress of their first fields
int prefixFieldsMatch = 0;
for (int j = 0; j < fieldCountToCompress; j++) {
if (cmps[j].compare(pageArray, prevTuple.getFieldStart(j), prevTuple.getFieldLength(j), pageArray, tuple.getFieldStart(j), tuple.getFieldLength(j)) == 0)
prefixFieldsMatch++;
else
break;
}
// the two tuples must match in exactly the number of fields we decided
// to compress for this keyPartition
int processSegments = 0;
if (prefixFieldsMatch == fieldCountToCompress)
tuplesInSegment++;
else
processSegments++;
if (i == keyPartitions.get(kpIndex).lastTupleIndex)
processSegments++;
for (int r = 0; r < processSegments; r++) {
// compress current segment and then start new segment
if (tuplesInSegment < occurrenceThreshold || fieldCountToCompress <= 0) {
// write tuples uncompressed
for (int j = 0; j < tuplesInSegment; j++) {
int slotNum = segmentStart + j;
tupleToWrite.resetByTupleIndex(frame, slotNum);
newTupleSlots[tupleCount - 1 - slotNum] = slotManager.encodeSlotFields(FieldPrefixSlotManager.TUPLE_UNCOMPRESSED, tupleFreeSpace);
tupleFreeSpace += tupleWriter.writeTuple(tupleToWrite, byteBuffer, tupleFreeSpace);
}
uncompressedTupleCount += tuplesInSegment;
} else {
// segment has enough tuples: compress segment, extract prefix,
// write prefix tuple to buffer, and set prefix slot
newPrefixSlots[newPrefixSlots.length - 1 - prefixTupleIndex] = slotManager.encodeSlotFields(fieldCountToCompress, prefixFreeSpace);
prefixFreeSpace += tupleWriter.writeTupleFields(prevTuple, 0, fieldCountToCompress, byteBuffer.array(), prefixFreeSpace);
// truncate tuples, write them to buffer, and set tuple slots
for (int j = 0; j < tuplesInSegment; j++) {
int currTupleIndex = segmentStart + j;
tupleToWrite.resetByTupleIndex(frame, currTupleIndex);
newTupleSlots[tupleCount - 1 - currTupleIndex] = slotManager.encodeSlotFields(prefixTupleIndex, tupleFreeSpace);
tupleFreeSpace += tupleWriter.writeTupleFields(tupleToWrite, fieldCountToCompress, fieldCount - fieldCountToCompress, byteBuffer.array(), tupleFreeSpace);
}
prefixTupleIndex++;
}
// begin new segment
segmentStart = i;
tuplesInSegment = 1;
}
}
tupleIndex = keyPartitions.get(kpIndex).lastTupleIndex;
kpIndex++;
} else {
// just write the tuple uncompressed
tupleToWrite.resetByTupleIndex(frame, tupleIndex);
newTupleSlots[tupleCount - 1 - tupleIndex] = slotManager.encodeSlotFields(FieldPrefixSlotManager.TUPLE_UNCOMPRESSED, tupleFreeSpace);
tupleFreeSpace += tupleWriter.writeTuple(tupleToWrite, byteBuffer, tupleFreeSpace);
uncompressedTupleCount++;
}
} else {
// just write the tuple uncompressed
tupleToWrite.resetByTupleIndex(frame, tupleIndex);
newTupleSlots[tupleCount - 1 - tupleIndex] = slotManager.encodeSlotFields(FieldPrefixSlotManager.TUPLE_UNCOMPRESSED, tupleFreeSpace);
tupleFreeSpace += tupleWriter.writeTuple(tupleToWrite, byteBuffer, tupleFreeSpace);
uncompressedTupleCount++;
}
tupleIndex++;
}
// sanity check to see if we have written exactly as many prefix bytes as computed before
if (prefixFreeSpace != frame.getOrigFreeSpaceOff() + totalPrefixBytes) {
throw new Exception("ERROR: Number of prefix bytes written don't match computed number");
}
// in some rare instances our procedure could even increase the space requirement which is very dangerous
// this can happen to to the greedy solution of the knapsack-like problem
// therefore, we check if the new space exceeds the page size to avoid the only danger of
// an increasing space
