use of org.apache.sis.internal.referencing.GeodeticObjectBuilder in project sis by apache.
the class DefaultProjectedCRSTest method testWKT1_WithExplicitAxisLength.
/**
* Tests WKT 1 formatting of a pseudo-projection with explicit {@code "semi-major"} and {@code "semi-minor"}
* parameter values. This was a way to define the Google pseudo-projection using standard projection method
* name before EPSG introduced the <cite>"Popular Visualisation Pseudo Mercator"</cite> projection method.
* The approach tested in this method is now deprecated at least for the Google projection (while it may
* still be useful for other projections), but we still test it for compatibility reasons.
*
* @throws FactoryException if the CRS creation failed.
*/
@Test
@DependsOnMethod("testWKT1")
public void testWKT1_WithExplicitAxisLength() throws FactoryException {
final ProjectedCRS crs = new GeodeticObjectBuilder().setConversionMethod("Mercator (variant A)").setConversionName("Popular Visualisation Pseudo-Mercator").setParameter("semi-major", 6378137, Units.METRE).setParameter("semi-minor", 6378137, Units.METRE).addName("WGS 84 / Pseudo-Mercator").createProjectedCRS(HardCodedCRS.WGS84, HardCodedCS.PROJECTED);
assertWktEquals(Convention.WKT1, "PROJCS[“WGS 84 / Pseudo-Mercator”,\n" + " GEOGCS[“WGS 84”,\n" + " DATUM[“World Geodetic System 1984”,\n" + " SPHEROID[“WGS84”, 6378137.0, 298.257223563]],\n" + " PRIMEM[“Greenwich”, 0.0],\n" + " UNIT[“degree”, 0.017453292519943295],\n" + " AXIS[“Longitude”, EAST],\n" + " AXIS[“Latitude”, NORTH]],\n" + " PROJECTION[“Mercator_1SP”, AUTHORITY[“EPSG”, “9804”]],\n" + // Non-standard: appears because its value is different than the ellipsoid value.
" PARAMETER[“semi_minor”, 6378137.0],\n" + " PARAMETER[“latitude_of_origin”, 0.0],\n" + " PARAMETER[“central_meridian”, 0.0],\n" + " PARAMETER[“scale_factor”, 1.0],\n" + " PARAMETER[“false_easting”, 0.0],\n" + " PARAMETER[“false_northing”, 0.0],\n" + " UNIT[“metre”, 1],\n" + " AXIS[“Easting”, EAST],\n" + " AXIS[“Northing”, NORTH]]", crs);
loggings.assertNextLogContains("semi_minor", "WGS84");
loggings.assertNoUnexpectedLog();
}
use of org.apache.sis.internal.referencing.GeodeticObjectBuilder in project sis by apache.
the class CommonAuthorityFactory method createAuto.
/**
* Creates a projected CRS from parameters in the {@code AUTO(2)} namespace.
*
* @param code the user-specified code, used only for error reporting.
* @param projection the projection code (e.g. 42001).
* @param isLegacy {@code true} if the code was found in {@code "AUTO"} or {@code "AUTO1"} namespace.
* @param factor the multiplication factor for the unit of measurement.
* @param longitude a longitude in the desired projection zone.
* @param latitude a latitude in the desired projection zone.
* @return the projected CRS for the given projection and parameters.
*/
@SuppressWarnings("null")
private ProjectedCRS createAuto(final String code, final int projection, final boolean isLegacy, final double factor, final double longitude, final double latitude) throws FactoryException {
Boolean isUTM = null;
String method = null;
String param = null;
switch(projection) {
/*
* 42001: Universal Transverse Mercator — central meridian must be in the center of a UTM zone.
* 42002: Transverse Mercator — like 42001 except that central meridian can be anywhere.
* 42003: WGS 84 / Auto Orthographic — defined by "Central_Meridian" and "Latitude_of_Origin".
* 42004: WGS 84 / Auto Equirectangular — defined by "Central_Meridian" and "Standard_Parallel_1".
* 42005: WGS 84 / Auto Mollweide — defined by "Central_Meridian" only.
