Search in sources :

Example 1 with ScalarOperator

use of org.apache.sysml.runtime.matrix.operators.ScalarOperator in project incubator-systemml by apache.

the class BinarySPInstruction method processMatrixScalarBinaryInstruction.

protected void processMatrixScalarBinaryInstruction(ExecutionContext ec) throws DMLRuntimeException {
    SparkExecutionContext sec = (SparkExecutionContext) ec;
    //get input RDD
    String rddVar = (input1.getDataType() == DataType.MATRIX) ? input1.getName() : input2.getName();
    JavaPairRDD<MatrixIndexes, MatrixBlock> in1 = sec.getBinaryBlockRDDHandleForVariable(rddVar);
    //get operator and scalar
    CPOperand scalar = (input1.getDataType() == DataType.MATRIX) ? input2 : input1;
    ScalarObject constant = (ScalarObject) ec.getScalarInput(scalar.getName(), scalar.getValueType(), scalar.isLiteral());
    ScalarOperator sc_op = (ScalarOperator) _optr;
    sc_op.setConstant(constant.getDoubleValue());
    //execute scalar matrix arithmetic instruction
    JavaPairRDD<MatrixIndexes, MatrixBlock> out = in1.mapValues(new MatrixScalarUnaryFunction(sc_op));
    //put output RDD handle into symbol table
    updateUnaryOutputMatrixCharacteristics(sec, rddVar, output.getName());
    sec.setRDDHandleForVariable(output.getName(), out);
    sec.addLineageRDD(output.getName(), rddVar);
}
Also used : ScalarOperator(org.apache.sysml.runtime.matrix.operators.ScalarOperator) ScalarObject(org.apache.sysml.runtime.instructions.cp.ScalarObject) MatrixBlock(org.apache.sysml.runtime.matrix.data.MatrixBlock) MatrixScalarUnaryFunction(org.apache.sysml.runtime.instructions.spark.functions.MatrixScalarUnaryFunction) MatrixIndexes(org.apache.sysml.runtime.matrix.data.MatrixIndexes) CPOperand(org.apache.sysml.runtime.instructions.cp.CPOperand) SparkExecutionContext(org.apache.sysml.runtime.controlprogram.context.SparkExecutionContext)

Example 2 with ScalarOperator

use of org.apache.sysml.runtime.matrix.operators.ScalarOperator in project incubator-systemml by apache.

the class ScalarMatrixRelationalCPInstruction method processInstruction.

@Override
public void processInstruction(ExecutionContext ec) throws DMLRuntimeException {
    CPOperand mat = (input1.getDataType() == DataType.MATRIX) ? input1 : input2;
    CPOperand scalar = (input1.getDataType() == DataType.MATRIX) ? input2 : input1;
    MatrixBlock inBlock = ec.getMatrixInput(mat.getName());
    ScalarObject constant = (ScalarObject) ec.getScalarInput(scalar.getName(), scalar.getValueType(), scalar.isLiteral());
    ScalarOperator sc_op = (ScalarOperator) _optr;
    sc_op.setConstant(constant.getDoubleValue());
    MatrixBlock retBlock = (MatrixBlock) inBlock.scalarOperations(sc_op, new MatrixBlock());
    ec.releaseMatrixInput(mat.getName());
    // Ensure right dense/sparse output representation (guarded by released input memory)
    if (checkGuardedRepresentationChange(inBlock, retBlock)) {
        retBlock.examSparsity();
    }
    ec.setMatrixOutput(output.getName(), retBlock);
}
Also used : ScalarOperator(org.apache.sysml.runtime.matrix.operators.ScalarOperator) MatrixBlock(org.apache.sysml.runtime.matrix.data.MatrixBlock)

Example 3 with ScalarOperator

use of org.apache.sysml.runtime.matrix.operators.ScalarOperator in project incubator-systemml by apache.

the class LibMatrixCUDA method squareMatrix.

