use of org.apache.sysml.runtime.matrix.operators.AggregateOperator in project systemml by apache.
the class LibMatrixCUDA method unaryAggregate.
// ********************************************************************/
// ******** End of TRANSPOSE SELF MATRIX MULTIPLY Functions ***********/
// ********************************************************************/
// ********************************************************************/
// **************** UNARY AGGREGATE Functions ************************/
// ********************************************************************/
/**
* Entry point to perform Unary aggregate operations on the GPU.
* The execution context object is used to allocate memory for the GPU.
*
* @param ec Instance of {@link ExecutionContext}, from which the output variable will be allocated
* @param gCtx a valid {@link GPUContext}
* @param instName name of the invoking instruction to record{@link Statistics}.
* @param in1 input matrix
* @param output output matrix/scalar name
* @param op Instance of {@link AggregateUnaryOperator} which encapsulates the direction of reduction/aggregation and the reduction operation.
*/
public static void unaryAggregate(ExecutionContext ec, GPUContext gCtx, String instName, MatrixObject in1, String output, AggregateUnaryOperator op) {
if (ec.getGPUContext(0) != gCtx)
throw new DMLRuntimeException("GPU : Invalid internal state, the GPUContext set with the ExecutionContext is not the same used to run this LibMatrixCUDA function");
if (LOG.isTraceEnabled()) {
LOG.trace("GPU : unaryAggregate" + ", GPUContext=" + gCtx);
}
final int REDUCTION_ALL = 1;
final int REDUCTION_ROW = 2;
final int REDUCTION_COL = 3;
final int REDUCTION_DIAG = 4;
// A kahan sum implemention is not provided. is a "uak+" or other kahan operator is encountered,
// it just does regular summation reduction.
final int OP_PLUS = 1;
final int OP_PLUS_SQ = 2;
final int OP_MEAN = 3;
final int OP_VARIANCE = 4;
final int OP_MULTIPLY = 5;
final int OP_MAX = 6;
final int OP_MIN = 7;
final int OP_MAXINDEX = 8;
final int OP_MININDEX = 9;
// Sanity Checks
if (!in1.getGPUObject(gCtx).isAllocated())
throw new DMLRuntimeException("Internal Error - The input is not allocated for a GPU Aggregate Unary:" + in1.getGPUObject(gCtx).isAllocated());
boolean isSparse = in1.getGPUObject(gCtx).isSparse();
IndexFunction indexFn = op.indexFn;
AggregateOperator aggOp = op.aggOp;
// Convert Reduction direction to a number
int reductionDirection = -1;
if (indexFn instanceof ReduceAll) {
reductionDirection = REDUCTION_ALL;
} else if (indexFn instanceof ReduceRow) {
reductionDirection = REDUCTION_ROW;
} else if (indexFn instanceof ReduceCol) {
reductionDirection = REDUCTION_COL;
} else if (indexFn instanceof ReduceDiag) {
reductionDirection = REDUCTION_DIAG;
} else {
throw new DMLRuntimeException("Internal Error - Invalid index function type, only reducing along rows, columns, diagonals or all elements is supported in Aggregate Unary operations");
}
if (reductionDirection == -1)
throw new DMLRuntimeException("Internal Error - Incorrect type of reduction direction set for aggregate unary GPU instruction");
// Convert function type to a number
int opIndex = -1;
if (aggOp.increOp.fn instanceof KahanPlus) {
opIndex = OP_PLUS;
} else if (aggOp.increOp.fn instanceof KahanPlusSq) {
opIndex = OP_PLUS_SQ;
} else if (aggOp.increOp.fn instanceof Mean) {
opIndex = OP_MEAN;
} else if (aggOp.increOp.fn instanceof CM) {
if (((CM) aggOp.increOp.fn).getAggOpType() != CMOperator.AggregateOperationTypes.VARIANCE)
throw new DMLRuntimeException("Internal Error - Invalid Type of CM operator for Aggregate Unary operation on GPU");
opIndex = OP_VARIANCE;
} else if (aggOp.increOp.fn instanceof Plus) {
opIndex = OP_PLUS;
} else if (aggOp.increOp.fn instanceof Multiply) {
opIndex = OP_MULTIPLY;
} else if (aggOp.increOp.fn instanceof Builtin) {
Builtin b = (Builtin) aggOp.increOp.fn;
switch(b.bFunc) {
case MAX:
opIndex = OP_MAX;
break;
case MIN:
opIndex = OP_MIN;
break;
case MAXINDEX:
opIndex = OP_MAXINDEX;
break;
case MININDEX:
opIndex = OP_MININDEX;
break;
default:
new DMLRuntimeException("Internal Error - Unsupported Builtin Function for Aggregate unary being done on GPU");
}
} else {
throw new DMLRuntimeException("Internal Error - Aggregate operator has invalid Value function");
}
if (opIndex == -1)
throw new DMLRuntimeException("Internal Error - Incorrect type of operation set for aggregate unary GPU instruction");
int rlen = (int) in1.getNumRows();
int clen = (int) in1.getNumColumns();
if (isSparse) {
// The strategy for the time being is to convert sparse to dense
// until a sparse specific kernel is written.
