use of org.apache.sysml.runtime.matrix.operators.BinaryOperator in project incubator-systemml by apache.
the class BinaryInstruction method parseInstruction.
public static BinaryInstruction parseInstruction(String str) {
InstructionUtils.checkNumFields(str, 3);
String[] parts = InstructionUtils.getInstructionParts(str);
byte in1, in2, out;
String opcode = parts[0];
in1 = Byte.parseByte(parts[1]);
in2 = Byte.parseByte(parts[2]);
out = Byte.parseByte(parts[3]);
BinaryOperator bop = InstructionUtils.parseBinaryOperator(opcode);
return (bop == null) ? null : new BinaryInstruction(MRType.Binary, bop, in1, in2, out, str);
}
use of org.apache.sysml.runtime.matrix.operators.BinaryOperator in project incubator-systemml by apache.
the class BinaryMInstruction method processInstruction.
@Override
public void processInstruction(Class<? extends MatrixValue> valueClass, CachedValueMap cachedValues, IndexedMatrixValue tempValue, IndexedMatrixValue zeroInput, int blockRowFactor, int blockColFactor) {
ArrayList<IndexedMatrixValue> blkList = cachedValues.get(input1);
if (blkList == null)
return;
for (IndexedMatrixValue in1 : blkList) {
// allocate space for the output value
// try to avoid coping as much as possible
IndexedMatrixValue out;
if ((output != input1 && output != input2))
out = cachedValues.holdPlace(output, valueClass);
else
out = tempValue;
// get second
DistributedCacheInput dcInput = MRBaseForCommonInstructions.dcValues.get(input2);
IndexedMatrixValue in2 = null;
if (_vectorType == VectorType.COL_VECTOR)
in2 = dcInput.getDataBlock((int) in1.getIndexes().getRowIndex(), 1);
else
// _vectorType == VectorType.ROW_VECTOR
in2 = dcInput.getDataBlock(1, (int) in1.getIndexes().getColumnIndex());
// process instruction
out.getIndexes().setIndexes(in1.getIndexes());
OperationsOnMatrixValues.performBinaryIgnoreIndexes(in1.getValue(), in2.getValue(), out.getValue(), ((BinaryOperator) optr));
// put the output value in the cache
if (out == tempValue)
cachedValues.add(output, out);
}
}
use of org.apache.sysml.runtime.matrix.operators.BinaryOperator in project incubator-systemml by apache.
the class BinUaggChainSPInstruction method parseInstruction.
public static BinUaggChainSPInstruction parseInstruction(String str) {
// parse instruction parts (without exec type)
String[] parts = InstructionUtils.getInstructionPartsWithValueType(str);
InstructionUtils.checkNumFields(parts, 4);
String opcode = parts[0];
BinaryOperator bop = InstructionUtils.parseBinaryOperator(parts[1]);
AggregateUnaryOperator uaggop = InstructionUtils.parseBasicAggregateUnaryOperator(parts[2]);
CPOperand in = new CPOperand(parts[3]);
CPOperand out = new CPOperand(parts[4]);
return new BinUaggChainSPInstruction(in, out, bop, uaggop, opcode, str);
}
use of org.apache.sysml.runtime.matrix.operators.BinaryOperator in project incubator-systemml by apache.
the class BinarySPInstruction method processMatrixMatrixBinaryInstruction.