/**
	 * Helper method to square a matrix in GPU memory
	 * @param gCtx   a valid {@link GPUContext}
	 * @param instName the invoking instruction's name for record {@link Statistics}.
	 * @param in		input matrix on GPU
	 * @param out		output matrix on GPU
	 * @param rlen	row length
	 * @param clen	column length
	 * @throws DMLRuntimeException if error
	 */
private static void squareMatrix(GPUContext gCtx, String instName, Pointer in, Pointer out, int rlen, int clen) throws DMLRuntimeException {
    ScalarOperator power2op = new RightScalarOperator(Power.getPowerFnObject(), 2);
    matrixScalarOp(gCtx, instName, in, 2, rlen, clen, out, power2op);
}
Also used : ScalarOperator(org.apache.sysml.runtime.matrix.operators.ScalarOperator) LeftScalarOperator(org.apache.sysml.runtime.matrix.operators.LeftScalarOperator) RightScalarOperator(org.apache.sysml.runtime.matrix.operators.RightScalarOperator) RightScalarOperator(org.apache.sysml.runtime.matrix.operators.RightScalarOperator)

Example 4 with ScalarOperator

use of org.apache.sysml.runtime.matrix.operators.ScalarOperator in project incubator-systemml by apache.

the class LibMatrixCUDA method unaryAggregate.