in1.getGPUObject(gCtx).sparseToDense(instName);
// long nnz = in1.getNnz();
// assert nnz > 0 : "Internal Error - number of non zeroes set to " + nnz + " in Aggregate Binary for GPU";
// MatrixObject out = ec.getSparseMatrixOutputForGPUInstruction(output, nnz);
// throw new DMLRuntimeException("Internal Error - Not implemented");
}
long outRLen = -1;
long outCLen = -1;
if (indexFn instanceof ReduceRow) {
// COL{SUM, MAX...}
outRLen = 1;
outCLen = clen;
} else if (indexFn instanceof ReduceCol) {
// ROW{SUM, MAX,...}
outRLen = rlen;
outCLen = 1;
}
Pointer out = null;
if (reductionDirection == REDUCTION_COL || reductionDirection == REDUCTION_ROW) {
// Matrix output
MatrixObject out1 = getDenseMatrixOutputForGPUInstruction(ec, instName, output, outRLen, outCLen);
out = getDensePointer(gCtx, out1, instName);
}
Pointer in = getDensePointer(gCtx, in1, instName);
int size = rlen * clen;
// For scalars, set the scalar output in the Execution Context object
switch(opIndex) {
case OP_PLUS:
{
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_sum", in, size);
ec.setScalarOutput(output, new DoubleObject(result));
break;
}
case REDUCTION_COL:
{
// The names are a bit misleading, REDUCTION_COL refers to the direction (reduce all elements in a column)
reduceRow(gCtx, instName, "reduce_row_sum", in, out, rlen, clen);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_sum", in, out, rlen, clen);
break;
}
case REDUCTION_DIAG:
throw new DMLRuntimeException("Internal Error - Row, Column and Diag summation not implemented yet");
}
break;
}
case OP_PLUS_SQ:
{
// Calculate the squares in a temporary object tmp
Pointer tmp = gCtx.allocate(instName, size * sizeOfDataType);
squareMatrix(gCtx, instName, in, tmp, rlen, clen);
// Then do the sum on the temporary object and free it
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_sum", tmp, size);
ec.setScalarOutput(output, new DoubleObject(result));
break;
}
case REDUCTION_COL:
{
// The names are a bit misleading, REDUCTION_COL refers to the direction (reduce all elements in a column)
reduceRow(gCtx, instName, "reduce_row_sum", tmp, out, rlen, clen);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_sum", tmp, out, rlen, clen);
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for summation squared");
}
gCtx.cudaFreeHelper(instName, tmp);
break;
}
case OP_MEAN:
{
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_sum", in, size);
double mean = result / size;
ec.setScalarOutput(output, new DoubleObject(mean));
break;
}
case REDUCTION_COL:
{
reduceRow(gCtx, instName, "reduce_row_mean", in, out, rlen, clen);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_mean", in, out, rlen, clen);
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for mean");
}
break;
}
case OP_MULTIPLY:
{
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_prod", in, size);
ec.setScalarOutput(output, new DoubleObject(result));
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for multiplication");
}
break;
}
case OP_MAX:
{
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_max", in, size);
ec.setScalarOutput(output, new DoubleObject(result));
break;
}
case REDUCTION_COL:
{
reduceRow(gCtx, instName, "reduce_row_max", in, out, rlen, clen);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_max", in, out, rlen, clen);
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for max");
}
break;
}
case OP_MIN:
{
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_min", in, size);