int totalSpace = tupleFreeSpace + newTupleSlots.length * slotManager.getSlotSize() + newPrefixSlots.length * slotManager.getSlotSize();
if (totalSpace > buf.capacity())
// just leave the page as is
return false;
// copy new tuple and new slots into original page
int freeSpaceAfterInit = frame.getOrigFreeSpaceOff();
System.arraycopy(buffer, freeSpaceAfterInit, pageArray, freeSpaceAfterInit, tupleFreeSpace - freeSpaceAfterInit);
// copy prefix slots
int slotOffRunner = buf.capacity() - slotManager.getSlotSize();
for (int i = 0; i < newPrefixSlots.length; i++) {
buf.putInt(slotOffRunner, newPrefixSlots[newPrefixSlots.length - 1 - i]);
slotOffRunner -= slotManager.getSlotSize();
}
// copy tuple slots
for (int i = 0; i < newTupleSlots.length; i++) {
buf.putInt(slotOffRunner, newTupleSlots[newTupleSlots.length - 1 - i]);
slotOffRunner -= slotManager.getSlotSize();
}
// update space fields, TODO: we need to update more fields
frame.setFreeSpaceOff(tupleFreeSpace);
frame.setPrefixTupleCount(newPrefixSlots.length);
frame.setUncompressedTupleCount(uncompressedTupleCount);
int totalFreeSpace = buf.capacity() - tupleFreeSpace - ((newTupleSlots.length + newPrefixSlots.length) * slotManager.getSlotSize());
frame.setTotalFreeSpace(totalFreeSpace);
return true;
}
use of org.apache.hyracks.storage.am.common.tuples.TypeAwareTupleWriter in project asterixdb by apache.
the class FieldPrefixNSMTest method test01.
@Test
public void test01() throws Exception {
// declare fields
int fieldCount = 3;
ITypeTraits[] typeTraits = new ITypeTraits[fieldCount];
typeTraits[0] = IntegerPointable.TYPE_TRAITS;
typeTraits[1] = IntegerPointable.TYPE_TRAITS;
typeTraits[2] = IntegerPointable.TYPE_TRAITS;
// declare keys
int keyFieldCount = 3;
IBinaryComparator[] cmps = new IBinaryComparator[keyFieldCount];
cmps[0] = PointableBinaryComparatorFactory.of(IntegerPointable.FACTORY).createBinaryComparator();
cmps[1] = PointableBinaryComparatorFactory.of(IntegerPointable.FACTORY).createBinaryComparator();
cmps[2] = PointableBinaryComparatorFactory.of(IntegerPointable.FACTORY).createBinaryComparator();
MultiComparator cmp = new MultiComparator(cmps);
// just for printing
@SuppressWarnings("rawtypes") ISerializerDeserializer[] fieldSerdes = { IntegerSerializerDeserializer.INSTANCE, IntegerSerializerDeserializer.INSTANCE, IntegerSerializerDeserializer.INSTANCE };
Random rnd = new Random();
rnd.setSeed(50);
IBufferCache bufferCache = harness.getBufferCache();
IFileMapProvider fileMapProvider = harness.getFileMapProvider();
bufferCache.createFile(harness.getFileReference());
int btreeFileId = fileMapProvider.lookupFileId(harness.getFileReference());
bufferCache.openFile(btreeFileId);
IHyracksTaskContext ctx = harness.getHyracksTaskContext();
ICachedPage page = bufferCache.pin(BufferedFileHandle.getDiskPageId(btreeFileId, 0), true);
try {
ITreeIndexTupleWriter tupleWriter = new TypeAwareTupleWriter(typeTraits);
BTreeFieldPrefixNSMLeafFrame frame = new BTreeFieldPrefixNSMLeafFrame(tupleWriter);
frame.setPage(page);
frame.initBuffer((byte) 0);
frame.setMultiComparator(cmp);
frame.setPrefixTupleCount(0);
String before = new String();
String after = new String();
int compactFreq = 5;
int compressFreq = 5;
int smallMax = 10;
int numRecords = 1000;
int[][] savedFields = new int[numRecords][3];
// insert records with random calls to compact and compress
for (int i = 0; i < numRecords; i++) {
if (LOGGER.isLoggable(Level.INFO)) {
