use of org.apache.sysml.runtime.matrix.operators.RightScalarOperator in project incubator-systemml by apache.
the class BuiltinBinaryCPInstruction method parseInstruction.
public static BuiltinBinaryCPInstruction parseInstruction(String str) throws DMLRuntimeException {
CPOperand in1 = new CPOperand("", ValueType.UNKNOWN, DataType.UNKNOWN);
CPOperand in2 = new CPOperand("", ValueType.UNKNOWN, DataType.UNKNOWN);
CPOperand out = new CPOperand("", ValueType.UNKNOWN, DataType.UNKNOWN);
String opcode = parseBinaryInstruction(str, in1, in2, out);
checkOutputDataType(in1, in2, out);
// Determine appropriate Function Object based on opcode
ValueFunction func = Builtin.getBuiltinFnObject(opcode);
if (in1.getDataType() == DataType.SCALAR && in2.getDataType() == DataType.SCALAR)
return new ScalarScalarBuiltinCPInstruction(new BinaryOperator(func), in1, in2, out, opcode, str);
else if (in1.getDataType() == DataType.MATRIX && in2.getDataType() == DataType.MATRIX)
return new MatrixMatrixBuiltinCPInstruction(new BinaryOperator(func), in1, in2, out, opcode, str);
else
return new MatrixScalarBuiltinCPInstruction(new RightScalarOperator(func, 0), in1, in2, out, opcode, str);
}
use of org.apache.sysml.runtime.matrix.operators.RightScalarOperator in project incubator-systemml by apache.
the class LibMatrixCUDA method matrixMatrixRelational.
/**
* Performs elementwise operation relational specified by op of two input matrices in1 and in2
*
* @param ec execution context
* @param gCtx a valid {@link GPUContext}
* @param instName the invoking instruction's name for record {@link Statistics}.
* @param in1 input matrix 1
* @param in2 input matrix 2
* @param outputName output matrix name
* @param op binary operator
*/
public static void matrixMatrixRelational(ExecutionContext ec, GPUContext gCtx, String instName, MatrixObject in1, MatrixObject in2, String outputName, BinaryOperator op) {
if (ec.getGPUContext(0) != gCtx)
throw new DMLRuntimeException("GPU : Invalid internal state, the GPUContext set with the ExecutionContext is not the same used to run this LibMatrixCUDA function");
boolean in1SparseAndEmpty = isSparseAndEmpty(gCtx, in1);
boolean in2SparseAndEmpty = isSparseAndEmpty(gCtx, in2);
if (in1SparseAndEmpty && in2SparseAndEmpty) {
if (op.fn instanceof LessThan || op.fn instanceof GreaterThan || op.fn instanceof NotEquals) {
setOutputToConstant(ec, gCtx, instName, 0.0, outputName, in1.getNumRows(), in1.getNumColumns());
} else if (op.fn instanceof LessThanEquals || op.fn instanceof GreaterThanEquals || op.fn instanceof Equals) {
setOutputToConstant(ec, gCtx, instName, 1.0, outputName, in1.getNumRows(), in1.getNumColumns());
}
} else if (in1SparseAndEmpty) {
matrixScalarRelational(ec, gCtx, instName, in2, outputName, new LeftScalarOperator(op.fn, 0.0));
} else if (in2SparseAndEmpty) {
matrixScalarRelational(ec, gCtx, instName, in1, outputName, new RightScalarOperator(op.fn, 0.0));
} else {
matrixMatrixOp(ec, gCtx, instName, in1, in2, outputName, false, false, op);
}
}
use of org.apache.sysml.runtime.matrix.operators.RightScalarOperator in project incubator-systemml by apache.
the class LibMatrixCUDA method matrixMatrixOp.
/**
* Utility to launch binary cellwise matrix-matrix operations CUDA kernel
*
* @param gCtx a valid {@link GPUContext}
* @param ec execution context
* @param instName the invoking instruction's name for record {@link Statistics}.