ec.setScalarOutput(output, new DoubleObject(result));
break;
}
case REDUCTION_COL:
{
reduceRow(gCtx, instName, "reduce_row_min", in, out, rlen, clen);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_min", in, out, rlen, clen);
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for min");
}
break;
}
case OP_VARIANCE:
{
// Temporary GPU array for
Pointer tmp = gCtx.allocate(instName, size * sizeOfDataType);
Pointer tmp2 = gCtx.allocate(instName, size * sizeOfDataType);
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_sum", in, size);
double mean = result / size;
// Subtract mean from every element in the matrix
ScalarOperator minusOp = new RightScalarOperator(Minus.getMinusFnObject(), mean);
matrixScalarOp(gCtx, instName, in, mean, rlen, clen, tmp, minusOp);
squareMatrix(gCtx, instName, tmp, tmp2, rlen, clen);
double result2 = reduceAll(gCtx, instName, "reduce_sum", tmp2, size);
double variance = result2 / (size - 1);
ec.setScalarOutput(output, new DoubleObject(variance));
break;
}
case REDUCTION_COL:
{
reduceRow(gCtx, instName, "reduce_row_mean", in, out, rlen, clen);
// Subtract the row-wise mean from every element in the matrix
BinaryOperator minusOp = new BinaryOperator(Minus.getMinusFnObject());
matrixMatrixOp(gCtx, instName, in, out, rlen, clen, VectorShape.NONE.code(), VectorShape.COLUMN.code(), tmp, minusOp);
squareMatrix(gCtx, instName, tmp, tmp2, rlen, clen);
Pointer tmpRow = gCtx.allocate(instName, rlen * sizeOfDataType);
reduceRow(gCtx, instName, "reduce_row_sum", tmp2, tmpRow, rlen, clen);
ScalarOperator divideOp = new RightScalarOperator(Divide.getDivideFnObject(), clen - 1);
matrixScalarOp(gCtx, instName, tmpRow, clen - 1, rlen, 1, out, divideOp);
gCtx.cudaFreeHelper(instName, tmpRow);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_mean", in, out, rlen, clen);
// Subtract the columns-wise mean from every element in the matrix
BinaryOperator minusOp = new BinaryOperator(Minus.getMinusFnObject());
matrixMatrixOp(gCtx, instName, in, out, rlen, clen, VectorShape.NONE.code(), VectorShape.ROW.code(), tmp, minusOp);
squareMatrix(gCtx, instName, tmp, tmp2, rlen, clen);
Pointer tmpCol = gCtx.allocate(instName, clen * sizeOfDataType);
reduceCol(gCtx, instName, "reduce_col_sum", tmp2, tmpCol, rlen, clen);
ScalarOperator divideOp = new RightScalarOperator(Divide.getDivideFnObject(), rlen - 1);
matrixScalarOp(gCtx, instName, tmpCol, rlen - 1, 1, clen, out, divideOp);
gCtx.cudaFreeHelper(instName, tmpCol);
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for variance");
}
gCtx.cudaFreeHelper(instName, tmp);
gCtx.cudaFreeHelper(instName, tmp2);
break;
}
case OP_MAXINDEX:
{
switch(reductionDirection) {
case REDUCTION_COL:
throw new DMLRuntimeException("Internal Error - Column maxindex of matrix not implemented yet for GPU ");
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for maxindex");
}
// break;
}
case OP_MININDEX:
{
switch(reductionDirection) {
case REDUCTION_COL:
throw new DMLRuntimeException("Internal Error - Column minindex of matrix not implemented yet for GPU ");
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for minindex");
}
// break;
}
default:
throw new DMLRuntimeException("Internal Error - Invalid GPU Unary aggregate function!");
}
}
use of org.apache.sysml.runtime.matrix.operators.AggregateOperator in project systemml by apache.
the class PMapmmSPInstruction method parseInstruction.