//********************************************************************/
//***************** END OF MATRIX MULTIPLY Functions *****************/
//********************************************************************/
//********************************************************************/
//****************  UNARY AGGREGATE Functions ************************/
//********************************************************************/
/**
	 * Entry point to perform Unary aggregate operations on the GPU.
	 * The execution context object is used to allocate memory for the GPU.
	 * @param ec			Instance of {@link ExecutionContext}, from which the output variable will be allocated
	 * @param gCtx    a valid {@link GPUContext}
	 * @param instName name of the invoking instruction to record{@link Statistics}.
	 * @param in1			input matrix
	 * @param output	output matrix/scalar name
	 * @param op			Instance of {@link AggregateUnaryOperator} which encapsulates the direction of reduction/aggregation and the reduction operation.
	 * @throws DMLRuntimeException if {@link DMLRuntimeException} occurs
	 */
public static void unaryAggregate(ExecutionContext ec, GPUContext gCtx, String instName, MatrixObject in1, String output, AggregateUnaryOperator op) throws DMLRuntimeException {
    if (ec.getGPUContext() != gCtx)
        throw new DMLRuntimeException("GPU : Invalid internal state, the GPUContext set with the ExecutionContext is not the same used to run this LibMatrixCUDA function");
    LOG.trace("GPU : unaryAggregate" + ", GPUContext=" + gCtx);
    final int REDUCTION_ALL = 1;
    final int REDUCTION_ROW = 2;
    final int REDUCTION_COL = 3;
    final int REDUCTION_DIAG = 4;
    // A kahan sum implemention is not provided. is a "uak+" or other kahan operator is encountered,
    // it just does regular summation reduction.
    final int OP_PLUS = 1;
    final int OP_PLUS_SQ = 2;
    final int OP_MEAN = 3;
    final int OP_VARIANCE = 4;
    final int OP_MULTIPLY = 5;
    final int OP_MAX = 6;
    final int OP_MIN = 7;
    final int OP_MAXINDEX = 8;
    final int OP_MININDEX = 9;
    // Sanity Checks
    if (!in1.getGPUObject(gCtx).isAllocated())
        throw new DMLRuntimeException("Internal Error - The input is not allocated for a GPU Aggregate Unary:" + in1.getGPUObject(gCtx).isAllocated());
    boolean isSparse = in1.getGPUObject(gCtx).isSparse();
    IndexFunction indexFn = op.indexFn;
    AggregateOperator aggOp = op.aggOp;
    // Convert Reduction direction to a number to pass to CUDA kernel
    int reductionDirection = -1;
    if (indexFn instanceof ReduceAll) {
        reductionDirection = REDUCTION_ALL;
    } else if (indexFn instanceof ReduceRow) {
        reductionDirection = REDUCTION_ROW;
    } else if (indexFn instanceof ReduceCol) {
        reductionDirection = REDUCTION_COL;
    } else if (indexFn instanceof ReduceDiag) {
        reductionDirection = REDUCTION_DIAG;
    } else {
        throw new DMLRuntimeException("Internal Error - Invalid index function type, only reducing along rows, columns, diagonals or all elements is supported in Aggregate Unary operations");
    }
    assert reductionDirection != -1 : "Internal Error - Incorrect type of reduction direction set for aggregate unary GPU instruction";
    // Convert function type to a number to pass to the CUDA Kernel
    int opIndex = -1;
    if (aggOp.increOp.fn instanceof KahanPlus) {
        opIndex = OP_PLUS;
    } else if (aggOp.increOp.fn instanceof KahanPlusSq) {
        opIndex = OP_PLUS_SQ;
    } else if (aggOp.increOp.fn instanceof Mean) {
        opIndex = OP_MEAN;
    } else if (aggOp.increOp.fn instanceof CM) {
        assert ((CM) aggOp.increOp.fn).getAggOpType() == CMOperator.AggregateOperationTypes.VARIANCE : "Internal Error - Invalid Type of CM operator for Aggregate Unary operation on GPU";
        opIndex = OP_VARIANCE;
    } else if (aggOp.increOp.fn instanceof Plus) {
        opIndex = OP_PLUS;
    } else if (aggOp.increOp.fn instanceof Multiply) {
        opIndex = OP_MULTIPLY;
    } else if (aggOp.increOp.fn instanceof Builtin) {
        Builtin b = (Builtin) aggOp.increOp.fn;
        switch(b.bFunc) {
            case MAX:
                opIndex = OP_MAX;
                break;
            case MIN:
                opIndex = OP_MIN;
                break;
            case MAXINDEX:
                opIndex = OP_MAXINDEX;
                break;
            case MININDEX:
                opIndex = OP_MININDEX;
                break;
            default:
                new DMLRuntimeException("Internal Error - Unsupported Builtin Function for Aggregate unary being done on GPU");
        }
    } else {
        throw new DMLRuntimeException("Internal Error - Aggregate operator has invalid Value function");
    }
    assert opIndex != -1 : "Internal Error - Incorrect type of operation set for aggregate unary GPU instruction";
    int rlen = (int) in1.getNumRows();
    int clen = (int) in1.getNumColumns();
    if (isSparse) {
        // The strategy for the time being is to convert sparse to dense
        // until a sparse specific kernel is written.
        in1.getGPUObject(gCtx).sparseToDense(instName);
    // long nnz = in1.getNnz();
    // assert nnz > 0 : "Internal Error - number of non zeroes set to " + nnz + " in Aggregate Binary for GPU";
    // MatrixObject out = ec.getSparseMatrixOutputForGPUInstruction(output, nnz);
    // throw new DMLRuntimeException("Internal Error - Not implemented");
    }
    Pointer out = null;
    if (reductionDirection == REDUCTION_COL || reductionDirection == REDUCTION_ROW) {
        // Matrix output
        MatrixObject out1 = getDenseMatrixOutputForGPUInstruction(ec, instName, output);
        out = getDensePointer(gCtx, out1, instName);
    }
    Pointer in = getDensePointer(gCtx, in1, instName);
    int size = rlen * clen;
    // For scalars, set the scalar output in the Execution Context object
    switch(opIndex) {
        case OP_PLUS:
            {
                switch(reductionDirection) {
                    case REDUCTION_ALL:
                        {
                            double result = reduceAll(gCtx, instName, "reduce_sum", in, size);