* @param in1 left input matrix
* @param in2 right input matrix
* @param outputName output variable name
* @param isLeftTransposed true if left matrix is transposed
* @param isRightTransposed true if right matrix is transposed
* @param op operator
*/
private static void matrixMatrixOp(ExecutionContext ec, GPUContext gCtx, String instName, MatrixObject in1, MatrixObject in2, String outputName, boolean isLeftTransposed, boolean isRightTransposed, BinaryOperator op) {
if (ec.getGPUContext(0) != gCtx)
throw new DMLRuntimeException("GPU : Invalid internal state, the GPUContext set with the ExecutionContext is not the same used to run this LibMatrixCUDA function");
boolean isEmpty1 = isSparseAndEmpty(gCtx, in1);
boolean isEmpty2 = isSparseAndEmpty(gCtx, in2);
int rlenA = toInt(in1.getNumRows());
int rlenB = toInt(in2.getNumRows());
int clenA = toInt(in1.getNumColumns());
int clenB = toInt(in2.getNumColumns());
int vecStatusA = getVectorStatus(rlenA, clenA).code();
int vecStatusB = getVectorStatus(rlenB, clenB).code();
if (isLeftTransposed || isRightTransposed) {
throw new DMLRuntimeException("Unsupported operator: GPU transposed binary op " + isLeftTransposed + " " + isRightTransposed);
}
long outRLen = Math.max(rlenA, rlenB);
long outCLen = Math.max(clenA, clenB);
if (isEmpty1 && isEmpty2) {
MatrixObject out = ec.allocateGPUMatrixObject(outputName, outRLen, outCLen);
// When both inputs are empty, the output is empty too (except in the case of division)
if (op.fn instanceof Divide || op.fn instanceof IntegerDivide || op.fn instanceof Modulus) {
out.getGPUObject(gCtx).allocateAndFillDense(Double.NaN);
} else if (op.fn instanceof Minus1Multiply) {
out.getGPUObject(gCtx).allocateAndFillDense(1.0);
} else {
out.getGPUObject(gCtx).allocateSparseAndEmpty();
}
} else // Check for M1 * M2 when M1 is empty; if M2 is a vector then fallback to general case
if (isEmpty1 && clenB != 1 && rlenB != 1) {
// C = empty_in1 op in2 ==> becomes ==> C = 0.0 op in2
matrixScalarArithmetic(ec, gCtx, instName, in2, outputName, isRightTransposed, new LeftScalarOperator(op.fn, 0.0));
} else // Check for M1 * M2 when M2 is empty; if M1 is a vector then fallback to general case
if (isEmpty2 && clenA != 1 && rlenA != 1) {
// C = in1 op empty_in2 ==> becomes ==> C = in1 op 0.0
matrixScalarArithmetic(ec, gCtx, instName, in1, outputName, isLeftTransposed, new RightScalarOperator(op.fn, 0.0));
} else {
// TODO: FIXME: Implement sparse binCellSparseOp kernel
Pointer A = getDensePointer(gCtx, in1, instName);
// TODO: FIXME: Implement sparse binCellSparseOp kernel
Pointer B = getDensePointer(gCtx, in2, instName);
// Allocated the dense output matrix
MatrixObject out = null;
try {
out = getDenseMatrixOutputForGPUInstruction(ec, instName, outputName, outRLen, outCLen);
} catch (DMLRuntimeException e) {
throw new DMLRuntimeException("Incorrect dimensions: dimA:[" + rlenA + "," + clenA + "]" + " dimB:[" + rlenB + "," + clenB + "] out:[" + outRLen + "," + outCLen + "]", e);
}
Pointer C = getDensePointer(gCtx, out, instName);
int maxRlen = Math.max(rlenA, rlenB);
int maxClen = Math.max(clenA, clenB);
matrixMatrixOp(gCtx, instName, A, B, maxRlen, maxClen, vecStatusA, vecStatusB, C, op);
}
}
use of org.apache.sysml.runtime.matrix.operators.RightScalarOperator in project incubator-systemml by apache.
the class LibMatrixCUDA method squareMatrix.
/**
* Helper method to square a matrix in GPU memory
* @param gCtx a valid {@link GPUContext}
* @param instName the invoking instruction's name for record {@link Statistics}.