public static PMapmmSPInstruction parseInstruction(String str) {
String[] parts = InstructionUtils.getInstructionPartsWithValueType(str);
String opcode = parts[0];
if (opcode.equalsIgnoreCase(PMapMult.OPCODE)) {
CPOperand in1 = new CPOperand(parts[1]);
CPOperand in2 = new CPOperand(parts[2]);
CPOperand out = new CPOperand(parts[3]);
AggregateOperator agg = new AggregateOperator(0, Plus.getPlusFnObject());
AggregateBinaryOperator aggbin = new AggregateBinaryOperator(Multiply.getMultiplyFnObject(), agg);
return new PMapmmSPInstruction(aggbin, in1, in2, out, opcode, str);
} else {
throw new DMLRuntimeException("PMapmmSPInstruction.parseInstruction():: Unknown opcode " + opcode);
}
}
use of org.apache.sysml.runtime.matrix.operators.AggregateOperator in project systemml by apache.
the class ParameterizedBuiltinSPInstruction method parseInstruction.
public static ParameterizedBuiltinSPInstruction parseInstruction(String str) {
String[] parts = InstructionUtils.getInstructionPartsWithValueType(str);
// first part is always the opcode
String opcode = parts[0];
if (opcode.equalsIgnoreCase("mapgroupedagg")) {
CPOperand target = new CPOperand(parts[1]);
CPOperand groups = new CPOperand(parts[2]);
CPOperand out = new CPOperand(parts[3]);
HashMap<String, String> paramsMap = new HashMap<>();
paramsMap.put(Statement.GAGG_TARGET, target.getName());
paramsMap.put(Statement.GAGG_GROUPS, groups.getName());
paramsMap.put(Statement.GAGG_NUM_GROUPS, parts[4]);
Operator op = new AggregateOperator(0, KahanPlus.getKahanPlusFnObject(), true, CorrectionLocationType.LASTCOLUMN);
return new ParameterizedBuiltinSPInstruction(op, paramsMap, out, opcode, str, false);
} else {
// last part is always the output
CPOperand out = new CPOperand(parts[parts.length - 1]);
// process remaining parts and build a hash map
HashMap<String, String> paramsMap = constructParameterMap(parts);
// determine the appropriate value function
ValueFunction func = null;
if (opcode.equalsIgnoreCase("groupedagg")) {
// check for mandatory arguments
String fnStr = paramsMap.get("fn");
if (fnStr == null)
throw new DMLRuntimeException("Function parameter is missing in groupedAggregate.");
if (fnStr.equalsIgnoreCase("centralmoment")) {
if (paramsMap.get("order") == null)
throw new DMLRuntimeException("Mandatory \"order\" must be specified when fn=\"centralmoment\" in groupedAggregate.");
}
Operator op = GroupedAggregateInstruction.parseGroupedAggOperator(fnStr, paramsMap.get("order"));
return new ParameterizedBuiltinSPInstruction(op, paramsMap, out, opcode, str, false);
} else if (opcode.equalsIgnoreCase("rmempty")) {
boolean bRmEmptyBC = false;
if (parts.length > 6)
bRmEmptyBC = Boolean.parseBoolean(parts[5]);
func = ParameterizedBuiltin.getParameterizedBuiltinFnObject(opcode);
return new ParameterizedBuiltinSPInstruction(new SimpleOperator(func), paramsMap, out, opcode, str, bRmEmptyBC);
} else if (opcode.equalsIgnoreCase("rexpand") || opcode.equalsIgnoreCase("replace") || opcode.equalsIgnoreCase("lowertri") || opcode.equalsIgnoreCase("uppertri") || opcode.equalsIgnoreCase("transformapply") || opcode.equalsIgnoreCase("transformdecode")) {
func = ParameterizedBuiltin.getParameterizedBuiltinFnObject(opcode);
return new ParameterizedBuiltinSPInstruction(new SimpleOperator(func), paramsMap, out, opcode, str, false);
} else {
throw new DMLRuntimeException("Unknown opcode (" + opcode + ") for ParameterizedBuiltin Instruction.");
}
}
}
use of org.apache.sysml.runtime.matrix.operators.AggregateOperator in project systemml by apache.
the class MapmmSPInstruction method parseInstruction.