*/
case 42001:
isUTM = true;
break;
case 42002:
isUTM = (latitude == 0) && (Zoner.UTM.centralMeridian(Zoner.UTM.zone(0, longitude)) == longitude);
break;
case 42003:
method = "Orthographic";
param = Constants.LATITUDE_OF_ORIGIN;
break;
case 42004:
method = "Equirectangular";
param = Constants.STANDARD_PARALLEL_1;
break;
case 42005:
method = "Mollweide";
break;
default:
throw noSuchAuthorityCode(String.valueOf(projection), code, null);
}
/*
* For the (Universal) Transverse Mercator case (AUTO:42001 and 42002), we delegate to the CommonCRS
* enumeration if possible because CommonCRS will itself delegate to the EPSG factory if possible.
* The Math.signum(latitude) instruction is for preventing "AUTO:42001" to handle the UTM special cases
* (Norway and Svalbard) or to switch on the Universal Polar Stereographic projection for high latitudes,
* because the WMS specification does not said that we should.
*/
final CommonCRS datum = CommonCRS.WGS84;
// To be set, directly or indirectly, to WGS84.geographic().
final GeographicCRS baseCRS;
// Temporary UTM projection, for extracting other properties.
final ProjectedCRS crs;
// Coordinate system with (E,N) axes in metres.
CartesianCS cs;
try {
if (isUTM != null && isUTM) {
crs = datum.universal(Math.signum(latitude), longitude);
if (factor == (isLegacy ? Constants.EPSG_METRE : 1)) {
return crs;
}
baseCRS = crs.getBaseCRS();
cs = crs.getCoordinateSystem();
} else {
cs = projectedCS;
if (cs == null) {
crs = datum.universal(Math.signum(latitude), longitude);
projectedCS = cs = crs.getCoordinateSystem();
baseCRS = crs.getBaseCRS();
} else {
crs = null;
baseCRS = datum.geographic();
}
}
/*
* At this point we got a coordinate system with axes in metres.
* If the user asked for another unit of measurement, change the axes now.
*/
Unit<Length> unit;
if (isLegacy) {
unit = createUnitFromEPSG(factor).asType(Length.class);
} else {
unit = Units.METRE;
if (factor != 1)
unit = unit.multiply(factor);
}
if (!Units.METRE.equals(unit)) {
cs = (CartesianCS) CoordinateSystems.replaceLinearUnit(cs, unit);
}
/*
* Set the projection name, operation method and parameters. The parameters for the Transverse Mercator
* projection are a little bit more tedious to set, so we use a convenience method for that.
*/
final GeodeticObjectBuilder builder = new GeodeticObjectBuilder();
if (isUTM != null) {
if (isUTM && crs != null) {
builder.addName(crs.getName());
}
// else default to the conversion name, which is "Transverse Mercator".
builder.setTransverseMercator(isUTM ? Zoner.UTM : Zoner.ANY, latitude, longitude);
} else {
builder.setConversionMethod(method).addName(PROJECTION_NAMES[projection - FIRST_PROJECTION_CODE]).setParameter(Constants.CENTRAL_MERIDIAN, longitude, Units.DEGREE);
if (param != null) {
builder.setParameter(param, latitude, Units.DEGREE);
}
}
return builder.createProjectedCRS(baseCRS, cs);
} catch (IllegalArgumentException e) {
throw noSuchAuthorityCode(String.valueOf(projection), code, e);
}
}
use of org.apache.sis.internal.referencing.GeodeticObjectBuilder in project sis by apache.
the class Store method parseEnvelope.
/**
* Parses the envelope described by the header line starting with {@code @stboundedby}.
* The envelope returned by this method will be stored in the {@link #envelope} field.
*
* <p>Example:</p>
* {@preformat text
* @stboundedby, urn:ogc:def:crs:CRS:1.3:84, 2D, 50.23 9.23, 50.31 9.27, 2012-01-17T12:33:41Z, 2012-01-17T12:37:00Z, sec
* }
*
* This method sets {@link #timeEncoding} and {@link #spatialDimensionCount} as a side-effect.
*
* @param elements the line elements. The first elements should be {@code "@stboundedby"}.