* @param in input matrix on GPU
* @param out output matrix on GPU
* @param rlen row length
* @param clen column length
*/
private static void squareMatrix(GPUContext gCtx, String instName, Pointer in, Pointer out, int rlen, int clen) {
ScalarOperator power2op = new RightScalarOperator(Power.getPowerFnObject(), 2);
matrixScalarOp(gCtx, instName, in, 2, rlen, clen, out, power2op);
}
use of org.apache.sysml.runtime.matrix.operators.RightScalarOperator in project incubator-systemml by apache.
the class LibMatrixCUDA method matrixScalarArithmetic.
/**
* Entry point to perform elementwise matrix-scalar arithmetic operation specified by op
*
* @param ec execution context
* @param gCtx a valid {@link GPUContext}
* @param instName the invoking instruction's name for record {@link Statistics}.
* @param in input matrix
* @param outputName output matrix name
* @param isInputTransposed true if input transposed
* @param op scalar operator
*/
public static void matrixScalarArithmetic(ExecutionContext ec, GPUContext gCtx, String instName, MatrixObject in, String outputName, boolean isInputTransposed, ScalarOperator op) {
if (ec.getGPUContext(0) != gCtx)
throw new DMLRuntimeException("GPU : Invalid internal state, the GPUContext set with the ExecutionContext is not the same used to run this LibMatrixCUDA function");
double constant = op.getConstant();
if (LOG.isTraceEnabled()) {
LOG.trace("GPU : matrixScalarArithmetic, scalar: " + constant + ", GPUContext=" + gCtx);
}
int outRLen = isInputTransposed ? (int) in.getNumColumns() : (int) in.getNumRows();
int outCLen = isInputTransposed ? (int) in.getNumRows() : (int) in.getNumColumns();
// if(!isCUDALibAvailable) {
if (constant == 0) {
if (op.fn instanceof Plus || (op.fn instanceof Minus && op instanceof RightScalarOperator) || op.fn instanceof Or) {
deviceCopy(ec, gCtx, instName, in, outputName, isInputTransposed);
} else if (op.fn instanceof Multiply || op.fn instanceof And) {
setOutputToConstant(ec, gCtx, instName, 0.0, outputName, outRLen, outCLen);
} else if (op.fn instanceof Power) {
setOutputToConstant(ec, gCtx, instName, 1.0, outputName, outRLen, outCLen);
} else // TODO:
// x/0.0 is either +Infinity or -Infinity according to Java.
// In the context of a matrix, different elements of the matrix
// could have different values.
// If the IEEE 754 standard defines otherwise, this logic needs
// to be re-enabled and the Java computation logic for divide by zero
// needs to be revisited
// else if(op.fn instanceof Divide && isSparseAndEmpty(gCtx, in)) {
// setOutputToConstant(ec, gCtx, instName, Double.NaN, outputName);
// }
// else if(op.fn instanceof Divide) {
// //For division, IEEE 754 defines x/0.0 as INFINITY and 0.0/0.0 as NaN.
// compareAndSet(ec, gCtx, instName, in, outputName, 0.0, 1e-6, Double.NaN, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY);
// }
{
// TODO: Potential to optimize
matrixScalarOp(ec, gCtx, instName, in, outputName, isInputTransposed, op);
}
} else if (constant == 1.0 && op.fn instanceof Or) {
setOutputToConstant(ec, gCtx, instName, 1.0, outputName, outRLen, outCLen);
} else if (constant == 1.0 && (op.fn instanceof And || op.fn instanceof Power)) {
deviceCopy(ec, gCtx, instName, in, outputName, isInputTransposed);
} else {
matrixScalarOp(ec, gCtx, instName, in, outputName, isInputTransposed, op);
}
// }
// else {
// double alpha = 0;
// if(op.fn instanceof Multiply) {
// alpha = op.getConstant();
// }
// else if(op.fn instanceof Divide && op instanceof RightScalarOperator) {
// alpha = Math.pow(op.getConstant(), -1.0);
// }
// else {
// throw new DMLRuntimeException("Unsupported op");
// }
// TODO: Performance optimization: Call cublasDaxpy if(in.getNumRows() == 1 || in.getNumColumns() == 1)
// C = alpha* op( A ) + beta* op ( B )
// dgeam(ec, gCtx, instName, in, in, outputName, isInputTransposed, isInputTransposed, alpha, 0.0);
// }
}
Aggregations