public static MapmmSPInstruction parseInstruction(String str) {
String[] parts = InstructionUtils.getInstructionPartsWithValueType(str);
String opcode = parts[0];
if (!opcode.equalsIgnoreCase(MapMult.OPCODE))
throw new DMLRuntimeException("MapmmSPInstruction.parseInstruction():: Unknown opcode " + opcode);
CPOperand in1 = new CPOperand(parts[1]);
CPOperand in2 = new CPOperand(parts[2]);
CPOperand out = new CPOperand(parts[3]);
CacheType type = CacheType.valueOf(parts[4]);
boolean outputEmpty = Boolean.parseBoolean(parts[5]);
SparkAggType aggtype = SparkAggType.valueOf(parts[6]);
AggregateOperator agg = new AggregateOperator(0, Plus.getPlusFnObject());
AggregateBinaryOperator aggbin = new AggregateBinaryOperator(Multiply.getMultiplyFnObject(), agg);
return new MapmmSPInstruction(aggbin, in1, in2, out, type, outputEmpty, aggtype, opcode, str);
}
use of org.apache.sysml.runtime.matrix.operators.AggregateOperator in project systemml by apache.
the class SpoofSPInstruction method processInstruction.
@Override
public void processInstruction(ExecutionContext ec) {
SparkExecutionContext sec = (SparkExecutionContext) ec;
// decide upon broadcast side inputs
boolean[] bcVect = determineBroadcastInputs(sec, _in);
boolean[] bcVect2 = getMatrixBroadcastVector(sec, _in, bcVect);
int main = getMainInputIndex(_in, bcVect);
// create joined input rdd w/ replication if needed
MatrixCharacteristics mcIn = sec.getMatrixCharacteristics(_in[main].getName());
JavaPairRDD<MatrixIndexes, MatrixBlock[]> in = createJoinedInputRDD(sec, _in, bcVect, (_class.getSuperclass() == SpoofOuterProduct.class));
JavaPairRDD<MatrixIndexes, MatrixBlock> out = null;
// create lists of input broadcasts and scalars
ArrayList<PartitionedBroadcast<MatrixBlock>> bcMatrices = new ArrayList<>();
ArrayList<ScalarObject> scalars = new ArrayList<>();
for (int i = 0; i < _in.length; i++) {
if (_in[i].getDataType() == DataType.MATRIX && bcVect[i]) {
bcMatrices.add(sec.getBroadcastForVariable(_in[i].getName()));
} else if (_in[i].getDataType() == DataType.SCALAR) {
// note: even if literal, it might be compiled as scalar placeholder
scalars.add(sec.getScalarInput(_in[i].getName(), _in[i].getValueType(), _in[i].isLiteral()));
}
}
// execute generated operator
if (// CELL
_class.getSuperclass() == SpoofCellwise.class) {
SpoofCellwise op = (SpoofCellwise) CodegenUtils.createInstance(_class);
AggregateOperator aggop = getAggregateOperator(op.getAggOp());
if (_out.getDataType() == DataType.MATRIX) {
// execute codegen block operation
out = in.mapPartitionsToPair(new CellwiseFunction(_class.getName(), _classBytes, bcVect2, bcMatrices, scalars), true);
if ((op.getCellType() == CellType.ROW_AGG && mcIn.getCols() > mcIn.getColsPerBlock()) || (op.getCellType() == CellType.COL_AGG && mcIn.getRows() > mcIn.getRowsPerBlock())) {
long numBlocks = (op.getCellType() == CellType.ROW_AGG) ? mcIn.getNumRowBlocks() : mcIn.getNumColBlocks();
out = RDDAggregateUtils.aggByKeyStable(out, aggop, (int) Math.min(out.getNumPartitions(), numBlocks), false);
}
sec.setRDDHandleForVariable(_out.getName(), out);
// maintain lineage info and output characteristics
maintainLineageInfo(sec, _in, bcVect, _out);
updateOutputMatrixCharacteristics(sec, op);
} else {
// SCALAR
out = in.mapPartitionsToPair(new CellwiseFunction(_class.getName(), _classBytes, bcVect2, bcMatrices, scalars), true);