                            ec.setScalarOutput(output, new DoubleObject(result));
                            break;
                        }
                    case REDUCTION_COL:
                        {
                            // The names are a bit misleading, REDUCTION_COL refers to the direction (reduce all elements in a column)
                            reduceRow(gCtx, instName, "reduce_row_sum", in, out, rlen, clen);
                            break;
                        }
                    case REDUCTION_ROW:
                        {
                            reduceCol(gCtx, instName, "reduce_col_sum", in, out, rlen, clen);
                            break;
                        }
                    case REDUCTION_DIAG:
                        throw new DMLRuntimeException("Internal Error - Row, Column and Diag summation not implemented yet");
                }
                break;
            }
        case OP_PLUS_SQ:
            {
                // Calculate the squares in a temporary object tmp
                Pointer tmp = gCtx.allocate(instName, size * Sizeof.DOUBLE);
                squareMatrix(gCtx, instName, in, tmp, rlen, clen);
                // Then do the sum on the temporary object and free it
                switch(reductionDirection) {
                    case REDUCTION_ALL:
                        {
                            double result = reduceAll(gCtx, instName, "reduce_sum", tmp, size);
                            ec.setScalarOutput(output, new DoubleObject(result));
                            break;
                        }
                    case REDUCTION_COL:
                        {
                            // The names are a bit misleading, REDUCTION_COL refers to the direction (reduce all elements in a column)
                            reduceRow(gCtx, instName, "reduce_row_sum", tmp, out, rlen, clen);
                            break;
                        }
                    case REDUCTION_ROW:
                        {
                            reduceCol(gCtx, instName, "reduce_col_sum", tmp, out, rlen, clen);
                            break;
                        }
                    default:
                        throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for summation squared");
                }
                gCtx.cudaFreeHelper(instName, tmp);
                break;
            }
        case OP_MEAN:
            {
                switch(reductionDirection) {
                    case REDUCTION_ALL:
                        {
                            double result = reduceAll(gCtx, instName, "reduce_sum", in, size);
                            double mean = result / size;
                            ec.setScalarOutput(output, new DoubleObject(mean));
                            break;
                        }
                    case REDUCTION_COL:
                        {
                            reduceRow(gCtx, instName, "reduce_row_mean", in, out, rlen, clen);
                            break;
                        }
                    case REDUCTION_ROW:
                        {
                            reduceCol(gCtx, instName, "reduce_col_mean", in, out, rlen, clen);
                            break;
                        }
                    default:
                        throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for mean");
                }
                break;
            }
        case OP_MULTIPLY:
            {
                switch(reductionDirection) {
                    case REDUCTION_ALL:
                        {
                            double result = reduceAll(gCtx, instName, "reduce_prod", in, size);
                            ec.setScalarOutput(output, new DoubleObject(result));
                            break;
                        }
                    default:
                        throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for multiplication");
                }
                break;
            }
        case OP_MAX:
            {
                switch(reductionDirection) {
                    case REDUCTION_ALL:
                        {
                            double result = reduceAll(gCtx, instName, "reduce_max", in, size);
                            ec.setScalarOutput(output, new DoubleObject(result));
                            break;
                        }
                    case REDUCTION_COL:
                        {
                            reduceRow(gCtx, instName, "reduce_row_max", in, out, rlen, clen);
                            break;
                        }
                    case REDUCTION_ROW:
                        {
                            reduceCol(gCtx, instName, "reduce_col_max", in, out, rlen, clen);
                            break;
                        }
                    default:
                        throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for max");
                }
                break;
            }
        case OP_MIN:
            {
                switch(reductionDirection) {
                    case REDUCTION_ALL:
                        {
                            double result = reduceAll(gCtx, instName, "reduce_min", in, size);
                            ec.setScalarOutput(output, new DoubleObject(result));
                            break;
                        }
                    case REDUCTION_COL:
                        {
                            reduceRow(gCtx, instName, "reduce_row_min", in, out, rlen, clen);
                            break;
                        }
                    case REDUCTION_ROW:
                        {
                            reduceCol(gCtx, instName, "reduce_col_min", in, out, rlen, clen);
                            break;
                        }
                    default:
                        throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for min");
                }
                break;
            }
        case OP_VARIANCE:
            {
                // Temporary GPU array for