if ((i + 1) % 100 == 0) {
LOGGER.info("INSERTING " + (i + 1) + " / " + numRecords);
}
}
int a = rnd.nextInt() % smallMax;
int b = rnd.nextInt() % smallMax;
int c = i;
ITupleReference tuple = createTuple(ctx, a, b, c, false);
try {
int targetTupleIndex = frame.findInsertTupleIndex(tuple);
frame.insert(tuple, targetTupleIndex);
} catch (Exception e) {
e.printStackTrace();
}
savedFields[i][0] = a;
savedFields[i][1] = b;
savedFields[i][2] = c;
if (rnd.nextInt() % compactFreq == 0) {
before = TreeIndexUtils.printFrameTuples(frame, fieldSerdes);
frame.compact();
after = TreeIndexUtils.printFrameTuples(frame, fieldSerdes);
Assert.assertEquals(before, after);
}
if (rnd.nextInt() % compressFreq == 0) {
before = TreeIndexUtils.printFrameTuples(frame, fieldSerdes);
frame.compress();
after = TreeIndexUtils.printFrameTuples(frame, fieldSerdes);
Assert.assertEquals(before, after);
}
}
// delete records with random calls to compact and compress
for (int i = 0; i < numRecords; i++) {
if (LOGGER.isLoggable(Level.INFO)) {
if ((i + 1) % 100 == 0) {
LOGGER.info("DELETING " + (i + 1) + " / " + numRecords);
}
}
ITupleReference tuple = createTuple(ctx, savedFields[i][0], savedFields[i][1], savedFields[i][2], false);
try {
int tupleIndex = frame.findDeleteTupleIndex(tuple);
frame.delete(tuple, tupleIndex);
} catch (Exception e) {
}
if (rnd.nextInt() % compactFreq == 0) {
before = TreeIndexUtils.printFrameTuples(frame, fieldSerdes);
frame.compact();
after = TreeIndexUtils.printFrameTuples(frame, fieldSerdes);
Assert.assertEquals(before, after);
}
if (rnd.nextInt() % compressFreq == 0) {
before = TreeIndexUtils.printFrameTuples(frame, fieldSerdes);
frame.compress();
after = TreeIndexUtils.printFrameTuples(frame, fieldSerdes);
Assert.assertEquals(before, after);
}
}
} finally {
bufferCache.unpin(page);
bufferCache.closeFile(btreeFileId);
bufferCache.close();
}
}
use of org.apache.hyracks.storage.am.common.tuples.TypeAwareTupleWriter in project asterixdb by apache.
the class LSMComponentFilterReferenceTest method test.
@Test
public void test() throws HyracksDataException {
LSMComponentFilterReference filter = new LSMComponentFilterReference(new TypeAwareTupleWriter(new ITypeTraits[] { IntegerPointable.TYPE_TRAITS }));
Assert.assertEquals(filter.getLength(), 0);
Assert.assertFalse(filter.isMaxTupleSet() || filter.isMinTupleSet());
filter.writeMaxTuple(TupleUtils.createIntegerTuple(false, Integer.MAX_VALUE));
Assert.assertFalse(filter.isMinTupleSet());
Assert.assertTrue(filter.isMaxTupleSet());
Assert.assertTrue(filter.getLength() == 11);
filter.writeMinTuple(TupleUtils.createIntegerTuple(false, Integer.MIN_VALUE));
Assert.assertTrue(filter.isMinTupleSet() && filter.isMaxTupleSet());
Assert.assertTrue(filter.getLength() == 20);
byte[] serFilter = filter.getByteArray();
LSMComponentFilterReference deserFilter = new LSMComponentFilterReference(new TypeAwareTupleWriter((new ITypeTraits[] { IntegerPointable.TYPE_TRAITS })));
deserFilter.set(serFilter, 0, 20);
Assert.assertTrue(deserFilter.isMaxTupleSet() && deserFilter.isMinTupleSet());
Assert.assertEquals(TupleUtils.deserializeTuple(deserFilter.getMinTuple(), new ISerializerDeserializer[] { IntegerSerializerDeserializer.INSTANCE })[0], Integer.MIN_VALUE);
Assert.assertEquals(TupleUtils.deserializeTuple(deserFilter.getMaxTuple(), new ISerializerDeserializer[] { IntegerSerializerDeserializer.INSTANCE })[0], Integer.MAX_VALUE);
}
Aggregations