* @return the envelope, or {@code null} if the given list does not contain enough elements.
*/
@SuppressWarnings("fallthrough")
private GeneralEnvelope parseEnvelope(final List<String> elements) throws DataStoreException, FactoryException {
CoordinateReferenceSystem crs = null;
int spatialDimensionCount = 2;
boolean isDimExplicit = false;
double[] lowerCorner = ArraysExt.EMPTY_DOUBLE;
double[] upperCorner = ArraysExt.EMPTY_DOUBLE;
Instant startTime = null;
Instant endTime = null;
Unit<Time> timeUnit = Units.SECOND;
boolean isTimeAbsolute = false;
int ordinal = -1;
for (final String element : elements) {
ordinal++;
if (!element.isEmpty()) {
switch(ordinal) {
// The "@stboundedby" header.
case 0:
continue;
case 1:
crs = CRS.forCode(element);
continue;
case 2:
if (element.length() == 2 && Character.toUpperCase(element.charAt(1)) == 'D') {
isDimExplicit = true;
spatialDimensionCount = element.charAt(0) - '0';
if (spatialDimensionCount < 1 || spatialDimensionCount > 3) {
throw new DataStoreReferencingException(errors().getString(Errors.Keys.IllegalCoordinateSystem_1, element));
}
continue;
}
/*
* According the Moving Feature specification, the [dim] element is optional.
* If we did not recognized the dimension, assume that we have the next element
* (i.e. the lower corner). Fall-through so we can process it.
*/
// Fall through
ordinal++;
case 3:
lowerCorner = CharSequences.parseDoubles(element, ORDINATE_SEPARATOR);
continue;
case 4:
upperCorner = CharSequences.parseDoubles(element, ORDINATE_SEPARATOR);
continue;
case 5:
startTime = Instant.parse(element);
continue;
case 6:
endTime = Instant.parse(element);
continue;
case 7:
switch(element.toLowerCase(Locale.US)) {
case "sec":
case "second":
/* Already SECOND. */
continue;
case "minute":
timeUnit = Units.MINUTE;
continue;
case "hour":
timeUnit = Units.HOUR;
continue;
case "day":
timeUnit = Units.DAY;
continue;
case "absolute":
isTimeAbsolute = true;
continue;
default:
throw new DataStoreReferencingException(errors().getString(Errors.Keys.UnknownUnit_1, element));
}
}
// If we reach this point, there is some remaining unknown elements. Ignore them.
break;
}
}
/*
* Complete the CRS by adding a vertical component if needed, then a temporal component.
* Only after the CRS has been completed we can create the envelope.
*
* Vertical component:
* Ideally, should be part of the CRS created from the authority code. But if the authority
* code is only for a two-dimensional CRS, we default to an arbitrary height component.
*
* Temporal component:
* Assumed never part of the authority code. We need to build the temporal component ourselves
* in order to set the origin to the start time.
*/
final GeneralEnvelope envelope;
if (crs != null) {
int count = 0;
final CoordinateReferenceSystem[] components = new CoordinateReferenceSystem[3];
components[count++] = crs;
/*
* If the coordinates are three-dimensional but the CRS is 2D, add a vertical axis.
* The vertical axis shall be the third one, however we do not enforce that rule
* since Apache SIS should work correctly even if the vertical axis is elsewhere.
*/
int dimension = crs.getCoordinateSystem().getDimension();
if (isDimExplicit) {
if (spatialDimensionCount > dimension) {
components[count++] = CommonCRS.Vertical.MEAN_SEA_LEVEL.crs();
dimension++;
}
if (dimension != spatialDimensionCount) {
throw new DataStoreReferencingException(errors().getString(Errors.Keys.MismatchedDimension_3, "@stboundedby(CRS)", spatialDimensionCount, dimension));
}
}
if (dimension > Short.MAX_VALUE) {
throw new DataStoreReferencingException(errors().getString(Errors.Keys.ExcessiveNumberOfDimensions_1, dimension));
}
spatialDimensionCount = dimension;
/*
* Add a temporal axis if we have a start time (no need for end time).