/**
* Common binary matrix-matrix process instruction
*
* @param ec execution context
*/
protected void processMatrixMatrixBinaryInstruction(ExecutionContext ec) {
SparkExecutionContext sec = (SparkExecutionContext) ec;
// sanity check dimensions
checkMatrixMatrixBinaryCharacteristics(sec);
updateBinaryOutputMatrixCharacteristics(sec);
// Get input RDDs
JavaPairRDD<MatrixIndexes, MatrixBlock> in1 = sec.getBinaryBlockRDDHandleForVariable(input1.getName());
JavaPairRDD<MatrixIndexes, MatrixBlock> in2 = sec.getBinaryBlockRDDHandleForVariable(input2.getName());
MatrixCharacteristics mc1 = sec.getMatrixCharacteristics(input1.getName());
MatrixCharacteristics mc2 = sec.getMatrixCharacteristics(input2.getName());
MatrixCharacteristics mcOut = sec.getMatrixCharacteristics(output.getName());
BinaryOperator bop = (BinaryOperator) _optr;
// vector replication if required (mv or outer operations)
boolean rowvector = (mc2.getRows() == 1 && mc1.getRows() > 1);
long numRepLeft = getNumReplicas(mc1, mc2, true);
long numRepRight = getNumReplicas(mc1, mc2, false);
if (numRepLeft > 1)
in1 = in1.flatMapToPair(new ReplicateVectorFunction(false, numRepLeft));
if (numRepRight > 1)
in2 = in2.flatMapToPair(new ReplicateVectorFunction(rowvector, numRepRight));
int numPrefPart = SparkUtils.isHashPartitioned(in1) ? in1.getNumPartitions() : SparkUtils.isHashPartitioned(in2) ? in2.getNumPartitions() : Math.min(in1.getNumPartitions() + in2.getNumPartitions(), 2 * SparkUtils.getNumPreferredPartitions(mcOut));
// execute binary operation
JavaPairRDD<MatrixIndexes, MatrixBlock> out = in1.join(in2, numPrefPart).mapValues(new MatrixMatrixBinaryOpFunction(bop));
// set output RDD
sec.setRDDHandleForVariable(output.getName(), out);
sec.addLineageRDD(output.getName(), input1.getName());
sec.addLineageRDD(output.getName(), input2.getName());
}
use of org.apache.sysml.runtime.matrix.operators.BinaryOperator in project incubator-systemml by apache.
the class LibMatrixCUDA method unaryAggregate.
// ********************************************************************/
// ******** End of TRANSPOSE SELF MATRIX MULTIPLY Functions ***********/
// ********************************************************************/
// ********************************************************************/
// **************** UNARY AGGREGATE Functions ************************/
// ********************************************************************/
/**
* Entry point to perform Unary aggregate operations on the GPU.
* The execution context object is used to allocate memory for the GPU.
*
* @param ec Instance of {@link ExecutionContext}, from which the output variable will be allocated
* @param gCtx a valid {@link GPUContext}
* @param instName name of the invoking instruction to record{@link Statistics}.
* @param in1 input matrix
* @param output output matrix/scalar name
* @param op Instance of {@link AggregateUnaryOperator} which encapsulates the direction of reduction/aggregation and the reduction operation.
*/
public static void unaryAggregate(ExecutionContext ec, GPUContext gCtx, String instName, MatrixObject in1, String output, AggregateUnaryOperator op) {
if (ec.getGPUContext(0) != gCtx)
throw new DMLRuntimeException("GPU : Invalid internal state, the GPUContext set with the ExecutionContext is not the same used to run this LibMatrixCUDA function");
if (LOG.isTraceEnabled()) {
LOG.trace("GPU : unaryAggregate" + ", GPUContext=" + gCtx);
}
final int REDUCTION_ALL = 1;
final int REDUCTION_ROW = 2;
final int REDUCTION_COL = 3;
final int REDUCTION_DIAG = 4;
// A kahan sum implemention is not provided. is a "uak+" or other kahan operator is encountered,
// it just does regular summation reduction.
final int OP_PLUS = 1;
final int OP_PLUS_SQ = 2;
final int OP_MEAN = 3;
final int OP_VARIANCE = 4;
final int OP_MULTIPLY = 5;
final int OP_MAX = 6;
final int OP_MIN = 7;
final int OP_MAXINDEX = 8;
final int OP_MININDEX = 9;
// Sanity Checks
if (!in1.getGPUObject(gCtx).isAllocated())
throw new DMLRuntimeException("Internal Error - The input is not allocated for a GPU Aggregate Unary:" + in1.getGPUObject(gCtx).isAllocated());
boolean isSparse = in1.getGPUObject(gCtx).isSparse();
IndexFunction indexFn = op.indexFn;
AggregateOperator aggOp = op.aggOp;
// Convert Reduction direction to a number
int reductionDirection = -1;
if (indexFn instanceof ReduceAll) {
reductionDirection = REDUCTION_ALL;