MatrixBlock tmpMB = RDDAggregateUtils.aggStable(out, aggop);
sec.setVariable(_out.getName(), new DoubleObject(tmpMB.getValue(0, 0)));
}
} else if (// MAGG
_class.getSuperclass() == SpoofMultiAggregate.class) {
SpoofMultiAggregate op = (SpoofMultiAggregate) CodegenUtils.createInstance(_class);
AggOp[] aggOps = op.getAggOps();
MatrixBlock tmpMB = in.mapToPair(new MultiAggregateFunction(_class.getName(), _classBytes, bcVect2, bcMatrices, scalars)).values().fold(new MatrixBlock(), new MultiAggAggregateFunction(aggOps));
sec.setMatrixOutput(_out.getName(), tmpMB, getExtendedOpcode());
} else if (// OUTER
_class.getSuperclass() == SpoofOuterProduct.class) {
if (_out.getDataType() == DataType.MATRIX) {
SpoofOperator op = (SpoofOperator) CodegenUtils.createInstance(_class);
OutProdType type = ((SpoofOuterProduct) op).getOuterProdType();
// update matrix characteristics
updateOutputMatrixCharacteristics(sec, op);
MatrixCharacteristics mcOut = sec.getMatrixCharacteristics(_out.getName());
out = in.mapPartitionsToPair(new OuterProductFunction(_class.getName(), _classBytes, bcVect2, bcMatrices, scalars), true);
if (type == OutProdType.LEFT_OUTER_PRODUCT || type == OutProdType.RIGHT_OUTER_PRODUCT) {
long numBlocks = mcOut.getNumRowBlocks() * mcOut.getNumColBlocks();
out = RDDAggregateUtils.sumByKeyStable(out, (int) Math.min(out.getNumPartitions(), numBlocks), false);
}
sec.setRDDHandleForVariable(_out.getName(), out);
// maintain lineage info and output characteristics
maintainLineageInfo(sec, _in, bcVect, _out);
} else {
out = in.mapPartitionsToPair(new OuterProductFunction(_class.getName(), _classBytes, bcVect2, bcMatrices, scalars), true);
MatrixBlock tmp = RDDAggregateUtils.sumStable(out);
sec.setVariable(_out.getName(), new DoubleObject(tmp.getValue(0, 0)));
}
} else if (_class.getSuperclass() == SpoofRowwise.class) {
// ROW
if (mcIn.getCols() > mcIn.getColsPerBlock()) {
throw new DMLRuntimeException("Invalid spark rowwise operator w/ ncol=" + mcIn.getCols() + ", ncolpb=" + mcIn.getColsPerBlock() + ".");
}
SpoofRowwise op = (SpoofRowwise) CodegenUtils.createInstance(_class);
long clen2 = op.getRowType().isConstDim2(op.getConstDim2()) ? op.getConstDim2() : op.getRowType().isRowTypeB1() ? sec.getMatrixCharacteristics(_in[1].getName()).getCols() : -1;
RowwiseFunction fmmc = new RowwiseFunction(_class.getName(), _classBytes, bcVect2, bcMatrices, scalars, (int) mcIn.getCols(), (int) clen2);
out = in.mapPartitionsToPair(fmmc, op.getRowType() == RowType.ROW_AGG || op.getRowType() == RowType.NO_AGG);
if (op.getRowType().isColumnAgg() || op.getRowType() == RowType.FULL_AGG) {
MatrixBlock tmpMB = RDDAggregateUtils.sumStable(out);
if (op.getRowType().isColumnAgg())
sec.setMatrixOutput(_out.getName(), tmpMB, getExtendedOpcode());
else
sec.setScalarOutput(_out.getName(), new DoubleObject(tmpMB.quickGetValue(0, 0)));
} else // row-agg or no-agg
{
if (op.getRowType() == RowType.ROW_AGG && mcIn.getCols() > mcIn.getColsPerBlock()) {
out = RDDAggregateUtils.sumByKeyStable(out, (int) Math.min(out.getNumPartitions(), mcIn.getNumRowBlocks()), false);
}
sec.setRDDHandleForVariable(_out.getName(), out);
// maintain lineage info and output characteristics
maintainLineageInfo(sec, _in, bcVect, _out);
updateOutputMatrixCharacteristics(sec, op);
}
} else {
throw new DMLRuntimeException("Operator " + _class.getSuperclass() + " is not supported on Spark");
}
}
Aggregations