* This block presumes that the CRS does not already have a time axis.
* If a time axis was already present, an exception will be thrown at
* builder.createCompoundCRS(…) invocation time.
*/
final GeodeticObjectBuilder builder = new GeodeticObjectBuilder();
String name = crs.getName().getCode();
if (startTime != null) {
final TemporalCRS temporal;
if (isTimeAbsolute) {
temporal = TimeEncoding.DEFAULT.crs();
timeEncoding = TimeEncoding.ABSOLUTE;
} else {
temporal = builder.createTemporalCRS(Date.from(startTime), timeUnit);
timeEncoding = new TimeEncoding(temporal.getDatum(), timeUnit);
}
components[count++] = temporal;
name = name + " + " + temporal.getName().getCode();
}
crs = builder.addName(name).createCompoundCRS(ArraysExt.resize(components, count));
envelope = new GeneralEnvelope(crs);
} else {
/*
* While illegal in principle, Apache SIS accepts missing CRS.
* In such case, use only the number of dimensions.
*/
int dim = spatialDimensionCount;
// Same criterion than in above block.
if (startTime != null)
dim++;
envelope = new GeneralEnvelope(dim);
}
/*
* At this point we got the three- or four-dimensional spatio-temporal CRS.
* We can now set the envelope coordinate values, including temporal values.
*/
int dim;
if ((dim = lowerCorner.length) != spatialDimensionCount || (dim = upperCorner.length) != spatialDimensionCount) {
throw new DataStoreReferencingException(errors().getString(Errors.Keys.MismatchedDimension_3, "@stboundedby(BBOX)", spatialDimensionCount, dim));
}
for (int i = 0; i < spatialDimensionCount; i++) {
envelope.setRange(i, lowerCorner[i], upperCorner[i]);
}
if (startTime != null) {
envelope.setRange(spatialDimensionCount, timeEncoding.toCRS(startTime.toEpochMilli()), (endTime == null) ? Double.NaN : timeEncoding.toCRS(endTime.toEpochMilli()));
}
this.spatialDimensionCount = (short) spatialDimensionCount;
return envelope;
}
use of org.apache.sis.internal.referencing.GeodeticObjectBuilder in project sis by apache.
the class DefaultProjectedCRSTest method testWKT2_ForEquirectangular.
/**
* Tests formatting of “Equidistant Cylindrical (Spherical)” projected CRS. This one is a special case
* because it is simplified to an affine transform. The referencing module should be able to find the
* original projection parameters.
*
* @throws FactoryException if the CRS creation failed.
*/
@Test
@DependsOnMethod("testWKT2_Simplified")
public void testWKT2_ForEquirectangular() throws FactoryException {
final ProjectedCRS crs = new GeodeticObjectBuilder().setConversionMethod("Equirectangular").setConversionName("Equidistant Cylindrical (Spherical)").setParameter("False easting", 1000, Units.METRE).setParameter("False northing", 2000, Units.METRE).addName("Equidistant Cylindrical (Spherical)").createProjectedCRS(HardCodedCRS.WGS84, HardCodedCS.PROJECTED);
assertWktEquals(Convention.WKT2_SIMPLIFIED, "ProjectedCRS[“Equidistant Cylindrical (Spherical)”,\n" + " BaseGeodCRS[“WGS 84”,\n" + " Datum[“World Geodetic System 1984”,\n" + " Ellipsoid[“WGS84”, 6378137.0, 298.257223563]],\n" + " Unit[“degree”, 0.017453292519943295]],\n" + " Conversion[“Equidistant Cylindrical (Spherical)”,\n" + " Method[“Equidistant Cylindrical (Spherical)”],\n" + " Parameter[“Latitude of 1st standard parallel”, 0.0],\n" + " Parameter[“Longitude of natural origin”, 0.0],\n" + " Parameter[“False easting”, 1000.0],\n" + " Parameter[“False northing”, 2000.0]],\n" + " CS[Cartesian, 2],\n" + " Axis[“Easting (E)”, east],\n" + " Axis[“Northing (N)”, north],\n" + " Unit[“metre”, 1]]", crs);
}
Aggregations