} else if (indexFn instanceof ReduceRow) {
reductionDirection = REDUCTION_ROW;
} else if (indexFn instanceof ReduceCol) {
reductionDirection = REDUCTION_COL;
} else if (indexFn instanceof ReduceDiag) {
reductionDirection = REDUCTION_DIAG;
} else {
throw new DMLRuntimeException("Internal Error - Invalid index function type, only reducing along rows, columns, diagonals or all elements is supported in Aggregate Unary operations");
}
if (reductionDirection == -1)
throw new DMLRuntimeException("Internal Error - Incorrect type of reduction direction set for aggregate unary GPU instruction");
// Convert function type to a number
int opIndex = -1;
if (aggOp.increOp.fn instanceof KahanPlus) {
opIndex = OP_PLUS;
} else if (aggOp.increOp.fn instanceof KahanPlusSq) {
opIndex = OP_PLUS_SQ;
} else if (aggOp.increOp.fn instanceof Mean) {
opIndex = OP_MEAN;
} else if (aggOp.increOp.fn instanceof CM) {
if (((CM) aggOp.increOp.fn).getAggOpType() != CMOperator.AggregateOperationTypes.VARIANCE)
throw new DMLRuntimeException("Internal Error - Invalid Type of CM operator for Aggregate Unary operation on GPU");
opIndex = OP_VARIANCE;
} else if (aggOp.increOp.fn instanceof Plus) {
opIndex = OP_PLUS;
} else if (aggOp.increOp.fn instanceof Multiply) {
opIndex = OP_MULTIPLY;
} else if (aggOp.increOp.fn instanceof Builtin) {
Builtin b = (Builtin) aggOp.increOp.fn;
switch(b.bFunc) {
case MAX:
opIndex = OP_MAX;
break;
case MIN:
opIndex = OP_MIN;
break;
case MAXINDEX:
opIndex = OP_MAXINDEX;
break;
case MININDEX:
opIndex = OP_MININDEX;
break;
default:
new DMLRuntimeException("Internal Error - Unsupported Builtin Function for Aggregate unary being done on GPU");
}
} else {
throw new DMLRuntimeException("Internal Error - Aggregate operator has invalid Value function");
}
if (opIndex == -1)
throw new DMLRuntimeException("Internal Error - Incorrect type of operation set for aggregate unary GPU instruction");
int rlen = (int) in1.getNumRows();
int clen = (int) in1.getNumColumns();
if (isSparse) {
// The strategy for the time being is to convert sparse to dense
// until a sparse specific kernel is written.
in1.getGPUObject(gCtx).sparseToDense(instName);
// long nnz = in1.getNnz();
// assert nnz > 0 : "Internal Error - number of non zeroes set to " + nnz + " in Aggregate Binary for GPU";
// MatrixObject out = ec.getSparseMatrixOutputForGPUInstruction(output, nnz);
// throw new DMLRuntimeException("Internal Error - Not implemented");
}
long outRLen = -1;
long outCLen = -1;
if (indexFn instanceof ReduceRow) {
// COL{SUM, MAX...}
outRLen = 1;
outCLen = clen;
} else if (indexFn instanceof ReduceCol) {
// ROW{SUM, MAX,...}
outRLen = rlen;
outCLen = 1;
}
Pointer out = null;
if (reductionDirection == REDUCTION_COL || reductionDirection == REDUCTION_ROW) {
// Matrix output
MatrixObject out1 = getDenseMatrixOutputForGPUInstruction(ec, instName, output, outRLen, outCLen);
out = getDensePointer(gCtx, out1, instName);
}
Pointer in = getDensePointer(gCtx, in1, instName);
int size = rlen * clen;
// For scalars, set the scalar output in the Execution Context object
switch(opIndex) {
case OP_PLUS:
{
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_sum", in, size);
ec.setScalarOutput(output, new DoubleObject(result));
break;
}
case REDUCTION_COL:
{
// The names are a bit misleading, REDUCTION_COL refers to the direction (reduce all elements in a column)
reduceRow(gCtx, instName, "reduce_row_sum", in, out, rlen, clen);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_sum", in, out, rlen, clen);
break;
}
case REDUCTION_DIAG:
throw new DMLRuntimeException("Internal Error - Row, Column and Diag summation not implemented yet");
}
break;
}
case OP_PLUS_SQ:
{
// Calculate the squares in a temporary object tmp
Pointer tmp = gCtx.allocate(instName, size * sizeOfDataType);
squareMatrix(gCtx, instName, in, tmp, rlen, clen);
// Then do the sum on the temporary object and free it
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_sum", tmp, size);
ec.setScalarOutput(output, new DoubleObject(result));
break;
}
case REDUCTION_COL:
{
// The names are a bit misleading, REDUCTION_COL refers to the direction (reduce all elements in a column)
reduceRow(gCtx, instName, "reduce_row_sum", tmp, out, rlen, clen);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_sum", tmp, out, rlen, clen);
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for summation squared");
}
gCtx.cudaFreeHelper(instName, tmp);