                Pointer tmp = gCtx.allocate(instName, size * Sizeof.DOUBLE);
                Pointer tmp2 = gCtx.allocate(instName, size * Sizeof.DOUBLE);
                switch(reductionDirection) {
                    case REDUCTION_ALL:
                        {
                            double result = reduceAll(gCtx, instName, "reduce_sum", in, size);
                            double mean = result / size;
                            // Subtract mean from every element in the matrix
                            ScalarOperator minusOp = new RightScalarOperator(Minus.getMinusFnObject(), mean);
                            matrixScalarOp(gCtx, instName, in, mean, rlen, clen, tmp, minusOp);
                            squareMatrix(gCtx, instName, tmp, tmp2, rlen, clen);
                            double result2 = reduceAll(gCtx, instName, "reduce_sum", tmp2, size);
                            double variance = result2 / (size - 1);
                            ec.setScalarOutput(output, new DoubleObject(variance));
                            break;
                        }
                    case REDUCTION_COL:
                        {
                            reduceRow(gCtx, instName, "reduce_row_mean", in, out, rlen, clen);
                            // Subtract the row-wise mean from every element in the matrix
                            BinaryOperator minusOp = new BinaryOperator(Minus.getMinusFnObject());
                            matrixMatrixOp(gCtx, instName, in, out, rlen, clen, VectorShape.NONE.code(), VectorShape.COLUMN.code(), tmp, minusOp);
                            squareMatrix(gCtx, instName, tmp, tmp2, rlen, clen);
                            Pointer tmpRow = gCtx.allocate(instName, rlen * Sizeof.DOUBLE);
                            reduceRow(gCtx, instName, "reduce_row_sum", tmp2, tmpRow, rlen, clen);
                            ScalarOperator divideOp = new RightScalarOperator(Divide.getDivideFnObject(), clen - 1);
                            matrixScalarOp(gCtx, instName, tmpRow, clen - 1, rlen, 1, out, divideOp);
                            gCtx.cudaFreeHelper(instName, tmpRow);
                            break;
                        }
                    case REDUCTION_ROW:
                        {
                            reduceCol(gCtx, instName, "reduce_col_mean", in, out, rlen, clen);
                            // Subtract the columns-wise mean from every element in the matrix
                            BinaryOperator minusOp = new BinaryOperator(Minus.getMinusFnObject());
                            matrixMatrixOp(gCtx, instName, in, out, rlen, clen, VectorShape.NONE.code(), VectorShape.ROW.code(), tmp, minusOp);
                            squareMatrix(gCtx, instName, tmp, tmp2, rlen, clen);
                            Pointer tmpCol = gCtx.allocate(instName, clen * Sizeof.DOUBLE);
                            reduceCol(gCtx, instName, "reduce_col_sum", tmp2, tmpCol, rlen, clen);
                            ScalarOperator divideOp = new RightScalarOperator(Divide.getDivideFnObject(), rlen - 1);
                            matrixScalarOp(gCtx, instName, tmpCol, rlen - 1, 1, clen, out, divideOp);
                            gCtx.cudaFreeHelper(instName, tmpCol);
                            break;
                        }
                    default:
                        throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for variance");
                }
                gCtx.cudaFreeHelper(instName, tmp);
                gCtx.cudaFreeHelper(instName, tmp2);
                break;
            }
        case OP_MAXINDEX:
            {
                switch(reductionDirection) {
                    case REDUCTION_COL:
                        throw new DMLRuntimeException("Internal Error - Column maxindex of matrix not implemented yet for GPU ");
                    default:
                        throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for maxindex");
                }
            // break;
            }
        case OP_MININDEX:
            {
                switch(reductionDirection) {
                    case REDUCTION_COL:
                        throw new DMLRuntimeException("Internal Error - Column minindex of matrix not implemented yet for GPU ");
                    default:
                        throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for minindex");
                }
            // break;
            }
        default:
            throw new DMLRuntimeException("Internal Error - Invalid GPU Unary aggregate function!");
    }
}
Also used : ReduceCol(org.apache.sysml.runtime.functionobjects.ReduceCol) ScalarOperator(org.apache.sysml.runtime.matrix.operators.ScalarOperator) LeftScalarOperator(org.apache.sysml.runtime.matrix.operators.LeftScalarOperator) RightScalarOperator(org.apache.sysml.runtime.matrix.operators.RightScalarOperator) ReduceAll(org.apache.sysml.runtime.functionobjects.ReduceAll) Mean(org.apache.sysml.runtime.functionobjects.Mean) MatrixObject(org.apache.sysml.runtime.controlprogram.caching.MatrixObject) ReduceDiag(org.apache.sysml.runtime.functionobjects.ReduceDiag) DoubleObject(org.apache.sysml.runtime.instructions.cp.DoubleObject) CM(org.apache.sysml.runtime.functionobjects.CM) CSRPointer(org.apache.sysml.runtime.instructions.gpu.context.CSRPointer) Pointer(jcuda.Pointer) RightScalarOperator(org.apache.sysml.runtime.matrix.operators.RightScalarOperator) ReduceRow(org.apache.sysml.runtime.functionobjects.ReduceRow) DMLRuntimeException(org.apache.sysml.runtime.DMLRuntimeException) IndexFunction(org.apache.sysml.runtime.functionobjects.IndexFunction) Multiply(org.apache.sysml.runtime.functionobjects.Multiply) AggregateOperator(org.apache.sysml.runtime.matrix.operators.AggregateOperator) KahanPlus(org.apache.sysml.runtime.functionobjects.KahanPlus) KahanPlusSq(org.apache.sysml.runtime.functionobjects.KahanPlusSq) KahanPlus(org.apache.sysml.runtime.functionobjects.KahanPlus) Plus(org.apache.sysml.runtime.functionobjects.Plus) BinaryOperator(org.apache.sysml.runtime.matrix.operators.BinaryOperator) Builtin(org.apache.sysml.runtime.functionobjects.Builtin)

Example 5 with ScalarOperator

use of org.apache.sysml.runtime.matrix.operators.ScalarOperator in project incubator-systemml by apache.

the class BasicScalarOperationsTest method runScalarOperationsTest.

/**
	 * 
	 * @param mb
	 */
private void runScalarOperationsTest(SparsityType sptype, ValueType vtype, boolean compress) {
    try {
        //prepare sparsity for input data
        double sparsity = -1;
        switch(sptype) {
            case DENSE:
                sparsity = sparsity1;
                break;
            case SPARSE:
                sparsity = sparsity2;
                break;
            case EMPTY:
                sparsity = sparsity3;
                break;
        }
        //generate input data
        double min = (vtype == ValueType.CONST) ? 10 : -10;
        double[][] input = TestUtils.generateTestMatrix(rows, cols, min, 10, sparsity, 7);
        if (vtype == ValueType.RAND_ROUND_OLE || vtype == ValueType.RAND_ROUND_DDC) {
            CompressedMatrixBlock.ALLOW_DDC_ENCODING = (vtype == ValueType.RAND_ROUND_DDC);
            input = TestUtils.round(input);
        }
        MatrixBlock mb = DataConverter.convertToMatrixBlock(input);
        //compress given matrix block
        CompressedMatrixBlock cmb = new CompressedMatrixBlock(mb);
        if (compress)
            cmb.compress();
        //matrix-scalar uncompressed
        ScalarOperator sop = new RightScalarOperator(Multiply.getMultiplyFnObject(), 7);
        MatrixBlock ret1 = (MatrixBlock) mb.scalarOperations(sop, new MatrixBlock());
        //matrix-scalar compressed
        MatrixBlock ret2 = (MatrixBlock) cmb.scalarOperations(sop, new MatrixBlock());
        if (compress)
            ret2 = ((CompressedMatrixBlock) ret2).decompress();
        //compare result with input
        double[][] d1 = DataConverter.convertToDoubleMatrix(ret1);
        double[][] d2 = DataConverter.convertToDoubleMatrix(ret2);
        TestUtils.compareMatrices(d1, d2, rows, cols, 0.0000001);
    } catch (Exception ex) {
        throw new RuntimeException(ex);
    } finally {
        CompressedMatrixBlock.ALLOW_DDC_ENCODING = true;
    }
}
Also used : CompressedMatrixBlock(org.apache.sysml.runtime.compress.CompressedMatrixBlock) RightScalarOperator(org.apache.sysml.runtime.matrix.operators.RightScalarOperator) ScalarOperator(org.apache.sysml.runtime.matrix.operators.ScalarOperator) CompressedMatrixBlock(org.apache.sysml.runtime.compress.CompressedMatrixBlock) MatrixBlock(org.apache.sysml.runtime.matrix.data.MatrixBlock) RightScalarOperator(org.apache.sysml.runtime.matrix.operators.RightScalarOperator)

Aggregations

ScalarOperator (org.apache.sysml.runtime.matrix.operators.ScalarOperator)10 MatrixBlock (org.apache.sysml.runtime.matrix.data.MatrixBlock)6 RightScalarOperator (org.apache.sysml.runtime.matrix.operators.RightScalarOperator)4 CompressedMatrixBlock (org.apache.sysml.runtime.compress.CompressedMatrixBlock)2 MatrixObject (org.apache.sysml.runtime.controlprogram.caching.MatrixObject)2 CPOperand (org.apache.sysml.runtime.instructions.cp.CPOperand)2 ScalarObject (org.apache.sysml.runtime.instructions.cp.ScalarObject)2 LeftScalarOperator (org.apache.sysml.runtime.matrix.operators.LeftScalarOperator)2 Pointer (jcuda.Pointer)1 DMLRuntimeException (org.apache.sysml.runtime.DMLRuntimeException)1 SparkExecutionContext (org.apache.sysml.runtime.controlprogram.context.SparkExecutionContext)1 Builtin (org.apache.sysml.runtime.functionobjects.Builtin)1 CM (org.apache.sysml.runtime.functionobjects.CM)1 IndexFunction (org.apache.sysml.runtime.functionobjects.IndexFunction)1 KahanPlus (org.apache.sysml.runtime.functionobjects.KahanPlus)1 KahanPlusSq (org.apache.sysml.runtime.functionobjects.KahanPlusSq)1 Mean (org.apache.sysml.runtime.functionobjects.Mean)1 Multiply (org.apache.sysml.runtime.functionobjects.Multiply)1 Plus (org.apache.sysml.runtime.functionobjects.Plus)1 ReduceAll (org.apache.sysml.runtime.functionobjects.ReduceAll)1