break;
}
case OP_MEAN:
{
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_sum", in, size);
double mean = result / size;
ec.setScalarOutput(output, new DoubleObject(mean));
break;
}
case REDUCTION_COL:
{
reduceRow(gCtx, instName, "reduce_row_mean", in, out, rlen, clen);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_mean", in, out, rlen, clen);
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for mean");
}
break;
}
case OP_MULTIPLY:
{
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_prod", in, size);
ec.setScalarOutput(output, new DoubleObject(result));
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for multiplication");
}
break;
}
case OP_MAX:
{
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_max", in, size);
ec.setScalarOutput(output, new DoubleObject(result));
break;
}
case REDUCTION_COL:
{
reduceRow(gCtx, instName, "reduce_row_max", in, out, rlen, clen);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_max", in, out, rlen, clen);
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for max");
}
break;
}
case OP_MIN:
{
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_min", in, size);
ec.setScalarOutput(output, new DoubleObject(result));
break;
}
case REDUCTION_COL:
{
reduceRow(gCtx, instName, "reduce_row_min", in, out, rlen, clen);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_min", in, out, rlen, clen);
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for min");
}
break;
}
case OP_VARIANCE:
{
// Temporary GPU array for
Pointer tmp = gCtx.allocate(instName, size * sizeOfDataType);
Pointer tmp2 = gCtx.allocate(instName, size * sizeOfDataType);
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_sum", in, size);
double mean = result / size;
// Subtract mean from every element in the matrix
ScalarOperator minusOp = new RightScalarOperator(Minus.getMinusFnObject(), mean);
matrixScalarOp(gCtx, instName, in, mean, rlen, clen, tmp, minusOp);
squareMatrix(gCtx, instName, tmp, tmp2, rlen, clen);
double result2 = reduceAll(gCtx, instName, "reduce_sum", tmp2, size);
double variance = result2 / (size - 1);
ec.setScalarOutput(output, new DoubleObject(variance));
break;
}
case REDUCTION_COL:
{
reduceRow(gCtx, instName, "reduce_row_mean", in, out, rlen, clen);
// Subtract the row-wise mean from every element in the matrix
BinaryOperator minusOp = new BinaryOperator(Minus.getMinusFnObject());
matrixMatrixOp(gCtx, instName, in, out, rlen, clen, VectorShape.NONE.code(), VectorShape.COLUMN.code(), tmp, minusOp);
squareMatrix(gCtx, instName, tmp, tmp2, rlen, clen);
Pointer tmpRow = gCtx.allocate(instName, rlen * sizeOfDataType);
reduceRow(gCtx, instName, "reduce_row_sum", tmp2, tmpRow, rlen, clen);
ScalarOperator divideOp = new RightScalarOperator(Divide.getDivideFnObject(), clen - 1);
matrixScalarOp(gCtx, instName, tmpRow, clen - 1, rlen, 1, out, divideOp);
gCtx.cudaFreeHelper(instName, tmpRow);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_mean", in, out, rlen, clen);
// Subtract the columns-wise mean from every element in the matrix
BinaryOperator minusOp = new BinaryOperator(Minus.getMinusFnObject());
matrixMatrixOp(gCtx, instName, in, out, rlen, clen, VectorShape.NONE.code(), VectorShape.ROW.code(), tmp, minusOp);
squareMatrix(gCtx, instName, tmp, tmp2, rlen, clen);
Pointer tmpCol = gCtx.allocate(instName, clen * sizeOfDataType);
reduceCol(gCtx, instName, "reduce_col_sum", tmp2, tmpCol, rlen, clen);
ScalarOperator divideOp = new RightScalarOperator(Divide.getDivideFnObject(), rlen - 1);
matrixScalarOp(gCtx, instName, tmpCol, rlen - 1, 1, clen, out, divideOp);
gCtx.cudaFreeHelper(instName, tmpCol);
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for variance");
}
gCtx.cudaFreeHelper(instName, tmp);
gCtx.cudaFreeHelper(instName, tmp2);
break;
}
case OP_MAXINDEX:
{
switch(reductionDirection) {
case REDUCTION_COL:
throw new DMLRuntimeException("Internal Error - Column maxindex of matrix not implemented yet for GPU ");
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for maxindex");
}
// break;
}
case OP_MININDEX:
{
switch(reductionDirection) {
case REDUCTION_COL:
throw new DMLRuntimeException("Internal Error - Column minindex of matrix not implemented yet for GPU ");
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for minindex");
}
// break;
}
default:
throw new DMLRuntimeException("Internal Error - Invalid GPU Unary aggregate function!");
}
}
Aggregations